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SOME INEQUALITIES FOR GENERAL

Lp –HARMONIC BLASCHKE BODIES

BO WEI AND WEIDONG WANG

(Communicated by J. Pečarić)

Abstract. Feng and Wang gave the extremum value of volume for the general Lp -harmonic
Blaschke bodies. In this paper, associated with the general Lp -harmonic Blaschke bodies, we
obtain the extremum value of dual quermassintegrals and the Lp -dual affine surface area, re-
spectively. Further, two monotonic inequalities for the general Lp -harmonic Blaschke bodies
are given.

1. Introduction

If K is a compact star-shaped (about the origin) in Euclidean space R
n , its radial

function, ρK = ρ(K, ·) : R
n \ {0} −→ [0,+∞) , is defined by (see [5, 10])

ρ(K,x) = max{λ � 0 : λx ∈ K}, x ∈ R
n \ {0}.

If ρK is positive and continuous, K will be called a star body (about the origin). Let S n
o

denote the set of star bodies (about the origin) in R
n . For the set of origin-symmetric

star bodies, we write S n
os . Two star bodies K and L are said to be dilates (of one an-

other) if ρK(u)/ρL(u) is independent of u ∈ Sn−1 , where Sn−1 denotes the unit sphere
in R

n .
Lutwak ([8]) introduced the notion of harmonic Blaschke combination for star

bodies. For K,L ∈ S n
o , and λ ,μ � 0 (not both zero), the harmonic Blaschke combi-

nation, λK+̂μL ∈ S n
o , of K and L is defined by

ρ(λK+̂μL, ·)n+1

V (λK+̂μL)
= λ

ρ(K, ·)n+1

V (K)
+ μ

ρ(L, ·)n+1

V (L)
. (1.1)

From definition (1.1), Lutwak ([8]) proved the Brunn-Minkowski inequality for
the harmonic Blaschke combination as follows:
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THEOREM 1.A. If K,L ∈ S n
o , λ ,μ � 0 (not both zero), then

V (λK+̂μL)
1
n � λV (K)

1
n + μV(L)

1
n , (1.2)

with equality if and only if K and L are dilates.

Based on definition (1.1) of harmonic Blaschke combination, Feng and Wang in
[2] introduced the notion of Lp -harmonic Blaschke combination: For K,L∈S n

o , p � 1
and λ ,μ � 0 (not both zero), the Lp -harmonic Blaschke combination, λ ·K+̂pμ ·L ∈
S n

o , of K and L is given by

ρ(λ ·K+̂pμ ·L, ·)n+p

V (λ ·K+̂pμ ·L)
= λ

ρ(K, ·)n+p

V (K)
+ μ

ρ(L, ·)n+p

V (L)
, (1.3)

where the operation ”+̂p ” is called Lp -harmonic Blaschke addition. From (1.3), we
easily know the harmonic Blaschke scalar multiplication and the usual scalar multipli-

cation are related by λ ·K = λ
1
p K .

Let λ = μ = 1
2 and L = −K in (1.3), the Lp -harmonic Blaschke body, ∇̂pK , of

K ∈ S n
o is given by (see [2])

∇̂pK =
1
2
·K+̂p

1
2
· (−K). (1.4)

From (1.3), Feng and Wang in [2] gave the following an extension of inequality
(1.2).

THEOREM 1.B. If K,L ∈ S n
o , p � 1 , λ ,μ � 0 (not both zero), then

V (λ ·K+̂pμ ·L)
p
n � λV (K)

p
n + μV(L)

p
n , (1.5)

with equality if and only if K and L are dilates.

Obviously, from (1.4) and (1.5), we have that if K ∈ S n
o , p � 1, then (see [2])

V (∇̂pK) � V (K), (1.6)

with equality if and only if K is origin-symmetric.
Recently, Feng and Wang in [3] extended the notion of the Lp -harmonic Blaschke

bodies and defined the general Lp -harmonic Blaschke bodies as follows: For K ∈ S n
o ,

p � 1 and τ ∈ [−1,1] , the general Lp -harmonic Blaschke body, ∇̂τ
pK , of K is defined

by
ρ(∇̂τ

pK, ·)n+p

V (∇̂τ
pK)

= f1(τ)
ρ(K, ·)n+p

V (K)
+ f2(τ)

ρ(−K, ·)n+p

V (−K)
. (1.7)

Associated with the definition of the Lp -harmonic Blaschke combination, it easily
follows that

∇̂τ
pK = f1(τ) ·K+̂p f2(τ) · (−K), (1.8)
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where

f1(τ) =
(1+ τ)p

(1+ τ)p +(1− τ)p , f2(τ) =
(1− τ)p

(1+ τ)p +(1− τ)p . (1.9)

From (1.8) and (1.9), we easily get that if τ = 0 then ∇̂0
pK = ∇̂pK ; if τ = ±1,

then ∇̂+1
p K = K , ∇̂−1

p K = −K .
Further, Feng and Wang in [3] got the following extremum value of volume for the

general Lp -harmonic Blaschke bodies.

