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CONDITIONS OF UNIVALENCE WITH APPLICATIONS

ADEL A. ATTIYA

(Communicated by J. Pečarić)

Abstract. In the present paper, by using a nonlinear operator, we obtain a general theorem of
univalence which refines and generalizes many results. Some applications of the main results
are also considered.

1. Introduction

Let P denote the class of analytic functions p(z) in the open unit disc U = {z∈C :
|z| < 1} which satisfies p(0) = 0. Also, let A denote the subclass of P of all functions
f (z) normalized by

f (z) = z+
∞

∑
k=2

ak zk (z ∈ U) . (1.1)

Moreover, let S denote the subclass of A consisting of functions which are univa-
lent functions in U. Furthermore, we use Ω to denote the class of bounded analytic
functions w(z) in U , satisfying the conditions w(0) = 0 and for |w| � 1.

For f (z) ∈ A and z ∈ U, let the integral operators I( f ), L( f ), Lγ ( f ) and Gα( f )
be defined as

I( f )(z) =
z∫

0

f (t)
t

dt , (1.2)

L( f )(z) =
2
z

z∫
0

f (t) dt (1.3)

Lγ ( f )(z) =
1+ γ
zγ

z∫
0

f (t) tγ−1 dt (γ ∈ C; Re(γ) > −1) . (1.4)

and

Gα( f )(z) =

⎡
⎣α

z∫
0

u−1 ( f (u))α du

⎤
⎦

1
α

(Re(α) > 0) . (1.5)
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The operators I( f ) and L( f ) are Alexander operator and Libera operator which
were introduced earlier by Alexander [1] and Libera [8]. Also, Lγ ( f ) is the general
form of Bernardi operator, the operator Lγ ( f ) when γ ∈ N = {1,2, ...} was introduced
by Bernardi [3]. Furthermore, the operator Gα( f ) was introduced by Miller and Mo-
canu [9].

2. Preliminaries

Firstly, we denote by
Fα( f ) : P −→ A

the nonlinear operator defined by:

Fα( f )(z) :=

⎡
⎣α

z∫
0

uα−1 exp

⎛
⎝

u∫
0

f (t)
t

dt

⎞
⎠du

⎤
⎦

1
α

(z ∈ U; f ∈ P; Re(α) > 0) ,

(2.1)
where is the exponential function in the above relation is the principal value.

In this paper we need the following lemmas.

LEMMA 2.1. [4], (see [12]) Let α be a complex number, Re(α) > 0 and f (z) ∈
A. If

1−|z|2Re(α)

Re(α)

(
z f ′′(z)
f ′(z)

)
∈ Ω (z ∈ U) , (2.2)

then the integral operator

Hα(z) =

⎡
⎣α

z∫
0

uα−1 f ′(u) du

⎤
⎦

1
α

(2.3)

is in the class S .

Also, we consider the general Schwarz Lemma, see e.g.[16]:

LEMMA 2.2. Let the function f (z) be regular in UR = {z ∈ C : |z| < R} with
| f (z)| � M, M fixed. If f (z) has one zero with multiply � m. Then

| f (z)| � M
Rm |z|m (z ∈ UR), (2.4)

the equality (2.4) can hold true only if

f (z) = eiθ M
Rm zm (z �= 0), (2.5)

where θ is constant.
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3. Main results

THEOREM 3.1. Let α be a complex number, Re(α) > 0 and p(z) ∈ P. Suppose
also that

|p(z)| � M ( M constant). (3.1)

Then
Fα(p)(z) ∈ S, (3.2)

where

M � 1
2

(1+2Re(α))1+ 1
2 Re(α) . (3.3)

Moreover, if f (z) ∈ A satisfies | f (z)| � L1 and

∣∣∣∣ z
2 f ′(z)
f (z)2 −L2

∣∣∣∣ < L3, then

Gα ,β (z) =

⎡
⎣α

z∫
0

uα−1
(

f (u)
u

)β
du

⎤
⎦

1
α

∈ S, (3.4)

where

L1(L2 +L3) � 1
2 |β | (1+2Re(α))1+ 1

2 Re(α) −1 (3.5)

and α, β ∈ {w ∈ C : Re(w) > 0} .

