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ON AN APPROACH IN SERVICE OF MEAN–INEQUALITIES

MUSTAPHA RAÏSSOULI

(Communicated by J. Pečarić)

Abstract. In the present paper, an approach for constructing new means in two variables is in-
vestigated. Application of this approach for proving some mean-inequalities is also discussed.

1. Introduction

We understand by (bivariate) mean a binary map m : (0,∞)× (0,∞) −→ (0,∞)
satisfying the following statement.

∀a,b > 0 min(a,b) � m(a,b) � max(a,b). (1.1)

Two trivial means are (a,b) �−→ min(a,b) and (a,b) �−→ max(a,b) and will be
denoted by min and max, respectively. The standard examples of means are given in
the following (see [1] for instance and the related references cited therein).

A := A(a,b) =
a+b

2
; G := G(a,b) =

√
ab; H := H(a,b) =

2ab
a+b

;

L := L(a,b) =
b−a

ln b− ln a
, L(a,a) = a;

I := I(a,b) = e−1
(

bb

aa

)1/(b−a)

, I(a,a) = a;

C := C(a,b) =
a2 +b2

a+b
, Q := Q(a,b) =

√
a2 +b2

2
;

P := P(a,b) =
b−a

4arctan
√

b/a−π
=

b−a

2arcsin b−a
b+a

, P(a,a) = a;

T := T (a,b) =
b−a

2arctan b−a
b+a

=
b−a

2arctan(b/a)−π/2
, T (a,a) = a;

M := M(a,b) =
b−a

2arcsinhb−a
b+a

, M(a,a) = a;
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and are known as the arithmetic mean, geometric mean, harmonic mean, logarithmic
mean, identric mean, contra-harmonicmean, quadratic (or root-square)mean, first Seif-
fert mean [7], second Seiffert mean [8] and Neuman-Sándor mean [3], respectively.

A mean m is called symmetric if m(a,b) = m(b,a) and m is homogeneous if
m(αa,αb) = αm(a,b) , for all a,b,α > 0. Obviously, all the above means are homo-
geneous and symmetric.

For two means m1 and m2 we write m1 � m2 if and only if m1(a,b) � m2(a,b)
for every a,b > 0. We say that the mean-inequality m1 � m2 is strict, and we write
m1 < m2 , if and only if m1(a,b) < m2(a,b) for all a,b > 0 with a �= b . If m1 �= m2 ,
we say that m1 and m2 are comparable if m1 < m2 or m2 < m1 . The above standard
means are comparable to each. Precisely, the next chain of inequalities is well known
in the literature, see [4] for instance:

min < H < G < L < P < I < A < M < T < C < Q < max . (1.2)

For a given mean m , we set m∗(a,b) =
(
m

(
a−1,b−1

))−1
, and it is easy to see that

m∗ is also a mean, called the dual mean of m . If m is symmetric and homogeneous
then so is m∗ and in this case we have m∗(a,b) = ab/m(a,b) which we can write
m∗ = G2/m . Every mean m satisfies m∗∗ := (m∗)∗ = m and, if m1 and m2 are two
means such that m1 � m2 (resp. m1 < m2 ) then m∗

1 � m∗
2 (resp. m∗

1 > m∗
2 ). One can

check that min∗ = max and max∗ = min. Further, A∗ = H , H∗ = A and G∗ = G .
Let m be a homogeneous mean. Writing m(a,b) = bm(a/b,1) we then associate

to m a unique positive function φ , called the associate function to m , defined by φ(x) =
m(x,1) for all x > 0. In this case, (1.1) is equivalent to min(x,1) � φ(x) � max(x,1)
for every x > 0. For more details about these notions we refer the reader to [5].

We notice that the set of all means, denoted by M , is power-convex, that is, for
all m1,m2 ∈ M and every λ ∈ [0,1] and p ∈ R , p �= 0, we have

Bλ
p

(
m1,m2

)
:=

(
(1−λ )mp

1 + λmp
2

)1/p ∈ M . (1.3)

In particular, M is (linearly) convex and geometrically convex i.e. if m1,m2 ∈M then

Bλ
1 (m1,m2) = (1−λ )m1 + λm2 ∈ M

and
Bλ

0 (m1,m2) := lim
p→0

Bλ
p (m1,m2) = m1−λ

1 mλ
2 ∈ M .

