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SOME SHARP INEQUALITIES ON

MIXED–NORM SPACES ON THE UNIT BALL

STEVO STEVIĆ

(Communicated by J. Pečarić)

Abstract. We give some sharp inequalities on the mixed-norm spaces of holomorphic and har-
monic functions on the unit balls in Cn and Rn respectively. Several interesting corollaries and
applications of the inequalities are also given.

1. Introduction and preliminaries

Let B be the open unit ball in the complex-vector space Cn , S = ∂B its boundary,
dσ the normalized surface measure on S , i.e. σ(S) = 1, dν the normalized Lebesgue
measure on B , i.e. ν(B) = 1, and H(B) the class of all holomorphic functions on B .

For an f ∈ H(B) with the Taylor expansion f (z) = ∑|β |�0 aβ zβ , let

ℜ f (z) = ∑
|β |�0

|β |aβ zβ

be the radial derivative of f , where β = (β1,β2, . . . ,βn) is a multi-index, |β | = β1 +
· · ·+ βn and zβ = zβ1

1 · · · zβn
n ([9]). It is easy to see that

ℜ f (z) = 〈∇ f (z), z〉,
where ∇ f is the complex gradient of function f , that is,

∇ f =
(

∂ f
∂ z1

, . . . ,
∂ f
∂ zn

)
,

and 〈z,w〉 = ∑n
j=1 z jw j is the standard scalar product in C

n .
A function continuous on the interval [0,1) which is positive on (0,1) is called

weight.
Let 0 < p,q < ∞ and ω be a weight on [0,1) . The mixed norm space H(p,q,ω)(B)

= H(p,q,ω), consists of all f ∈ H(B) such that

‖ f‖p
H(p,q,ω) =

∫ 1

0
Mp

q ( f ,r)ω(r)dr < ∞, (1)
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where

Mq( f ,r) =
(∫

S

| f (rζ )|qdσ(ζ )
)1/q

.

Typical examples of the mixed norm spaces are obtained for

ω(r) =
φ p(r)
1− r

, r ∈ [0,1),

where p > 0, and φ is a weight function on the interval [0,1) , and there are δ ∈ [0,1)
and a and b , 0 < a < b , such that

φ(r)
(1− r)a is decreasing on [δ ,1), and lim

r→1−
φ(r)

(1− r)a = 0;

φ(r)
(1− r)b is increasing on [δ ,1), and lim

r→1−
φ(r)

(1− r)b = +∞.

Such weight function φ is called normal ([10]), and the corresponding mixed norm
space is denoted by H(p,q,φ)(B) = H(p,q,φ). For φ(r) = (1− r)(α+1)/p , α > −1,
the mixed norm space is reduced to the classical one, i.e. H(p,q,α)(B) = H(p,q,α).
Mixed norm spaces and some operators on them have been studied considerably re-
cently (see, e.g. [3, 5, 6, 17, 19, 21, 23, 24] and the references therein, where, among
others, were studied the operators introduced in [3, 16, 18, 22]; some related results can
be found also in [1, 4, 7, 20]).

For p ∈ (0,∞) and α > −1, the weighted Bergman space Ap
α(B) = Ap

α consists
of all f ∈ H(B) such that

‖ f‖p
Ap

α
=
∫

B

| f (z)|pdνα(z) < ∞,

where dνα(z) = cn,α(1−|z|2)αdν(z) is the normalized weighted Lebesgue measure on
B , that is, constant cn,α is chosen such that να(B) = 1. When α = 0, Ap

0(B) = Ap(B)
is the standard (unweighted)Bergman space. For some information on the space see, for
example, [7, 26, 27]. By using the polar coordinates it is easy to see that the weighted
Bergman space is the special case of the mixed norm space H(p,q,ω) with p = q and
ω(r) = 2ncn,α(1− r2)αr2n−1.

When a �= 0, by ϕa we denote the involutive holomorphic automorphism of the
unit ball such that ϕa(0) = a . It is known that

ϕa(z) =
a−Pa(z)− saQa(z)

1−〈z,a〉 , z ∈ B,

where sa =
√

1−|a|2, Pa is the orthogonal projection from Cn onto the one-dimen-
sional subspace [a] generated by a , and Qa = I −Pa (i.e. the orthogonal projection
from Cn onto Cn � [a]). It is easy to see that

Pa(z) =
〈z,a〉
〈a,a〉a, z ∈ C

n.
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If a = 0, then the involution is simply defined by ϕ0(z) = −z .
It is also known that the following relation holds

1−|ϕa(z)|2 =
(1−|a|2)(1−|z|2)

|1−〈z,a〉|2 , z ∈ B. (2)

For more information about automorphisms of the unit ball in Cn , see, for example, [9]
or [27].