Proof. Let |p(z)| � M (z ∈ U), By using Lemma 2.2, we have

|p(z)| � M |z| (|z| < 1). (3.6)

Define the function g(z) by

g(z) =
z∫

0

exp

⎛
⎝

u∫
0

p(t)
t

dt

⎞
⎠ du , (3.7)

then, we have g(0) = g′(0)−1 = 0, therefore,

1−|z|2Re(α)

Re(α)

∣∣∣∣ zg
′′(z)

g′(z)

∣∣∣∣ =
1−|z|2Re(α)

Re(α)
|p(z)|

� 1−|z|2Re(α)

Re(α)
M |z| . (3.8)

Since the maximum value of the function

h(r) =
1
a
r
(
1− r2a) (a > 0; 0 � r < 1)
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occurs when r = (1+ 2 a)−
1
2a , therefore,

1−|z|2Re(α)

Re(α)
|z| < 2

(1+2Re(α))1+ 1
2Re(α)

. (3.9)

Using (3.6), we have

1−|z|2Re(α)

Re(α)

∣∣∣∣zg
′′(z)

g′(z)

∣∣∣∣ � 2

(1+2Re(α))1+ 1
2Re(α)

M . (3.10)

Then by using Lemma 2.1, Fα(z) ∈ S, when M � 1
2 (1+2Re(α))1+ 1

2Re(α) , which
gives (3.2).

Also, if f (z) ∈ A, then we have∣∣∣∣ z f ′(z)
f (z)

−1

∣∣∣∣ �
∣∣∣∣ z f ′(z)

f (z)

∣∣∣∣+1

=
∣∣∣∣ z

2 f ′(z)
f (z)2

∣∣∣∣ | f (z)||z| +1

�
∣∣∣∣ z

2 f ′(z)
f (z)2

∣∣∣∣L1 +1

�
∣∣∣∣ z

2 f ′(z)
f (z)2 −L2

∣∣∣∣L1 +L1L2 +1

� L1(L2 +L3)+1 .

By putting p(z) = β
(

z f ′(z)
f (z)

−1

)
, M = |β |(L1(L2 +L3)+1) in (3.1) and using (3.2),

which gives (3.4). Therefore, the proof of the theorem is completed. �

Putting p(z) = β
(

z f ′ (z)
f (z)

−1

)
, M = |β |M1 and using Theorem 3.1, we have the

following corollary.

COROLLARY 3.1. Let f (z) ∈ A satisfy the condition

∣∣∣∣ z f ′(z)
f (z)

−1

∣∣∣∣ < M1, then

Gα ,β (z) =

⎡
⎣α

z∫
0

uα−1
(

f (u)
u

)β
du

⎤
⎦

1
α

∈ S, (3.11)

where

M1 � 1
2 |β | (1+2Re(α))1+ 1

2Re(α) (3.12)

and α, β ∈ {w ∈ C : Re(w) > 0} .

Putting α = 1, β = 1 and using Theorem 3.1, we have the following property of
the Alexander operator.
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COROLLARY 3.2. Let f (z) ∈ A satisfy | f (z)| � L1 and

∣∣∣∣ z
2 f ′(z)
f (z)2 −L2

∣∣∣∣ < L3,

then

I( f ) (z) =
z∫

0

f (u)
u

du ∈ S, (3.13)

where

L1(L2 +L3) � 3
√

3
2

−1 . (3.14)

Putting p(z) = γz f ′(z), M = β |γ| and using Theorem 3.1, we have the following
Corollary.

COROLLARY 3.3. Let f (z) ∈ A satisfy
∣∣∣z f

′
(z)

∣∣∣ � β (β constant) and α, γ ∈
{w ∈ C : Re(w) > 0} .