The reminder of this paper will be organized as follows: Section 2 is devoted to
investigate an integral transform for means, denoted by m �−→ mσ , and to apply it for
computing mσ when m belongs to the set of the above standard means. We obtain some
good and simple relationships between such means, as Aσ = H , Gσ = L , Hσ = T .
The mean Lσ := R1 appears to be new and allows us to introduce more new means
by analogy. In Section 3, we show under convenient assumption that the mean-map
m �−→ mσ is one-to-one, with inverse map denoted by m �−→ m−σ , whose transforms
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for some means among the above standard ones can be expressed only in terms of A
and G . For example, we obtain

P−σ =
(

2G3

A+G

)1/2

, M−σ =
(

2G4

A2 +AG

)1/2

, T−σ = H = G2/A.

Section 4 displays more interesting properties for the mean-maps m �−→mσ and m �−→
m−σ as well as some applications for obtaining/proving a lot of mean-inequalities via
our present approach.

2. General approach

We start this section by stating the following result.

THEOREM 2.1. Let f : (0,∞) −→ (0,∞) be a continuous function such that

∀t > 0 min
(
1,

1
t2

)
� f (t) � max

(
1,

1
t2

)
. (2.1)

Then the binary map mf : (0,∞)× (0,∞)−→ (0,∞) defined by mf (a,a) = a and

(
mf (a,b)

)−1
=

1
b−a

∫ b/a

1
f (t)dt (2.2)

for all a,b > 0 with a �= b, is a continuous homogeneous mean. If further f satisfies

∀t > 0 f
(
1/t

)
= t2 f (t) (2.3)

then mf is symmetric.

Proof. Assume that a < b . According to (2.1) we have

∫ b/a

1

1
t2

dt =
∫ b/a

1
min

(
1,

1
t2

)
dt �

∫ b/a

1
f (t)dt �

∫ b/a

1
max

(
1,

1
t2

)
dt =

∫ b/a

1
dt.

This, with (2.2) and a simple computation, yields

1
max(a,b)

=
1
b

�
(
mf (a,b)

)−1
� 1

a
=

1
min(a,b)

.

If a > b we obtain in a similar manner

1
max(a,b)

=
1
a

�
(
mf (a,b)

)−1
� 1

b
=

1
min(a,b)

.

From the above inequalities we deduce that mf is a mean. The homogeneity of mf

is obvious from (2.2). For proving the continuity of mf it is sufficient to show that
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x �−→
(
mf (x,1)

)−1
is continuous for x > 0. By (2.2) and the mean value theorem we

can write, for all x > 0 with x �= 1,

(
mf (x,1)

)−1
=

1
x−1

∫ x

1
f (t)dt = f (cx),

where cx is between 1 and x . The continuity of x �−→ mf (1,x) on (0,1)∪ (1,∞)
follows from the left side of the above equalities with the continuity of f . Now, by
(2.1) one has f (1) = 1, and again by the continuity of f we have

lim
x→1

f (cx) = f
(

lim
x→1

cx

)
= f (1) = 1,

since 1 � cx � x or x � cx � 1. The continuity of x �−→ mf (1,x) at x = 1 follows, so
completes the proof of continuity of mf .

Now, assume that (2.3) is satisfied. Making the change of variable t = 1/u in (2.2)
we obtain (

mf (a,b)
)−1

=
1

b−a

∫ a/b

1
f
(1

u

)(
− du

u2

)
,

which with (2.3) yields

(
mf (a,b)

)−1
=

1
a−b

∫ a/b

1
f (u)du =

(
mf (b,a)

)−1
.

The symmetry of mf is proved, this completes the proof of the theorem. �

EXAMPLE 2.1. Let f (t) = 1/t for all t > 0. It is easy to see that f satisfies (2.1)
and (2.3) and a simple computation leads to mf (a,b) = L(a,b) the logarithmic mean.

The next result, deduced from the above theorem, is of interest in practical pur-
poses.

COROLLARY 2.2. Let m be a continuous homogeneous symmetric mean. Then
the binary map mσ defined by mσ (a,a) = a and

(
mσ (a,b)

)−1
=

1
b−a

∫ b/a

1
m

(
1,

1
t2

)
dt (2.4)

for all a,b > 0 with a �= b, is also a continuous homogeneous symmetric mean, called
the integral transform-mean of m.

Proof. Taking f (t) = m
(
1, 1

t2

)
, it is easy to see that f satisfies (2.1) and (2.3).

The desired result follows by Theorem 2.1. �
The above corollary tells us that starting from a continuous homogenous symmet-

ric mean m , which can be chosen among the above standard means, we obtain another
mean mσ whose expression can be more or less complicated than that of m . Let us
observe a list of examples illustrating this latter point.
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EXAMPLE 2.2. It is easy to see that minσ = max and maxσ = min. It is also
simple to verify that Aσ = H . However, Qσ is such that (for a �= b )

(
Qσ (a,b)

)−1
=

1
b−a

∫ b/a

1

1
t2

√
t4 +1

2
dt,

which seems hard to be explicitly computed.