Let BR be the open unit ball in the real-vector space Rn , SR = ∂BR its bound-
ary, dS the normalized surface measure on SR , i.e. S(SR) = 1, dV the normalized
Lebesgue measure on BR , i.e. V (BR) = 1, and H (BR) the class of all harmonic
functions on BR .

Let 0 < p,q < ∞ and ω be a weight on [0,1) . The harmonic mixed norm space
H (p,q,ω)(BR) = H (p,q,ω), consists of all u ∈ H (BR) such that

‖u‖p
H(p,q,ω) =

∫ 1

0
Mp

q (u,r)ω(r)dr < ∞, (3)

where

Mq(u,r) =
(∫

SR

|u(rζ )|qdS(ζ )
)1/q

.

For p ∈ (0,∞) and α > −1, the weighted harmonic Bergman space A p
α (BR) =

A p
α consists of all u ∈ H (BR) such that

‖u‖p
A

p
α

=
∫

BR

|u(x)|pdVα(x) < ∞,

where dVα(x) = dn,α(1− |x|2)αdV (x) is the normalized weighted Lebesgue measure
on BR , that is, constant dn,α is chosen such that Vα(BR) = 1. When α = 0, Ap

0(BR) =
Ap(BR) is the standard (unweighted) harmonic Bergman space. By using the polar
coordinates ([2]) it is easy to see that the weighted Bergman space is the special case of
the mixed norm space H (p,q,ω) with p = q and ω(r) = ndn,α(1− r2)αrn−1.

A frequent situation in working with mixed norm spaces is that during some cal-
culations under the signs of integrals in (1) and (3) is appeared a power function, that
is, g(r) = rβ , for some β ∈ R\{0}, which for some technical reasons should be elim-
inated or replaced by another, more suitable, power function.

Hence, a natural question is to compare the integral in (1) with the following

‖ f‖p
H(p,q,ω,β ) :=

∫ 1

0
Mp

q ( f ,r)ω(r)rβ dr. (4)

Note that, if β < 0, then obviously holds∫ 1

0
Mp

q ( f ,r)ω(r)dr �
∫ 1

0
Mp

q ( f ,r)ω(r)rβ dr,

while if β > 0, then we have∫ 1

0
Mp

q ( f ,r)rβ ω(r)dr �
∫ 1

0
Mp

q ( f ,r)ω(r)dr.
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Hence, of some interest are the reverse type inequalities. There are some tricks which
produce such inequalities, but of a special interest are the sharp ones.

Motivated by nice paper [25], here we give some sharp inequalities. We will also
present their several important consequences. To do this we will need the following
result, which is called Čebišev’s integral inequality (see, e.g. [8, p. 40]).

LEMMA 1. Assume that f1 and f2 are both nondecreasing or nonincreasing in-
tegrable functions, and h is a nonnegative integrable function on the interval [a,b] .
Then the following inequality holds

∫ b

a
f1(t)h(t)dt

∫ b

a
f2(t)h(t)dt �

∫ b

a
f1(t) f2(t)h(t)dt

∫ b

a
h(t)dt, (5)

where the equality in (5) holds if and only if one of the functions f1 and f2 is constant.

REMARK 1. By using the linear change of variables t = a+ s(b−a) , the mono-
tonicity and integrability of the functions in Lemma 1 are not changed, so it is easy to
see that we may assume a = 0 and b = 1, the case which will be used in the rest of
the paper. Beside this, a simple limit argument shows that the closed interval [a,b] in
Lemma 1 can be replaced by any of the intervals (a,b] , [a,b) and (a,b).

2. Main results

In this section we state and prove our main results and present numerous conse-
quences of them.