THEOREM 1.C. If K ∈ S n
o , p � 1 , τ ∈ [−1,1] , then

V (∇̂pK) � V (∇̂τ
pK) � V (K). (1.10)

If τ �= ±1 , then equality holds in the right inequality of (1.10) if and only if K is an
origin-symmetric star body, and if τ �= 0 , then equality holds in the left inequality of
(1.10) if and only if K is also an origin-symmetric star body.

In this article, from definition (1.7), we first give the extremum value of dual quer-
massintegrals for the general Lp -harmonic Blaschke bodies as follows.

THEOREM 1.1. If K ∈ S n
o , p � 1 , τ ∈ [−1,1] , i is any real and i �= n, then for

i > −p,

W̃i(∇̂pK)
n+p
n−i

V (∇̂pK)
�

W̃i(∇̂τ
pK)

n+p
n−i

V (∇̂τ
pK)

� W̃i(K)
n+p
n−i

V (K)
. (1.11)

If τ �= ±1 , equality holds in the right inequality of (1.11) if and only if K is an origin-
symmetric star body, and if τ �= 0 , with equality in the left inequality of (1.11) if and
only if K is also an origin-symmetric star body. For i < −p, inequality (1.11) is
reversed. For i = −p, (1.11) is identic.

Here W̃i(K) denotes the dual quermassintegrals of K ∈ S n
o which be defined by

(see [7])

W̃i(K) =
1
n

∫
Sn−1

ρ(K,u)n−idu, (1.12)

for any real i .
Obviously, let i = 0 in inequality (1.11) and notice that W̃0(K) = V (K) , we im-

mediately obtain Theorem 1.C.
Secondly, associated with the Lp -dual affine surface area (see (2.5)), we obtain its

extremum value for the general Lp -harmonic Blaschke bodies.

THEOREM 1.2. If K ∈ S n
o , 1 � p < n, τ ∈ [−1,1] , then

Ω̃−p(∇̂pK) � Ω̃−p(∇̂τ
pK) � Ω̃−p(K). (1.13)

If τ �= ±1 , equality holds in the right inequality of (1.13) if and only if K is an origin-
symmetric star body, and if τ �= 0 , equality holds in the left inequality of (1.13) if and
only if K is also an origin-symmetric star body.

Recall that Feng and Wang in [2] proved that
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If K ∈ S n
o , 1 � p < n, then

Ω̃−p(∇̂pK) � Ω̃−p(K), (1.14)

with equality if and only if K is an origin-symmetric star body.
Obviously, inequality (1.13) is an isolation of inequality (1.14).
In addition, we also give two monotonic inequalities for the general Lp -harmonic

Blaschke bodies as follows:

THEOREM 1.3. Let K,L ∈ S n
o , p � 1 and τ ∈ [−1,1] . If ∇̂τ

pK ⊆ ∇̂τ
pL and

L ∈ S n
os , then

V (∇̂τ
pK)V (K)

p
n � V (∇̂τ

pL)V (L)
p
n , (1.15)

with equality if and only if K and L are dilatant origin-symmetric star bodies.

THEOREM 1.4. Let K,L ∈ S n
o , p � 1 and τ ∈ [−1,1] . If K ⊆ L, then

V (∇̂τ
pK)

p
n V (K) � V (∇̂τ

pL)
p
n V (L), (1.16)

with equality if and only if K = L.

Actually, Theorem 1.3 may be regard as the Shephard problem of the general Lp -
harmonic Blaschke bodies.

2. Preliminaries

2.1. Lp -dual mixed volume

For K,L ∈ S n
o , p � 1, λ ,μ � 0 (not both zero), the Lp -harmonic radial combi-

nation, λ �K +−p μ �L , of K and L is defined by (see [4, 9])

ρ(λ �K +−p μ �L, ·)−p = λ ρ(K, ·)−p + μρ(L, ·)−p.