EXAMPLE 2.3. Let m(a,b) = G(a,b) be the geometric mean. Thus m(1,1/t2) =
1/t and we are in the same situation as Example 2.1 i.e. Gσ = L the logarithmic mean.

EXAMPLE 2.4. Let m(a,b) = H(a,b) be the harmonic mean. Then m(1,1/t2) =
2

1+ t2
for all t > 0, and so we have for all a,b > 0 with a �= b

(
Hσ (a,b)

)−1
=

1
b−a

∫ b/a

1

2
1+ t2

dt =
2

b−a

(
arctan(b/a)−π/4

)
.

It follows that the mean Hσ is nothing other than the second Seiffert mean T i.e.
Hσ = T .

EXAMPLE 2.5. Let m(a,b) = L(a,b) be the logarithmic mean. Then

∀t > 0, t �= 1, m(1,1/t2) =
t2−1
2t2 ln t

.

The mean Lσ is given by Lσ (a,a) = a and

∀a,b > 0, a �= b,
(
Lσ (a,b)

)−1
=

1
2(b−a)

∫ b/a

1

t2−1
t2 ln t

dt. (2.5)

Explicit computation of Lσ (a,b) in terms of elementary functions of a and b
seems to be hard. Such mean Lσ appears to be new and can be expressed in terms
of (non-elementary) special functions known in the literature. Precisely, the following
result may be stated.

THEOREM 2.3. The mean Lσ is given by

Lσ (a,b) =
b−a

sinhi
(

ln(b/a)
) (2.6)

for all a,b > 0 , a �= b, with Lσ (a,a) = a, where the notation sinhi refers to the integral
hyperbolic sine function defined for all real number x by

sinhi(x) =
∫ x

0

sinh t
t

dt.
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Proof. Making the change of variable u= ln t in (2.5) we obtain after computation
and reduction (

Lσ (a,b)
)−1

=
1

b−a

∫ ln(b/a)

0

eu− e−u

2u
du.

The desired result follows. �
Let us take a look at another example of interest presented below.

EXAMPLE 2.6. Let m(a,b) =C(a,b) be the contra-harmonic mean. By (2.2), we
have for a,b > 0, a �= b

(
Cσ (a,b)

)−1
=

1
b−a

∫ b/a

1

t4 +1
t2(t2 +1)

dt.

Since
t4 +1

t2(t2 +1)
= 1+

1
t2

− 2
t2 +1

,

then a simple computation leads to

(
Cσ (a,b)

)−1
= 2

(
H(a,b)

)−1−
(
T (a,b)

)−1
.

That is, Cσ is such that
2
H

=
1

Cσ +
1
T

. (2.7)

REMARK 2.1. The following relationship

∀a,b > 0 G(a,b) = G
(
A(a,b),H(a,b)

)

is well-known in the literature and is called the invariance property of G . We then say
that G is (A,H)-invariant, see [2] for more detail. Relation (2.7) is equivalent to

∀a,b > 0 H(a,b) = H
(
Cσ (a,b),T (a,b)

)

and tells us that H is (Cσ ,T )-invariant. We omit the detail about this latter point which
is out of our aim in this work.

Below, we need more notation. Let f ,g : (0,∞) −→ (0,∞) be two functions. We
write f � g for saying that f (t) � g(t) for all t > 0 and f ≺ g for meaning that
f (t) < g(t) for all t > 0 with t �= 1. If f and g both satisfy (2.3) then f ≺ g is
satisfied if and only if f (t) < g(t) for all t ∈ (0,1) . With this, the following result may
be stated.

PROPOSITION 2.4. With the above one has
(i) Let f ,g : (0,∞) −→ (0,∞) be such that f ≺ g. Then mf > mg .
(ii) The mean-map m �−→ mσ is point-wise strictly decreasing i.e. for all continu-

ous homogeneous symmetric means m1 and m2 such that m1 < m2 , we have mσ
1 > mσ

2 .
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Proof. (i) and (ii) are immediate from (2.2) and (2.4), respectively. �

We end this section by stating the next result which ensures the point-wise injec-
tivity of the mean-map m �−→ mσ .

PROPOSITION 2.5. Let m1 and m2 be continuous homogeneous symmetric means
such that mσ

1 = mσ
2 . Then m1 = m2 .