Then

Gα ,γ(z) =

⎡
⎣α

z∫
0

uα−1(e f (u))γdu

⎤
⎦

1
α

∈ S , (3.15)

where

β � 1
2 |γ| (1+2Re(α))1+ 1

2Re(α) .

Putting p(z) =
n

∑
i=1

βi(
z f ′i′ (z)
fi(z)

− 1) and using the same technique in Theorem 3.1,

we have the following corollary.

COROLLARY 3.4. Let fi(z) ∈ A satisfy | fi(z)| � L1i and

∣∣∣∣z
2 f ′i (z)
fi(z)2 −L2i

∣∣∣∣ < L3i

for all i = 1,2,3, ...,n.
Then

Gα ,β1,...,βn(z) =

⎡
⎣α

z∫
0

uα−1
n

∏
i=1

(
fi(u)
u

)βi

du

⎤
⎦

1
α

∈ S , (3.16)

where
n

∑
i=1

|βi| (L1i(L2i +L3i)+1) � 1
2

(1+2Re(α))1+ 1
2 Re(α) (3.17)

(α, β1,β2, ...,βn ∈ C; Re(α) > 0) .

In the following remarks we give some special cases of our results which general-
ize and improve some recent results.

REMARKS.

i) Putting M = 1, α = 1 and p(z) =
n

∑
i=1

γi

(
z(L(a,c) fi(z))′

L(a,c) fi(z)
−1

)
; (γi ∈ C ).
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If
n

∑
i=1

|γi|� 1 and

∣∣∣∣z(L(a,c) fi(z))
′

L(a,c) fi(z)
−1

∣∣∣∣ < 1, where L(a,c) ( f ) is the Carlson-Shafer

linear operator depends on generalized hypergeometric function (see [7]). Applying
Theorem 3.1, we have the main result due to Selvaraj and Karthikeyan [15].

ii) Putting M = 1, α = 1 and p(z) =
n

∑
i=1

γi

(
z(Dn fi(z))

′

Dn fi(z)
−1

)
; (γi ∈ C ).

If
n

∑
i=1

|γi|� 1 and

∣∣∣∣ z(Dn fi(z))′

Dn fi(z)
−1

∣∣∣∣ < 1, where Dn ( f ) is the Ruscheweyh differential

operator. Applying Theorem 3.1, we have the main result due to Oros et. al. [10].

iii) Putting M = 1, α = 1 and p(z) =
n

∑
i=1

γi

(
z( fi(z))

′

fi(z)
−1

)
; (γi ∈ C ).

If
n

∑
i=1

|γi| � 1 and

∣∣∣∣ z( fi(z))′

fi(z)
−1

∣∣∣∣ < 1. Applying Theorem 3.1, we have the main

result due to Breaz and Breaz [5].

iv) Applying Theorem 3.1, by putting L1 = L2 = L3 = 1 and β =
1
α

, we improve

the main results due to Pescar and Breaz [13].

v) Putting γ = α in Corollary 3.3, we improve the main result due to Pescar [11].

vi) Putting p(z) =
n

∑
i=1

β
(

z(gνi(z))
′

gνi(z)
−1

)
; (β ∈ C , gνi is the normalized Bessel

function of the first kind ) and α = nβ +1 in Theorem 3.1, we improve Theorem
2 due to Baricz and Frasin [2].

vii) Putting γ = α and f (z) = gν (gν is the normalized Bessel function of the first
kind ) in Corollary 3.3, we improve Theorem 3 due to Baricz and Frasin [2].

viii) Putting L1i = Mi , L2i = 1 and L3i = γi in Corollary 3.4, we improve the main
result due to Ravichandran [14].

ix) Putting p(z)=
n

∑
j=1

1
γ j

(
z( f j(z))

′

f j(z)
−1

)
and M =

n

∑
j=1

Mj
γ j

; (γ j ∈C and

∣∣∣∣z( f j(z))
′

f j(z)
−1

∣∣∣∣<
Mj ). Applying Theorem 3.1, we improve the main result due to Pescar [12].

x) Putting p(z)=
[|Re(η)|]

∑
j=1

1
γ j

(
z( f j(z))