The notion of Lp -dual mixed volume was introduced by Lutwak (see [9]). For
K,L ∈ S n

o , p � 1 and ε > 0, the Lp -dual mixed volume, Ṽ−p(K,L) , of the K and L
is defined by

n
−p

Ṽ−p(K,L) = lim
ε−→0+

V (K +−p ε �L)−V(K)
ε

.

Further, Lutwak ([9]) proved that the Lp -dual mixed volume has the following
integral representation:

Ṽ−p(K,L) =
1
n

∫
Sn−1

ρ(K,u)n+pρ(L,u)−pdu. (2.1)

From (2.1), we easily know

Ṽ−p(K,K) =
1
n

∫
Sn−1

ρ(K,u)ndu = V (K). (2.2)

The Lp -dual Minkowski inequality may be stated that (see [9]): For K,L ∈ S n
o ,

p � 1, then

Ṽ−p(K,L) � V (K)
n+p

n V (L)−
p
n , (2.3)

with equality if and only if K and L are dilates.
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2.2. Lp -dual affine surface

In 2008, Wang and He ([11]) gave the notion of Lp -dual affine surface area asso-
ciated with the Lp -dual mixed volume. For K ∈ Sn

o and 1 � p < n , the Lp -dual affine
surface area, Ω̃−p(K) , of K is defined by

n
p
n Ω̃−p(K)

n−p
n = inf{nṼ−p(K,Q∗)V (Q)−

p
n : Q ∈ K n

c }. (2.4)

For the Lp -dual affine surface area, except [11], Feng and Wang recently estab-
lished some inequalities for Lp -dual affine surface area (see [1, 2]) . In particular, Feng
and Wang in [2] improved definition (2.4) as follows: For K ∈ Sn

o and 1 � p < n , the
Lp -dual affine surface area, Ω̃−p(K) , of K is defined by

n
p
n Ω̃−p(K)

n−p
n = inf{nṼ−p(K,Q∗)V (Q)−

p
n : Q ∈ S n

os}. (2.5)

From (2.5), we easily get that for K ∈ Sn
o and 1 � p < n ,

Ω̃−p(−K) = Ω̃−p(K). (2.6)

Associated with definition (2.5) and Lp -harmonic Blaschke addition (1.3), Feng
and Wang ([2]) gave the following result:

THEOREM 2.A. If K,L ∈ S n
o , λ ,μ � 0 (not both zero) and 1 � p < n, then

Ω̃−p(λ ·K+̂pμ ·L)
n−p

n

V (λ ·K+̂pμ ·L)
� λ

Ω̃−p(K)
n−p

n

V (K)
+ μ

Ω̃−p(L)
n−p

n

V (L)
, (2.7)

with equality if and only if K and L are dilates.

2.3. Properties of the general Lp -harmonic Blaschke bodies

For the general Lp -harmonic Blaschke bodies. Feng and Wang in [3] proved the
following properties.

THEOREM 2.B. If K ∈ S n
o , p � 1 , τ ∈ [−1,1] , then

∇̂−τ
p K = ∇̂τ

p(−K) = −∇̂τ
pK. (2.8)

THEOREM 2.C. Let K ∈S n
o , p � 1 , τ ∈ [−1,1] . If K is not an origin-symmetric

star body, then ∇̂τ
pK = ∇̂−τ

p K if and only if τ = 0 .

THEOREM 2.D. If K ∈ S n
o , p � 1 , then for τ ∈ [−1,1] ,

∇̂pK =
1
2
· ∇̂τ

pK+̂p
1
2
· ∇̂−τ

p K. (2.9)
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3. Proofs of Theorems

In this section, we will complete the proofs of Theorems 1.1–1.4. In order to
prove Theorem 1.1, we first give the following Brunn-Minkowski inequality for dual
quermassintegrals of the Lp -harmonic Blaschke combinations.

THEOREM 3.1. If K,L ∈ S n
o , p � 1 , λ ,μ � 0 (not both zero), i is any real and

i �= n, then for i > −p,

W̃i(λ ·K+̂pμ ·L)
n+p
n−i

V (λ ·K+̂pμ ·L)
� λ

W̃i(K)
n+p
n−i

V (K)
+ μ

W̃i(L)
n+p
n−i

V (L)
; (3.1)

for i < −p,

W̃i(λ ·K+̂pμ ·L)
n+p
n−i

V (λ ·K+̂pμ ·L)
� λ

W̃i(K)
n+p
n−i

V (K)
+ μ

W̃i(L)
n+p
n−i

V (L)
. (3.2)

In each case, equality holds if and only if K and L are dilates. For i = −p, (3.1) (or
(3.2)) is identic.