Proof. Assume that mσ
1 = mσ

2 then mσ
1 (1,x) = mσ

2 (1,x) and by (2.4)

∫ x

1
m1

(
1,1/t2

)
dt =

∫ x

1
m2

(
1,1/t2

)
dt,

for all x > 0. Since m1 and m2 are continuous we can take the derivatives, with respect
to x , of the above sides for obtaining m1

(
1,1/x2

)
= m2

(
1,1/x2

)
for each x > 0. By

homogeneity of m1 and m2 (take x2 = b/a ) we deduce m1 = m2 , so completes the
proof. �

3. Inverse transform

In the above study, starting from a convenient function f we defined a mean mf .
Inversely, let m be a given continuous homogenous symmetric mean. Does exist a
function f satisfying m = mf ? If yes, is it possible to explicit fm when m is explicitly
given? Before stating a positive answer for this latter question, we need the following
definition for the sake of simplicity.

DEFINITION 3.1. A mean m is said to be:
(i) regular if m is continuous homogeneous and symmetric,
(ii) σ -regular if m is regular, the map x �−→m(x,1) is continuously differentiable

on (0,∞) and the function fm defined by

fm(x) =
d
dx

( x−1
m(x,1)

)
(3.1)

for all x > 0 with fm(1) = 1, satisfies the double inequality (2.1).
In this case fm is called the generated function of the mean m .

Now, we may state the following result answering the above question.

THEOREM 3.1. Let m be a σ -regular mean with its generated function fm de-
fined through (3.1). Then fm is continuous on (0,∞) and satisfies (2.3). Further, we
have (

m(a,b)
)−1

=
1

b−a

∫ b/a

1
fm(t)dt. (3.2)
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Proof. The continuity of fm on (0,∞) follows from (3.1) with the fact that x �−→
m(x,1) is continuously differentiable on (0,∞) . For fixed m , we set g(x) = (x−
1)

(
m(x,1)

)−1
and we write g

′
(x) instead of dg

dx (x) for the sake of simplicity. Since m

is homogeneous and symmetric then we have

g
(1

x

)
=

(1
x
−1

)(
m

(1
x
,1

))−1
= (1− x)

(
m(1,x)

)−1
= −g(x).

We then have g(1/x) =−g(x) which by derivation yields
(
g
′
(1/x)

)(−1
x2

)
= −g

′
(x) or

again, with (3.1), fm(1/x)= x2 fm(x) , that is, fm satisfies (2.3). Now, (3.1) is equivalent
to

(x−1)
(
m(x,1)

)−1
=

∫ x

1
fm(t)dt

for all x > 0. Taking x = b/a with the homogeneity and symmetry of m we deduce
(3.2), so completes the proof of the theorem. �

A lot of examples explaining the above situation are presented below.

EXAMPLE 3.1. Let m(a,b) = L(a,b) be the logarithmic mean. Applying (3.1)
we immediately obtain

fL(x) =
d
dx

((
x−1

)( ln x
x−1

))
=

1
x
,

which rejoins Example 2.3. We then can conclude that L is σ -regular.
We can also easily verify that H,G and A are σ -regular, with

fH(x) =
1
2

(
1+

1
x2

)
, fG(x) =

1
2
√

x

(
1+

1
x

)
, fA(x) =

4
(x+1)2 .

EXAMPLE 3.2. Here we consider the means P,T and M . By (3.1) we have re-
spectively (we omit the detail about computation).

(1) For the mean P :

fP(x) = 2
d
dx

(
arcsin

x−1
x+1

)
=

2
(x+1)

√
x
. (3.3)

(2) For the mean T :

fT (x) = 2
d
dx

(
arctan

x−1
x+1

)
=

2
x2 +1

, (3.4)

which rejoins Example 2.4.
(3) For the mean M :

fM(x) = 2
d
dx

(
arcsinh

x−1
x+1

)
=

2
√

2

(x+1)
√

x2 +1
. (3.5)
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It is not hard to verify that all the means P , T and M are σ -regular i.e. fP , fT
and fM satisfy (2.1). Now, for an example of no-σ -regular mean, let us observe the
following.

EXAMPLE 3.3. Let m(a,b) = C(a,b) be the contra-harmonic mean. The gener-
ated function fC is

fC(x) =
d
dx

(x2 −1
x2 +1

)
=

4x
(x2 +1)2 .

But fC does not satisfy (2.1). In fact, assume that fC satisfies (2.1) then it is necessary
that

1
x2 � fC(x) =

4x
(x2 +1)2 � 1

for all x � 1. The left side of the above double inequality becomes (x2 + 1)2 � 4x3

which is false for x � 1 enough large. It follows that C is not σ -regular.

The chain of inequalities (1.2), differently proved in the literature, can be here
shown again in a simple way by using our present approach. For more clearness, we
present some examples explaining this situation.