THEOREM 1. Assume that p,q > 0 , β > 0 , and ω is a weight function on [0,1)
such that

lim
r→+0

ω(r)
rσ = c > 0, (6)

for some σ > 0 , and

∫ 1

1/2

ω(r)
rσ < ∞. (7)

Then for every f ∈ H(p,q,ω) and β ∈ (0,σ +1) , the following inequality holds

∫ 1

0
Mp

q ( f ,r)
ω(r)
rβ dr �

∫ 1
0

ω(r)
rβ dr∫ 1

0 ω(r)dr

∫ 1

0
Mp

q ( f ,r)ω(r)dr, (8)

where the equality in (8) holds if and only if function f is constant.

Proof. First note that condition (6) implies that for β ∈ (0,σ +1) the integral

I :=
∫ 1

0

ω(r)
rβ dr
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is finite. Indeed, from (6) we have that for every ε > 0 there is a δ > 0 such that
|ω(r)| < (c+ ε)rσ , when r ∈ (0,δ ). Hence∫ δ

0

ω(r)
rβ dr < (c+ ε)

∫ δ

0
rσ−β dr < ∞,

due to the condition β ∈ (0,σ + 1) . From the continuity of ω and condition (7) it
easily follows that ∫ 1

δ

ω(r)
rβ dr < ∞.

From these two facts the claim follows.
Since ∫ 1

0
ω(r)dr �

∫ 1

0

ω(r)
rβ dr,

for β > 0, we have also proved that∫ 1

0
ω(r)dr < ∞.

It is well known that the function f1(r) = Mp
q ( f ,r) is nondecreasing on [0,1) , for

every f ∈H(B) and p,q > 0. On the other hand, the function f2(r) = rβ is increasing
on the interval [0,1) for every β > 0. Applying Lemma 1 to these two functions on the
interval (0,1) , with h(r) = ω(r)/rβ , inequality (8) follows.

Since function f2 is not constant, according to the second part of Lemma 1, the
equality holds if and only if Mp

q ( f ,r) is constant on [0,1) . If f (0) = 0, then from the
equality

Mq( f ,r) = | f (0)| = 0, r ∈ (0,1),

we get f (z) ≡ 0, z ∈ B. If f (0) �= 0, then from the continuity of f it follows that there
is a δ > 0 such that f (z) �= 0 on the ball δB .

Now, if we use the equality

r
d
dr

Mq
q( f ,r) =

q2

2n

∫
rB
|ℜ f (z)|2| f (z)|q−2|z|−2ndν(z), r ∈ [0,1), (9)

(see, e.g. [27, Theorem 4.20]), we get∫
rB
|ℜ f (z)|2| f (z)|q−2|z|−2ndν(z) = 0, r ∈ [0,δ ),

from which it follows that ℜ f (z) = 0, z ∈ δB.
From this and since

f (z)− f (0) =
∫ 1

0

ℜ f (tz)
t

dt,

it follows that f (z) = f (0) , z ∈ δB, which along with the uniqueness theorem for
holomorphic functions implies that f (z) = f (0) , z ∈ B, as claimed. �

REMARK 2. That Mq( f ,r) = const. implies f (z) = f (0) is a known fact. We
give the proof above to show the usefulness of formula (9), for the completeness, and
since this proof might be new or interesting to the reader.
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THEOREM 2. Assume that p,q > 0 , β > 0 , and ω is a weight function on [0,1)
such that ∫ 1

0
ω(r)dr < ∞. (10)

Then for every f ∈ H(p,q,ω) , the following inequality holds

∫ 1

0
Mp

q ( f ,r)ω(r)dr �
∫ 1
0 ω(r)dr∫ 1

0 rβ ω(r)dr

∫ 1

0
Mp

q ( f ,r)rβ ω(r)dr, (11)

where the equality in (11) holds if and only if function f is constant.

Proof. First note that condition (10) obviously implies∫ 1

0
rβ ω(r)dr < ∞.

As in the proof of Theorem 1, we apply Lemma 1 to the functions f1(r) = Mp
q ( f ,r)

and f2(r) = rβ on the interval (0,1) , but with h(r) = ω(r) . The proof of the part
concerning the equality in (11) is the same as in Theorem 1, so is omitted. �

For the case min{p,q} � 1, and β ∈ R \ {0} , the quantities ‖ · ‖H(p,q,ω) and
‖ · ‖H(p,q,ω,β ) are norms on the space H(p,q,ω) . Hence, Theorems 1 and 2 claim that
the identity operators