′

f j(z)
−1

)
, M =

[|Re(η)|]
∑
j=1

Mj
γ j

and α = ηβ ( γ j ,η , β ∈

C and

∣∣∣∣z( f j(z))
′

f j(z)
−1

∣∣∣∣ < Mj = (2a+1)
2a+1

a

2Re(η)

∣∣γ j
∣∣ , a � Re(α)) in the first part of

Theorem 3.1, we have the main result due to Breaz et al. [6].
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4. Applications

THEOREM 4.1. Let f (z) ∈ A and

Fα(z) =

⎡
⎣α

z∫
0

uα−2 f (u) du

⎤
⎦

1
α

. (4.1)

i) If

∣∣∣∣z f ′(z)
f (z)

−1

∣∣∣∣ < 1, then Fα(z) ∈ S, for all complex values of α satisfying

Re(α) > 0.

ii) If | f (z)| � 1 and

∣∣∣∣ z
2 f ′(z)
f (z)2 −1

∣∣∣∣ < 1, then Fα(z) ∈ S, for all complex values

of α satisfying Re(α) � 1.3470133... .

Proof. By putting p(z) =
(

z f ′(z)
f (z)

−1

)
and M = 1 in Theorem 3.1, then we have

Fα(z) ∈ S for all α which satisfy

1 � 1
2

(1+2 Re(α))1+ 1
2 Re(α) , (4.2)

since the function h(a) = 1
2 (1 + 2a)1+ 1

2a is an increasing function of a > 0 which
satisfies

lim
a→0

h(a) =
e
2

> 1,

therefore, the condition (4.2) is satisfied.
Also, by using Theorem 3.1, for L1 = L2 = L3 = M = β = 1 we have

6 � (1+2 Re(α))1+ 1
2 Re(α) ,

since the function h(a) = (1+2 a)1+ 1
2 a is an increasing function of a > 0, therefore

Re(α) constrained by (4.2) must satisfy the condition Re(α) � 1.3470133... . �

Putting α = 2 in Theorem 4.1, we have

COROLLARY 4.1. Let f (z) ∈ A satisfy either

∣∣∣∣z f ′(z)
f (z)

−1

∣∣∣∣ < 1, or | f (z)| � 1

and

∣∣∣∣ z
2 f ′(z)
f (z)2 −1

∣∣∣∣ < 1. Then

√
z L( f )(z) ∈ S , (4.3)

where L( f ) is the Libera operator.

Putting α = γ +1 in Theorem 4.1, we have
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COROLLARY 4.2. Let f (z) ∈ A.

i) If

∣∣∣∣ z f ′(z)
f (z)

−1

∣∣∣∣ < 1, then

z

(
Lγ ( f )(z)

z

) 1
1+γ

∈ S,

for all complex values of γ satisfying Re(γ) > −1.

ii) If | f (z)| � 1 and

∣∣∣∣ z
2 f ′(z)
f (z)2 −1

∣∣∣∣ < 1, then

z

(
Lγ( f )(z)

z

) 1
1+γ

∈ S,

for all complex values of γ satisfying Re(γ) � 0.3470133... .

Putting p(z) = α
(

z f ′(z)
f (z)

−1

)
and M = |α|M1 in Theorem 3.1, we have

COROLLARY 4.3. Let f (z) ∈ A.

i) If

∣∣∣∣ z f ′ (z)
f (z)

−1

∣∣∣∣ < M1, thenGα( f ) (z) ∈ S, where

M1 � 1
2 |α| (1+2Re(α))1+ 1

2 Re(α) (4.4)

for all complex values of α satisfying Re(α) � 0.

ii) If | f (z)| � L1 and

∣∣∣∣z
2 f ′(z)
f (z)2 −L2

∣∣∣∣ < L3 thenGα( f ) (z) ∈ S, where

L1(L2 +L3) � 1
2 |α| (1+2Re(α))1+ 1

2 Re(α) −1 (4.5)

for all complex values of α satisfying Re(α) � 0.
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