EXAMPLE 3.4. It is easy to see that 1
t > 2

(1+t)
√

t
for all t > 0 with t �= 1, i.e

fP ≺ fL . According to Example 3.1 and Example 3.2,(1), with Proposition 2.4, (i), we
infer that L < P .

EXAMPLE 3.5. Following Example 3.2 we have

∀t > 0 fT (t) =
2

1+ t2
, fM(t) =

2
√

2(
1+ t

)√
1+ t2

It is very easy to verify that fT ≺ fM and by Proposition 2.4 we infer that M < T .

Now, a similar question as above can be put for Corollary 2.2: if mσ is known, is
m unique and how to find m such that (2.4) is satisfied? Below, an affirmative answer
for this latter question will be discussed.

THEOREM 3.2. Let m be a σ -regular mean with its generated function fm . Then
the binary map rm defined by

rm(a,b) = b fm
(√

b/a
)

(3.6)

for all a,b > 0 , is a regular mean with rσ
m = m.

Proof. By Definition 3.1, fm satisfies (2.1), that is, for all t > 0 one has

min
(
1,

1
t2

)
� fm(t) � max

(
1,

1
t2

)
.
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Taking t2 = b/a we obtain

min(a,b) = b min
(
1,

a
b

)
� b fm

(√
b/a

)
� b max

(
1,

a
b

)
= max(a,b).

Then rm is a mean. By (3.6), rm is obviously continuous and homogeneous. For
proving the symmetry of rm , we write that, by virtue of Theorem 3.1, the generated
function fm satisfies (2.3) and so

rm(a,b) = b fm
(√

b/a
)

= b
(√

b/a
)2

fm
(√

a/b
)

= a fm
(√

a/b
)

= rm(b,a).

In summary, rm is a regular mean. Now, by (2.4), (3.6) and the fact that fm satisfies
(2.3) again, we respectively obtain

(
rσ
m(a,b)

)−1
=

1
b−a

∫ b/a

1
rm

(
1,

1
t2

)
dt =

1
b−a

∫ b/a

1

1
t2

fm
(1

t

)
dt

=
1

b−a

∫ b/a

1
fm(t)dt,

which, with (3.2), implies that rσ
m = m , so completes the proof of the theorem. �

We pay attention to Theorem 3.2: before concluding, we should make sure that the
function fm satisfies (2.1), or equivalently to make sure that the binary map (a,b) �−→
b fm

(√
b/a

)
is really a mean. The following gives a counter-example for this latter

situation.

EXAMPLE 3.6. Following Example 3.3, C is not σ -regular. That is, the associate
binary map rm defined through (3.6), and explicitly given by rm = G3/A2 , is not a
mean.

By virtue of Theorem 3.2 with Proposition 2.5, for every convenient mean m there
exists one and only one regular mean rm such that rσ

m = m . In another way, if we denote
by Mr and Mσ the sets of all regular means and σ -regular means, respectively, then
we have

Mσ =
{

m ∈ Mr, fm satisfies (2.1)
}

=
{

m ∈ Mr, rm is a regular mean
}
,

and the mean-map m �−→ mσ is a bijection from Mr into Mσ .
We can then state the following.

DEFINITION 3.2. Let m be a σ -regular mean. The unique regular mean rm such
that rσ

m = m will be denoted by rm = m−σ and called the σ -inverse transform of m .

It follows that
(
mσ )−σ = m for all m ∈ Mr and

(
m−σ )σ = m for all m ∈ Mσ .

That is, (
rσ
m = m, rm ∈ Mr

)
⇐⇒

(
rm = m−σ , m ∈ Mσ

)
.

Now, we will discuss a list of examples illustrating the above.
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EXAMPLE 3.7. According to Example 3.6, we can say that C−σ does not exist
(as a regular mean). This, because C is not σ -regular.

EXAMPLE 3.8. With the above notation, Example 2.2, Example 2.3 and Example
2.4 imply that H,L and T are σ -regular, with

H−σ = A, L−σ = G, T−σ = H,

while Example 2.5 with Theorem 2.3 yields that R1 is also σ -regular, with R−σ
1 = L .

Let us take a look at the above example again: the means L−σ and T−σ have
simple forms, simpler than those of L and T , respectively. We can then ask what is the
explicit form of m−σ when the mean m is one of the other standard means previously
mentioned. By virtue of its interest, the answer to this latter question will be presented
in the form of a result as well.

THEOREM 3.3. The following relationships hold

A−σ =
(A+G

2

)∗
=

2G2

A+G
, G−σ =

(AG+G2

2

)1/2
,

P−σ =
((A+G

2

)∗
G

)1/2

=
(

2G3

A+G

)1/2

,

M−σ =
((A2 +AG

2

)1/2
)∗

=
(

2G4

A2 +AG

)1/2

,

where the notation m∗ refers to the dual mean of m.