I : (H(p,q,ω),‖ · ‖H(p,q,ω)) → (H(p,q,ω),‖ · ‖H(p,q,ω,−β ))

when β ∈ (0,σ +1) and

I : (H(p,q,ω),‖ · ‖H(p,q,ω,β )) → (H(p,q,ω),‖ · ‖H(p,q,ω))

when β > 0, are bounded, and that their norms are

‖I‖(H(p,q,ω),‖·‖H(p,q,ω))→(H(p,q,ω),‖·‖H(p,q,ω,−β)) =

( ∫ 1
0

ω(r)
rβ dr∫ 1

0 ω(r)dr

)1/p

and

‖I‖(H(p,q,ω),‖·‖H(p,q,ω,β))→(H(p,q,ω),‖·‖H(p,q,ω)) =

( ∫ 1
0 ω(r)dr∫ 1

0 rβ ω(r)dr

)1/p

.

Now we state and prove the corresponding results for the space of harmonic func-
tions H (p,q,ω) on the unit ball BR .

THEOREM 3. Assume that p > 0 q > 1 , β > 0 , and ω is a weight function
on [0,1) satisfying conditions (6) and (7). Then for every u ∈ H (p,q,ω) and β ∈
(0,σ +1) , the inequality

∫ 1

0
Mp

q (u,r)
ω(r)
rβ dr �

∫ 1
0

ω(r)
rβ dr∫ 1

0 ω(r)dr

∫ 1

0
Mp

q (u,r)ω(r)dr, (12)
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holds, where the equality in (12) holds if and only if function u is constant.

Proof. The proof is similar to the proof of Theorem 1 where Lemma 1 is applied
to the nondecreasing functions f1(r) = Mp

q (u,r) and f2(r) = rβ on the interval (0,1)
with the weight function h(r) = ω(r)/rβ , from which (12) follows.

Since function f2 is not constant then the equality in (12) holds if and only if
Mq(u,r) is constant on [0,1) . Hence, if u(0) = 0, then from the equality

Mq(u,r) = |u(0)| = 0, r ∈ (0,1),

we get u(x) ≡ 0, x ∈ BR. If u(0) �= 0, then from the continuity of u it follows that
there is a δ > 0 such that u(x) �= 0 on the ball δBR .

For q > 1 and n � 3, the following equality

Mq
q(u,r) =|u(0)|q +

q(q−1)
n(n−2)

∫
rBR

|u(x)|q−2|∇u(x)|2(|x|2−n − r2−n)dV (x), (13)

was essentially proved in [11] (although it was explicitly formulated in [12]), and sub-
sequently used in several papers of ours (see, e.g. [13], [14] and [15])). By using (13),
we get ∫

rBR

|u(x)|q−2|∇u(x)|2(|x|2−n − r2−n)dV (x) = 0,

for every r ∈ [0,1) , from which it follows that ∇u(x) = 0, x ∈ δBR, and consequently
u(x) = u(0) , x ∈ δBR, which along with the uniqueness theorem for harmonic func-
tions implies that u(x) = u(0) , x ∈ BR.

For the case q > 1 and n = 2 the result can be obtained by the Stein’s formula∫
SR

|u(rζ )|qdσ(ζ ) = |u(0)|q +
q(q−1)

2

∫
rBR

|u(x)|q−2|∇u(x)|2 ln
r
|x|dV (x), (14)

r ∈ [0,1) , which was also essentially proved in [11, Theorem 4]. �

REMARK 3. That Mq(u,r) = const. implies u(x) = u(0) , x ∈ BR , is a known
result (see, e.g. [2, p. 138]), but we give the proof above to show the usefulness of our
formula (13), the completeness, and since the proof might be new or interesting to the
reader.

The proof of the next result is a combination of the proofs of Theorems 2 and 3,
so is omitted.

THEOREM 4. Assume that p > 0 q > 1 , β > 0 , and ω is a weight function on
[0,1) satisfying condition (10). Then for every u∈H (p,q,ω) , the following inequality

∫ 1

0
Mp

q (u,r)ω(r)dr �
∫ 1
0 ω(r)dr∫ 1

0 rβ ω(r)dr

∫ 1

0
Mp

q (u,r)rβ ω(r)dr, (15)

holds, where the equality in (15) holds if and only if function u is constant.