The proof of Theorem 3.1 requires the following Minkowski integral inequality
(see [6]).

LEMMA 3.1. Let f and g are nonnegative bounded Borel functions on measure
space X . If k > 1 , then(∫

X
( f (x)+g(x))kdx

)1/k

�
(∫

X
f k(x)dx

)1/k

+
(∫

X
gk(x)dx

)1/k

; (3.3)

if 0 < k < 1 or k < 0 , then(∫
X
( f (x)+g(x))kdx

)1/k

�
(∫

X
f k(x)dx

)1/k

+
(∫

X
gk(x)dx

)1/k

. (3.4)

Equality holds in every inequality if and only if f (x) and g(x) are effectively propor-
tional or f (x)g(x) = 0 on X .

Proof of Theorem 3.1. For i >−p , since i �= n , thus 0 < (n− i)/(n+ p) < 1 when
−p < i < n , or (n− i)/(n+ p) < 0 when i > n . This together with (1.3), (1.12) and
Minkowski integral inequality (3.4), it follows that

W̃i(λ ·K+̂pμ ·L)
n+p
n−i

V (λ ·K+̂pμ ·L)
=

1
V (λ ·K+̂pμ ·L)

[
1
n

∫
Sn−1

ρ(λ ·K+̂pμ ·L,u)n−idu

] n+p
n−i

=

{
1
n

∫
Sn−1

[
ρ(λ ·K+̂pμ ·L,u)n+p

V (λ ·K+̂pμ ·L)

] n−i
n+p

du

} n+p
n−i

=

⎧⎨⎩1
n

∫
Sn−1

[
λ

ρn+p
K (u)
V (K)

+ μ
ρn+p

L (u)
V (L)

] n−i
n+p

du

⎫⎬⎭
n+p
n−i
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� λ
V (K)

[
1
n

∫
Sn−1

ρn−i
K (u)du

] n+p
n−i

+
μ

V (L)

[
1
n

∫
Sn−1

ρn−i
L (u)du

] n+p
n−i

= λ
W̃i(K)

n+p
n−i

V (K)
+ μ

W̃i(L)
n+p
n−i

V (L)
. (3.5)

From this, we get inequality (3.1). According to the condition of equality holds in
Minkowski integral inequality (3.4), we know that with equality in (3.5) if and only if
K and L are dilates, this means that equality holds in (3.1) if and only if K and L are
dilates.

For i < −p , because of (n− i)/(n+ p) > 1, thus inequality (3.5) is reversed by
the Minkowski integral inequality (3.3). This shows that inequality (3.2) is true.

For i = −p , inequality (3.5) obviously is identic. This means that inequality (3.1)
(or (3.2)) is identic. �

Proof of Theorem 1.1. For i > −p , we first prove the right inequality of (1.11).
According to (1.8) and inequality (3.1), we have

W̃i(∇̂τ
pK)

n+p
n−i

V (∇̂τ
pK)

=
W̃i( f1(τ) ·K+̂p f2(τ) · (−K))

n+p
n−i

V ( f1(τ) ·K+̂p f2(τ) · (−K))

� f1(τ)
W̃i(K)

n+p
n−i

V (K)
+ f2(τ)

W̃i(−K)
n+p
n−i

V (−K)
. (3.6)

From (1.9), we easily see

f1(τ)+ f2(τ) = 1. (3.7)

Notice that for K ∈ S n
o and any real i , W̃i(−K) = W̃i(K) and V (−K) = V (K) .

This together with (3.6) and (3.7), we obtain

W̃i(∇̂τ
pK)

n+p
n−i

V (∇̂τ
pK)

� W̃i(K)
n+p
n−i

V (K)
. (3.8)

This is just the right inequality of (1.11).
Clearly, if τ = ±1, then equality holds in (3.8). Besides, if τ �= ±1, then by the

condition of equality in (3.1), we see that equality holds in (3.8) if and only if K and
−K are dilates, this yields K = −K , i.e., K is an origin-symmetric star body. This
means that if τ �= ±1, then equality holds in the right inequality of (1.11) if and only if
K is an origin-symmetric star body.

