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CHARACTERIZATIONS FOR VECTORIAL PREQUASI–INVEX

TYPE FUNCTIONS VIA JENSEN TYPE INEQUALITIES

RONG HU

Abstract. The purpose of this paper is to derive some criteria for vectorial prequasi-invex type
functions via Jensen type inequalities. It is shown that a Jensen type inequality is sufficient
and necessary for a vector function to be prequasi-invex under the condition of lower level-
closedness, cone lower semicontinuity, cone upper semicontinuity and semistrict prequasi-invexity,
respectively. Analogous results are established for vectorial semistrictly prequasi-invex functions
and vectorial strictly prequasi-invex functions.
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