Note that, for the case p � 1, q > 1, and β ∈ R\{0} , the quantities ‖ ·‖H (p,q,ω)
and ‖ · ‖H (p,q,ω,β ) are norms on the space of harmonic functions H (p,q,ω) . Hence,
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Theorems 3 and 4 claim that the identity operators

I : (H (p,q,ω),‖ · ‖H (p,q,ω)) → (H (p,q,ω),‖ · ‖H (p,q,ω,−β ))

when β ∈ (0,σ +1) , and

I : (H (p,q,ω),‖ · ‖H (p,q,ω,β )) → (H (p,q,ω),‖ · ‖H (p,q,ω))

when β > 0 are bounded, and that their norms are

‖I‖(H (p,q,ω),‖·‖H (p,q,ω))→(H (p,q,ω),‖·‖H (p,q,ω,−β)) =

( ∫ 1
0

ω(r)
rβ dr∫ 1

0 ω(r)dr

)1/p

and

‖I‖(H (p,q,ω),‖·‖H (p,q,ω,β))→(H (p,q,ω),‖·‖H (p,q,ω)) =

( ∫ 1
0 ω(r)dr∫ 1

0 rβ ω(r)dr

)1/p

.

Now we will present some important corollaries and applications of our main re-
sults.

COROLLARY 1. Assume that p,q > 0 , γ � 0 , α > −1 and β ∈ (0,γ +1). Then
for every f ∈ H(p,q,α) the following inequality holds

∫ 1

0
Mp

q ( f ,r)
(1− r)α

rβ rγdr � Γ(γ −β +1)Γ(α + γ +2)
Γ(α + γ +2−β )Γ(γ +1)

∫ 1

0
Mp

q ( f ,r)(1− r)α rγdr,

(16)
where the equality in (16) holds if and only if function f is constant.

Proof. If we apply Theorem 1 with ω(r) = (1− r)αrγ , and note that ω satisfies
conditions (6) and (7) with σ = γ and c = 1, then, we have

∫ 1

0
Mp

q ( f ,r)
(1− r)α

rβ rγdr �
∫ 1
0 (1− r)αrγ−β dr∫ 1

0 (1− r)αrγdr

∫ 1

0
Mp

q ( f ,r)(1− r)αrγdr. (17)

On the other hand, we have that

∫ 1

0
(1− r)αrγ−β dr =

Γ(α +1)Γ(γ −β +1)
Γ(α + γ +2−β )

(18)

and ∫ 1

0
(1− r)αrγdr =

Γ(α +1)Γ(γ +1)
Γ(α + γ +2)

. (19)

By using (18) and (19) in (17), we obtain (16). According to Theorem 1 the equality in
(16) holds if and only if function f is constant. �
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COROLLARY 2. Assume that p > 0 , s � 0 , s+ α > −1 and β ∈ (0,2n). Then
for every f ∈ Ap

α the following inequality holds

∫
B

| f (z)|p
|z|β (1−|ϕa(z)|2)sdνα(z) � Γ(n−β/2)Γ(α + s+n+1)

Γ(n+ α + s+1−β/2)Γ(n)

×
∫

B

| f (z)|p(1−|ϕa(z)|2)sdνα(z), (20)

where the equality in (20) holds if and only if

f (z) = w(1−〈z,a〉)2s/p (21)

for some w ∈ C .

Proof. By using the polar coordinates and (2) we see that inequality (20) is equiv-
alent to the following

∫ 1

0
Mp

p( f/g,r)(1− r2)α+sr2n−1−βdr � Γ(n−β/2)Γ(α + s+n+1)
Γ(n+ α + s+1−β/2)Γ(n)

×
∫ 1

0
Mp

p( f/g,r)(1− r2)α+sr2n−1dr, (22)

where g(z) = (1−〈z,a〉)2s/p. Note that f/g ∈ H(B) , since g(z) �= 0 for every z ∈ B.
If we apply Theorem 1 with p = q and ω(r) = (1− r2)α+sr2n−1 , and note that

function ω satisfies conditions (6) and (7) with σ = 2n−1 and c = 1, we get

∫ 1

0
Mp

p( f/g,r)(1− r2)α+sr2n−1−βdr �
∫ 1
0 (1− r2)α+sr2n−1−β dr∫ 1

0 (1− r2)α+sr2n−1dr

×
∫ 1

0
Mp

p( f/g,r)(1− r2)α+sr2n−1dr. (23)

By using the change of variables t = r2 , we have that

∫ 1

0
(1− r2)α+sr2n−1−βdr =

1
2

∫ 1

0
(1− t)α+stn−1−β/2dt

=
Γ(α + s+1)Γ(n−β/2)
2Γ(α + s+n+1−β/2)