Next, we give the proof of left inequality of (1.11). Using (2.9), (2.8) and inequal-
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ity (3.1), we may get

W̃i(∇̂pK)
n+p
n−i

V (∇̂pK)
=

W̃i( 1
2 · ∇̂τ

pK+̂p
1
2 · ∇̂−τ

p K)
n+p
n−i

V ( 1
2 · ∇̂τ

pK+̂p
1
2 · ∇̂−τ

p K)

� 1
2

W̃i(∇̂τ
pK)

n+p
n−i

V (∇̂τ
pK)

+
1
2

W̃i(∇̂−τ
p K)

n+p
n−i

V (∇̂−τ
p K)

=
1
2

W̃i(∇̂τ
pK)

n+p
n−i

V (∇̂τ
pK)

+
1
2

W̃i(−∇̂τ
pK)

n+p
n−i

V (−∇̂τ
pK)

,

i.e.,

W̃i(∇̂pK)
n+p
n−i

V (∇̂pK)
�

W̃i(∇̂τ
pK)

n+p
n−i

V (∇̂τ
pK)

. (3.9)

This yields the left inequality of (1.11).
Obviously, if τ = 0, then equality holds in (3.9). Hence, according to the equality

condition of (3.1), we know that if τ �= 0, then equality holds in (3.9) if and only if ∇̂τ
pK

and ∇̂−τ
p K are dilates, i.e., ∇̂τ

pK and −∇̂τ
pK are dilates. This yields ∇̂τ

pK = −∇̂τ
pK ,

thus ∇̂τ
pK = ∇̂−τ

p K . Therefore, using Theorem 2.C, we see that if τ �= 0, then equality
holds in (3.9) if and only if K is an origin-symmetric star body. This gives the equality
condition in the left inequality of (1.11).

For i <−p , similar to above the proof of case i >−p and combine with inequality
(3.2), we may prove inequality (1.11) is reversed.

For i = −p , inequality (1.11) is identic by Theorem 3.1. �

Proof of Theorem 1.2. From (1.8), (2.7), (2.6) and (3.7), we have that for n > p �
1,

Ω̃−p(∇τ
pK)

n−p
n

V (∇τ
pK)

=
Ω̃−p( f1(τ) ·K+̂p f2(τ) · (−K))

n−p
n

V ( f1(τ) ·K+̂p f2(τ) · (−K))

� f1(τ)
Ω̃−p(K)

n−p
n

V (K)
+ f2(τ)

Ω̃−p(−K)
n−p

n

V (−K)

= f1(τ)
Ω̃−p(K)

n−p
n

V (K)
+ f2(τ)

Ω̃−p(K)
n−p

n

V (K)

=
Ω̃−p(K)

n−p
n

V (K)
.

Thus (
Ω̃−p(∇τ

pK)

Ω̃−p(K)

) n−p
n

�
V (∇τ

pK)
V (K)

,
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this combine with the right inequality of (1.10) and notice that 1 � p < n , we easily get

Ω̃−p(∇τ
pK) � Ω̃−p(K).

Therefore, the right inequality of (1.13) is obtained.
According to the equality conditions in inequality (2.7) and the right inequality of

(1.10), we see that if τ �= ±1, then equality holds in the right inequality of (1.13) if and
only if K is an origin-symmetric star body.

On the other hand, from inequality (2.7), equalities (2.9), (2.8) and (2.6), we obtain
that for n > p � 1,

Ω̃−p(∇pK)
n−p

n

V (∇pK)
=

Ω̃−p

(
1
2 · ∇̂τ

pK+̂p
1
2 · ∇̂−τ

p K
) n−p

n

V
(

1
2 · ∇̂τ

pK+̂p
1
2 · ∇̂−τ

p K
)

� 1
2

Ω̃−p(∇̂τ
pK)

n−p
n

V (∇̂τ
pK)

+
1
2

Ω̃−p(∇̂−τ
p K)

n−p
n

V (∇̂−τ
p K)

=
1
2

Ω̃−p(∇̂τ
pK)

n−p
n

V (∇̂τ
pK)

+
1
2

Ω̃−p(−∇̂τ
pK)

n−p
n

V (−∇̂τ
pK)

=
Ω̃−p(∇̂τ

pK)
n−p

n

V (∇̂τ
pK)

.