Proof. We just show the formulae giving P−σ and we left to the reader the routine
task for proving the other relationships in a similar manner. Recall that, see (3.3),

fP(x) =
2

(x+1)
√

x

and by (3.6) we obtain (after computation and reduction)

rP(a,b) = b fP
(√

b/a
)

=
2a3/4b3/4

√
a+

√
b
.

Remarking that a3/4b3/4 = G3/2(a,b) and
√

a+
√

b
2 =

(
A+G

2

)1/2
(a,b) , the desired rela-

tionship for P−σ := rP follows. �

EXAMPLE 3.9. Contrary to the above, the mean I−σ can not be expressed only
in terms of A and G . In fact, a long (but elementary) computation leads to (we omit
the detail)

I−σ = e

(
A+G

2

)1/2
G3/2

L exp
(

A+G
2L

) .
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It is not hard to check that I is a σ -regular mean and so I−σ is a regular mean.
Otherwise, let us mention that, as pointed before for Qσ , the means Lσ , Iσ , Sσ , Pσ ,
Tσ and Mσ are hard (and even impossible) to be explicitly computed.

Let S be the weighted geometric mean defined by S := S(a,b) =
(
aabb

)1/(a+b)
.

We left the reader to verify if the mean S is σ -regular and discussing the existence of
S−σ together with the computation, if possible, of S−σ .

EXAMPLE 3.10. By analogy with the mean R1 defined in Theorem 2.3, let us
define the binary map R2 by R2(a,a) = a and

∀a,b > 0, a �= b R2(a,b) =
b−a

tanhi
(

ln(b/a)
) ,

where tanhi denotes the integral hyperbolic tangent function defined for all real number
x through

tanhi(x) =
∫ x

0

tanh t
t

dt.

We can ask if R2 is a mean and if it is σ -regular. It is not hard to verify that the answer
is positive with the following relationship

R−σ
2 =

GL
A

, or equivalently R2 =
(GL

A

)σ
.

We go back to the results of the above and specially to the relationships of Theorem
3.3, as well as that of Example 3.8: such results stem their importance in the fact that
the means

G−σ , A−σ , Q−σ , L−σ , P−σ , T−σ , M−σ

have algebraic expressions involving only the simplest (quasi-arithmetic) means A and
G . We will write this in another way.

Let m be a σ -regular mean such that m−σ/G can be expressed only in term of
A/G , as m ∈ {L,H,T,A,G,P,M} , we set

m−σ

G
:= Fm(z), with z =

A
G

� 1,

then the next corollary may be deduced from the above.

COROLLARY 3.4. With the above notation, the following relationships are met:

FL(z) = 1, FH(z) = z, FT (z) =
1
z
, FA(z) =

2
z+1

,

FG(z) =

√
z+1

2
, FP(z) =

√
2

z+1
, FM(z) =

√
2

z2 + z
. (3.7)

Inversely, for some given function g(z) we can ask if there is a σ -regular mean m

such that Fm(z) = g(z) . It is necessary that
(
g(A/G)

)
G is a mean. The next example

explains more this latter situation.



ON AN APPROACH IN SERVICE OF MEAN-INEQUALITIES 95

EXAMPLE 3.11. (1) There is no mean m such that Fm(z) = z2 , this because
G(A/G)2 = A2/G is not a mean.

(2) There is no mean m such that Fm(z) = 1
z2

because G3/A2 is not a mean.

(3) The mean m such that Fm(z) =
√

z is m =
(
(AG)1/2

)σ
.

(4) The mean m such that Fm(z) = z+1
2 is m =

(
A+G

2

)σ
.

(5) The mean m such that Fm(z) =
√

z2+z
2 is m =

((
A2+AG

2

)1/2
)σ

.

We can of course compute explicitly m for some of the above examples. For
instance, it is not hard to verify that

(A+G
2

)σ
= H

(
H,L

)
:=

2HL
H +L

=
2G2L

G2 +AL
.

4. Other interesting results

This section is focused to study other interesting properties of the mean-map
m �−→ mσ as well as those of its inverse mean-map m �−→ m−σ . We start with the
following result, which is immediate from Definition 3.2 with the fact that the mean-
map m �−→ mσ is point-wise decreasing.

PROPOSITION 4.1. For all σ -regular means m1 and m2 such that m−σ
1 > m−σ

2
we have m1 < m2 .

This proposition, with the relationships of Theorem 3.3, gives more simplification
for proving some inequalities of (1.2). Let us observe this in the next example.