(24)

and ∫ 1

0
(1− r2)α+sr2n−1dr =

Γ(α + s+1)Γ(n)
2Γ(α + s+n+1)

. (25)

By using (24) and (25) into (23), we get (22), that is, (20). According to Theorem
1, the equality in (20) holds if and only if function f/g is constant, from which (21)
follows. �

For s = 0 from Corollary 2 we get the following result.
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COROLLARY 3. Assume that p > 0 , α > −1 and β ∈ (0,2n). Then for every
f ∈ Ap

α the following inequality holds∫
B

| f (z)|p
|z|β dνα(z) � Γ(n−β/2)Γ(α +n+1)

Γ(n+ α +1−β/2)Γ(n)

∫
B

| f (z)|pdνα(z), (26)

where the equality in (26) holds if and only if function f is constant.

COROLLARY 4. Assume that p > 1 , α > −1 and β ∈ (0,n). Then for every
u ∈ A p

α the following inequality holds∫
BR

|u(x)|p
|x|β dVα(x) � Γ((n−β )/2)Γ(α +1+n/2)

Γ(α +1+(n−β )/2)Γ(n/2)

∫
BR

|u(x)|pdVα(x), (27)

where the equality in (27) holds if and only if function u is constant.

Proof. By using the polar coordinates we see that inequality (27) is equivalent to
the following

∫ 1

0
Mp

p(u,r)(1− r2)αrn−1−β dr � Γ((n−β )/2)Γ(α +1+n/2)
Γ(α +1+(n−β )/2)Γ(n/2)

×
∫ 1

0
Mp

p(u,r)(1− r2)αrn−1dr. (28)

If we apply Theorem 3 with p = q , ω(r) = (1− r2)αrn−1 , and note that function
ω satisfies conditions (6) and (7) with σ = n−1 and c = 1, we get

∫ 1

0
Mp

p(u,r)(1− r2)αrn−1−β dr �
∫ 1
0 (1− r2)α rn−1−βdr∫ 1

0 (1− r2)αrn−1dr

∫ 1

0
Mp

p(u,r)(1− r2)αrn−1dr.

(29)

By using the change of variables t = r2 , we have that
∫ 1

0
(1− r2)αrn−1−β dr =

1
2

∫ 1

0
(1− t)αt(n−β )/2−1dt =

Γ(α +1)Γ((n−β )/2)
2Γ(α +1+(n−β )/2)

(30)

and ∫ 1

0
(1− r2)αrn−1dr =

Γ(α +1)Γ(n/2)
2Γ(α +1+n/2)

. (31)

By using (30) and (31) into (29), we get (28), that is, (27). According to Theorem 3,
the equality in (27) holds if and only if function u is constant. �

COROLLARY 5. Assume that p,q > 0 , γ � 0 , α >−1 and β > 0. Then for every
f ∈ H(p,q,α) the following inequality holds

∫ 1

0
Mp

q ( f ,r)(1− r)αrγdr � Γ(γ +1)Γ(α + β + γ +2)
Γ(α + γ +2)Γ(γ + β +1)

∫ 1

0
Mp

q ( f ,r)(1− r)αrβ+γdr,

(32)
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where the equality in (32) holds if and only if function f is constant.

Proof. If we apply Theorem 2 with ω(r) = (1− r)αrγ , and note that it satisfies
condition (10), we obtain

∫ 1

0
Mp

q ( f ,r)(1− r)αrγdr �
∫ 1
0 (1− r)αrγdr∫ 1

0 (1− r)αrγ+β dr

∫ 1

0
Mp

q ( f ,r)(1− r)α rβ+γdr. (33)

On the other hand, we have that∫ 1

0
(1− r)αrγdr =

Γ(α +1)Γ(γ +1)
Γ(α + γ +2)

(34)

and ∫ 1

0
(1− r)αrγ+β dr =

Γ(α +1)Γ(γ + β +1)
Γ(α + β + γ +2)

. (35)

By using (34) and (35) in (33), we obtain (32). According to Theorem 2, the equality
in (32) holds if and only if function f is constant. �

COROLLARY 6. Assume that p > 0 , s � 0 , s + α > −1 and β > 0. Then for
every f ∈ Ap

α the following inequality holds∫
B

| f (z)|p(1−|ϕa(z)|2)sdνα(z) � Γ(n)Γ(α + s+n+1+ β/2)
Γ(α + s+n+1)Γ(n+ β/2)

×
∫

B

| f (z)|p|z|β (1−|ϕa(z)|2)sdνα(z), (36)

where the equality in (36) holds if and only if

f (z) = w(1−〈z,a〉)2s/p (37)

for some w ∈ C .