Hence, (
Ω̃−p(∇pK)

Ω̃−p(∇̂τ
pK)

) n−p
n

� V (∇pK)

V (∇̂τ
pK)

.

This together with the left inequality of (1.10) and notice that 1 � p < n , we immedi-
ately get the left inequality of (1.13).

From the equality conditions in inequality (2.7) and the left inequality of (1.10),
we see that if τ �= 0, then equality holds in the left inequality of (1.13) if and only if K
is an origin-symmetric star body. �

Now we give the proofs of monotonic inequalities for the Lp -harmonic Blaschke
bodies.

Proof of Theorem 1.3. From (1.8) and (2.1), we have that for any M ∈ S n
o ,

Ṽ−p(∇̂τ
pK,M)

V (∇̂τ
pK)

= f1(τ)
Ṽ−p(K,M)

V (K)
+ f2(τ)

Ṽ−p(−K,M)
V (K)

. (3.10)

Since L ∈ S n
os , i.e., L = −L , thus (2.1) yields

Ṽ−p(L,M) = Ṽ−p(−L,M), (3.11)
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for any M ∈ S n
o .

Hence, if ∇̂τ
pK ⊆ ∇̂τ

pL , then by (2.1) we get for any M ∈ S n
o ,

Ṽ−p(∇̂τ
pK,M) � Ṽ−p(∇̂τ

pL,M),

this together with (3.10), (3.11) and (3.7), then

V (∇̂τ
pK)

V (K)
[ f1(τ)Ṽ−p(K,M)+ f2(τ)Ṽ−p(−K,M)]

�
V (∇̂τ

pL)
V (L)

[ f1(τ)Ṽ−p(L,M)+ f2(τ)Ṽ−p(−L,M)]

=
V (∇̂τ

pL)
V (L)

Ṽ−p(L,M). (3.12)

Taking M = L in (3.12), and using (2.2), inequality (2.3) and equality (3.7), we
obtain

V (∇̂τ
pL) �

V (∇̂τ
pK)

V (K)
[ f1(τ)Ṽ−p(K,L)+ f2(τ)Ṽ−p(−K,L)]

�
V (∇̂τ

pK)
V (K)

[ f1(τ)V (K)
n+p

n V (L)−
p
n + f2(τ)V (−K)

n+p
n V (L)−

p
n ]

=
V (∇̂τ

pK)
V (K)

V (K)
n+p

n V (L)−
p
n ,

this gives inequality (1.15).
According to the equality condition of (2.3), we see that equality holds in (1.15)

if and only if K and L , −K and L both are dilates. But L ∈ S n
os , i.e. L is an origin-

symmetric star body, this means K also is an origin-symmetric star body. Therefore,
equality holds in (1.15) if and only if K and L are dilates, and K is an origin-symmetric
star body. �

Proof of Theorem 1.4. Since K ⊆ L , thus −K ⊆−L . So from (2.1), we know that
for any M ∈ S n

o ,

Ṽ−p(K,M) � Ṽ−p(L,M), Ṽ−p(−K,M) � Ṽ−p(−L,M), (3.13)

and with equality if and only if K = L . This together with (3.10), we have for any
M ∈ S n

o ,

Ṽ−p(∇̂τ
pK,M)

V (∇̂τ
pK)

= f1(τ)
Ṽ−p(K,M)

V (K)
+ f2(τ)

Ṽ−p(−K,M)
V (K)

� V (L)
V (K)

[
f1(τ)

Ṽ−p(L,M)
V (L)

+ f2(τ)
Ṽ−p(−L,M)

V (L)

]

=
V (L)Ṽ−p(∇̂τ

pL,M)

V (K)V (∇̂τ
pL)

. (3.14)
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Taking M = ∇̂τ
pL in (3.14), and using (2.2) and inequality (2.3), we obtain

V (L)
V (K)

�
Ṽ−p(∇̂τ

pK, ∇̂τ
pL)

V (∇̂τ
pK)

�
V (∇̂τ

pK)
n+p

n V (∇̂τ
pL)−

p
n

V (∇̂τ
pK)

, (3.15)

with equality if and only if ∇̂τ
pK and ∇̂τ

pL are dilates. From this, inequality (1.16) is
obtained.

Because K = L implies that ∇̂τ
pK and ∇̂τ

pL are dilates, thus according to the
equality conditions of (3.13) and (3.15), we see that equality holds in (1.16) if and only
if K = L . �
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