EXAMPLE 4.1. With Corollary 3.4, the following chain of inequalities

1
z

= FT (z) < FM(z) < FA(z) < FP(z) < FL(z) = 1 < FG(z) < FH(z) = z

is obviously satisfied for every z = A/G � 1. This with the fact that Fm(z) = m−σ

G and
Proposition 4.1 gives (simultaneously and in a fast way)

H < G < L < P < A < M < T.

EXAMPLE 4.2. The mean R1 = Lσ defined by Theorem2.3 interpolates the means
H and G i.e. H < R1 < G . In fact, it is sufficient to verify that

G−σ =
(AG+G2

2

)1/2
< R−σ

1 = L < H−σ = A,

which are well-known mean-inequalities.
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EXAMPLE 4.3. The means R1 and R2 satisfy R1 < G < L < R2 . Indeed, it is
sufficient to verify that

R−σ
2 =

GL
A

< L−σ = G < G−σ =
(AG+G2

2

)1/2
< R−σ

1 = L.

All these inequalities are immediate.

To present more results here, we notice that the set of all regular means Mr is
obviously (linearly) convex and geometrically convex, that is, for all m1,m2 ∈ Mr and
every λ ∈ (0,1) we have (1−λ )m1 + λm2 ∈ Mr and m1−λ

1 mλ
2 ∈ Mr . With this, we

can now state the following result.

THEOREM 4.2. The mean-map m �−→ mσ is point-wise convex. That is, for all
real number λ ∈ (0,1) and all regular means m1 and m2 , one has(

(1−λ )m1 + λm2

)σ
� (1−λ )mσ

1 + λmσ
2 . (4.1)

If moreover m1 �= m2 are comparable then the above mean-inequality is strict.

Proof. By virtue of (2.4), with the linearity of the integral, we can easily show that
{((

1−λ
)
m1 + λm2

)σ
(a,b)

}−1
=

(
1−λ

)(
mσ

1 (a,b)
)−1

+ λ
(
mσ

2 (a,b)
)−1

.

Taking the inverse of the above sides, with the fact that the real-valued function x �−→
1/x is strictly convex on (0,∞) , we obtain the desired result. �

Combining Theorem 4.2 with Proposition 2.4, (ii) we can state the next result.

COROLLARY 4.3. Let m1 �= m2 and m be three σ -regular means, with m1 and
m2 comparable. Assume that there exists λ ∈ (0,1) such that

(1−λ )m−σ
1 + λm−σ

2 � m−σ . (4.2)

Then there holds
m < (1−λ )m1 + λm2. (4.3)

REMARK 4.1. It is worth mentioning that, with m1 �= m2 comparable, (4.3) is a
strict mean-inequality even if (4.2) is an equality. This follows from the strict convexity
of m �−→ mσ .

The above theorem ensures the linear (arithmetic) convexity of the mean-map
m �−→ mσ , while the next one concerns the geometric concavity of this mean-map.

THEOREM 4.4. The mean-map m �−→ mσ is point-wise geometrically strictly
concave. That is, for all real number λ ∈ (0,1) and all regular means m1 and m2 ,
with m1 �= m1 , we have (

m1−λ
1 mλ

2

)σ
>

(
mσ

1

)1−λ (
mσ

2 )λ . (4.4)
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Proof. Without loss the generality, we can assume that a < b . By definition we
have {(

m1−λ
1 mλ

2

)σ
(a,b)

}−1
=

1
b−a

∫ b/a

1
m1−λ

1

(
1,

1
t2

)
mλ

2

(
1,

1
t2

)
dt.

According to the Hölder inequality we obtain

{(
m1−λ

1 mλ
2

)σ
(a,b)

}−1
� 1

b−a

{∫ b/a

1

(
m1−λ

1

(
1,

1
t2

)) 1
1−λ

dt
}1−λ

×
{∫ b/a

1

(
mλ

2

(
1,

1
t2

)) 1
λ
dt

}λ
.

Since m1 and m2 are means with m1 �= m2 then Hölder inequality is strict and so we
have
{(

m1−λ
1 mλ

2

)σ
(a,b)

}−1
<

{ 1
b−a

∫ b/a

1
m1

(
1,

1
t2

)
dt

}1−λ { 1
b−a

∫ b/a

1
m2

(
1,

1
t2

)
dt

}λ
.

It follows that
{(

m1−λ
1 mλ

2

)σ
(a,b)

}−1
<

{(
mσ

1 (a,b)
)−1}1−λ {(

mσ
2 (a,b)

)−1}λ
.

Taking the inverse of the sides of the above inequality we obtain (4.4), so completes the
proof. �

The next corollary is immediate from the above theorem when combined with
Proposition 2.4, (ii).