Proof. By using the polar coordinates and (2) we see that inequality (36) is equiv-
alent to the following one∫ 1

0
Mp

p( f/g,r)(1− r2)α+sr2n−1dr � Γ(n)Γ(α + s+n+1+ β/2)
Γ(α + s+n+1)Γ(n+ β/2)

×
∫ 1

0
Mp

p( f/g,r)(1− r2)α+sr2n−1+βdr, (38)

where g(z) = (1−〈z,a〉)2s/p. Recall that f/g ∈ H(B) .
If we apply Theorem 2 with p = q and ω(r) = (1− r2)α+sr2n−1 , and note that it

satisfies condition (10), we get

∫ 1

0
Mp

p( f/g,r)(1− r2)α+sr2n−1dr �
∫ 1
0 (1− r2)α+sr2n−1dr∫ 1

0 (1− r2)α+sr2n−1+β dr

×
∫ 1

0
Mp

p( f/g,r)(1− r2)α+sr2n−1+βdr. (39)
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By using the change of variables t = r2 , we have that

∫ 1

0
(1− r2)α+sr2n−1+βdr =

1
2

∫ 1

0
(1− t)α+stn+ β

2 −1dt =
Γ(α + s+1)Γ(n+ β/2)
2Γ(α + s+n+1+ β/2)

(40)
and consequently

∫ 1

0
(1− r2)α+sr2n−1dr =

Γ(α + s+1)Γ(n)
2Γ(α + s+n+1)

. (41)

By using (40) and (41) into (39), we get (38), that is, (36). According to Theorem
2, the equality in (36) holds if and only if function f/g is constant, from which (37)
follows. �

For s = 0, from Corollary 6 we get the following result.

COROLLARY 7. Assume that p > 0 , α > −1 and β > 0. Then for every f ∈ Ap
α

the following inequality holds

∫
B

| f (z)|pdνα (z) �Γ(n)Γ(α +n+1+ β/2)
Γ(α +n+1)Γ(n+ β/2)

∫
B

| f (z)|p|z|β dνα(z), (42)

where the equality in (42) holds if and only if f is constant.

COROLLARY 8. Assume that p > 1 , α > −1 and β > 0. Then for every u ∈ A p
α

the following inequality holds

∫
BR

|u(x)|pdVα(x) � Γ(n/2)Γ(α +1+(n+ β )/2)
Γ(α +1+n/2)Γ((n+ β )/2)

∫
BR

|u(x)|p|x|β dVα(x), (43)

where equality in (43) holds if and only if function u is constant.

Proof. By using the polar coordinates we see that inequality (43) is equivalent to
the following

∫ 1

0
Mp

p(u,r)(1− r2)αrn−1dr � Γ(n/2)Γ(α +1+(n+ β )/2)
Γ(α +1+n/2)Γ((n+ β )/2)

×
∫ 1

0
Mp

p(u,r)(1− r2)αrn−1+βdr. (44)

If we apply Theorem 4 with p = q and ω(r) = (1− r2)αrn−1 , and note that func-
tion ω satisfies condition (10), we get

∫ 1

0
Mp

p(u,r)(1− r2)αrn−1dr �
∫ 1
0 (1− r2)αrn−1dr∫ 1

0 (1− r2)αrn−1+βdr

×
∫ 1

0
Mp

p(u,r)(1− r2)αrn−1+βdr. (45)
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By using the change of variables t = r2 , we have that

∫ 1

0
(1−r2)α+srn−1+βdr =

1
2

∫ 1

0
(1−t)αt(n+β )/2−1dt =

Γ(α +1)Γ((n+ β )/2)
2Γ(α +1+(n+ β )/2)

, (46)

and ∫ 1

0
(1− r2)αrn−1dr =

Γ(α +1)Γ(n/2)
2Γ(α +1+n/2)

. (47)

By using (46) and (47) into (45), we get (44), that is, (43). According to Theorem 4,
the equality in (43) holds if and only if function u is constant. �
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