COROLLARY 4.5. Let m1 �= m2 and m be three σ -regular means. Assume that
there exists λ ∈ (0,1) such that

m−σ �
(
m−σ

1

)1−λ (
m−σ

2

)λ
. (4.5)

Then we have
m1−λ

1 mλ
2 < m. (4.6)

REMARK 4.2. As pointed for Corollary 4.3, (4.6) is strict even if (4.5) is an equal-
ity, provided that m1 �= m2 . This because m �−→ mσ is strictly geometrically concave.
Further, the above corollary is useful for proving mean-inequalities when the bounds
are in a geometric form. See the examples below.

As before, using the notation of Corollary 3.4, (4.5) is equivalent to

Fm(z) �
(
Fm1(z)

)1−λ (
Fm2(z)

)λ
. (4.7)

We can therefore state the following:

COROLLARY 4.6. If for m1 �= m2 and m as above, the inequality (4.7) is satisfied
for some λ ∈ (0,1) , then (4.6) holds true.



98 M. RAÏSSOULI

For some λ ∈ (0,1) satisfying (4.7) and illustrating the previous corollary, see the
three examples below.

We now state the following result which is also of interest.

THEOREM 4.7. Let p � 1 and λ ∈ (0,1) . For all means m1 and m2 , with m1 �=
m2 comparable, we have

(
Bλ

p (m1,m2)
)σ

< Bλ
p

(
mσ

1 ,mσ
2

)
, (4.8)

where Bλ
p (m1,m2) is defined by (1.3).

Proof. Since p � 1 then the real-valued function x �−→ x1/p is strictly concave on
(0,∞) . This with the definition of Bλ

p (m1,m2) gives

Bλ
p (m1,m2) > (1−λ )m1 + λm2,

and by Proposition 2.4, (ii) and Theorem 4.2 we obtain

(
Bλ

p (m1,m2)
)σ

<
(
(1−λ )m1 + λm2

)σ
< (1−λ )mσ

1 + λmσ
2 .

Again, by the strict concavity of x �−→ x1/p on (0,∞) we have

(1−λ )mσ
1 + λmσ

2 <
(
(1−λ )

(
mσ

1

)p + λ
(
mσ

2

)p
)1/p

:= Bλ
p (mσ

1 ,mσ
2 ).

The desired result follows by combining the above. �

REMARK 4.3. For p = 1, (4.8) coincides with (4.1). But (4.1) can not be con-
sidered as a consequence of (4.8) since in the proof of (4.8) we need to use (4.1). In
another way, Theorem 4.2 can not be stated here as corollary of Theorem 4.7.

The above results are interesting in the practical purposes since, according to
Corollary 3.4, the expansions of Fm(z) for m ∈ {H,G,L,P,A,M,T} are simple ex-
pressions in term of z = A/G � 1. The following examples explain more this latter
situation.

EXAMPLE 4.4. (1) By Corollary 3.4 it is easy to see that
(
FM(z)

)2
= FA(z)FT (z) ,

and by Corollary 4.6 with m1 = A , m2 = T , m = M and λ = 1/2 we deduce AT < M2

which was differently proved in [4].

(2) Similarly, we verify that
(
FL(z)

)2
= FG(z)FP(z) and

(
FP(z)

)2
= FL(z)FA(z) .

We then deduce GP < L2 and LA < P2 , see [4].
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EXAMPLE 4.5. By Corollary 3.4 we have, successively:

(1)
(
FA(z)

)2
� FP(z)FM(z) , which after simple reduction is equivalent to

(√
z−

1
)2 � 0. Corollary 4.6 gives PM < A2 , see [4].

(2)
(
FA(z)

)2
� FL(z)FT (z) , equivalent to

(
z−1

)2 � 0. Then LT < A2 , see [4].

EXAMPLE 4.6. By Corollary 3.4 we easily see that
(
FP(z)

)3
=

(
FA(z)

)2
FG(z) .

This, with Corollary 4.6 for m1 = A , m2 = G , m = P and λ = 1/3, yields A2/3G1/3 <
P . See [6] for comparison.

Acknowledgements. The author thanks the two anonymous referees for their valu-
able comments which have been included in the final version of the present manuscript.

RE F ER EN C ES

[1] P. S. BULLEN, Handbook of Means and Their Inequalities, Mathematics and Its Applications,
Springer, 2nd edition, 1987.

[2] I. COSTIN AND TOADER, Invariance in the Class of Weighted Lehmer Means, J. Ineq. Pure. Appl.
Math., Vol. 9 (2008), No. 2, Art. 54, 7 pp.
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