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CHARACTERIZATIONS FOR VECTORIAL PREQUASI–INVEX

TYPE FUNCTIONS VIA JENSEN TYPE INEQUALITIES
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(Communicated by J. Kyu Kim)

Abstract. The purpose of this paper is to derive some criteria for vectorial prequasi-invex type
functions via Jensen type inequalities. It is shown that a Jensen type inequality is sufficient
and necessary for a vector function to be prequasi-invex under the condition of lower level-
closedness, cone lower semicontinuity, cone upper semicontinuity and semistrict prequasi-invexity,
respectively. Analogous results are established for vectorial semistrictly prequasi-invex functions
and vectorial strictly prequasi-invex functions.

1. Introduction

A classical result for numerical convex functions is that a numerical function is
convex if and only if it is midconvex and continuous. In [1], Yang relaxed continuity
by lower semicontinuity and further replaced the midconvex by the following Jensen’s
condition: there exists some constant α ∈ (0,1) such that

f (αx+(1−α)y) � α f (x)+ (1−α) f (y), ∀x,y ∈ K,

where K ⊂ Rn is a convex set and f : K → R is a numerical function. In [2], by
using Yang’s ideas, Mukherjee and Reddy derived some criteria of numerical prequasi-
convex functions under lower semicontinuity and upper semicontinuity conditions via
Jensen type inequalities. In [3], Yang et al introduced two new types of generalized
convex functions, which are called semistrictly prequasi-invex functions and strictly
prequasi-invex functions. Under certain conditions, Yang et al [3] propose some Jensen
type inequalities to derive criteria for prequasi-invex, semistrictly prequasi-invex, and
strictly prequasi-invex functions, respectively. Luo and Xu [4] further improved partial
results of Yang et al [3] under weaker conditions. Motivated and inspired by the above
works, in this paper, we attempt to use Jensen type inequalities to derive the criteria for
vectorial prequasi-invex, semistrictly prequasi-invex, and strictly prequasi-invex func-
tions. It is worth noting that partial results presented is more general than existing ones
even when the functions are numerical.

The rest of this paper is organized as follows: In Section 2, we give some prelim-
inary notations and definitions. In Section 3, we give the characterization of vectorial
prequasi-invex functions. Section 4 is devoted to the study of criteria for vectorial
semistrictly prequasi-invex functions. In Section 5, some characterizations of vectorial
strictly prequasi-invex functions are established.
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2. Preliminaries

Throughout this paper, without otherwise specified, we always suppose that X
and Y are two vector topological spaces, K ⊂ X is a nonempty set, C ⊂Y is a pointed,
closed and convex cone with intC �= /0 , where intC denotes the interior of C . For a
given cone P in Y , define the following relations: for given a,b ∈ Y ,

a �P b ⇔ b−a∈ P and a ��P b ⇔ b−a �∈ P.

We always suppose that Y is a vector lattice with respect to the order �C induced by C ,
η : X ×X → X is a vectorial function, F : K →Y is a vectorial function, and f : K → R
is a numerical function. For any a,b∈Y , a∨b denotes the supremum of a and b with
respect to �C . Now we first give some definitions.

DEFINITION 2.1. See [5, 6, 7]. For a given set K ⊂ X and a given function η :
X ×X → X , K is said to be invex with respect to η iff

∀x,y ∈ K,∀λ ∈ [0,1] ⇒ y+ λ η(x,y) ∈ K.

Note that a convex set is invex with respect to η with η(x,y) = x− y .

DEFINITION 2.2. Let K be invex with respect to η . A vectorial function F : K →
Y is said to be preinvex iff

F(y+ λ η(x,y)) �C λF(x)+ (1−λ )F(y), ∀x,y ∈ K,λ ∈ [0,1].

REMARK 2.1. Definition 2.2 is a vectorial generalization of numerical invex func-
tions [6, 7].

Pini [8] introduced the concept of numerical prequasi-invex functions. Now we
generalize it to vectorial functions as follows.

DEFINITION 2.3. Let K be invex with respect to η . A vectorial function F : K →
Y is said to be

(i) prequasi-invex of type (I) iff

F(y+ λ η(x,y)) �C F(x)∨F(y), ∀x,y ∈ K,λ ∈ [0,1].

(ii) prequasi-invex of type (II) iff, for any x,y ∈ K ,

F(x) �C F(y) ⇒ F(y+ λ η(x,y)) �C F(y), ∀λ ∈ [0,1].

REMARK 2.2. (1) A prequasi-invex of type (I) vectorial function is also prequasi-
invex of type (II), but the converse is not true in general;
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(2) If Y = R and C = R+ , then (i) and (ii) of Definition 2.3 are equivalent and both
reduce to the definition of numerical prequasi-invex functions [8].

The following proposition gives a characterization of vectorial prequasi-invex of
type (I).

PROPOSITION 2.1. Let K be invex with respect to η and F : K → Y be a vecto-
rial function. Then F is prequasi-invex of type (I) if and only if for each a ∈ Y , the set
{z ∈ K : F(z) �C a} is invex with respect to η

Proof. Suppose that F is prequasi-invex of type (I). Let a ∈ Y and x,y ∈ K such
that

F(x) �C a, F(y) �C a.

Since F is prequasi-invex of type (I),

F(y+ λ η(x,y)) �C F(x)∨F(y) �C a,∀λ ∈ [0,1].

This implies that y+ λ η(x,y) ∈ {z ∈ K : F(z) �C a} for all λ ∈ [0,1] and so {z ∈ K :
F(z) �C a} is invex with respect to η for all a ∈ Y .

Conversely, suppose that {z ∈ K : F(z) �C a} is invex with respect to η for all
a ∈Y . Let x,y ∈ K and a = F(x)∨F(y) . It follows that

x,y ∈ {z ∈ K : F(z) �C a}.

The invexity of {z ∈ K : F(z) �C a} implies that

F(y+ λ η(x,y)) �C a = F(x)∨F(y), ∀λ ∈ [0,1].

Thus F is prequasi-invex of type (I). �

REMARK 2.3. If for each a∈Y , the set {z∈K : F(z) �C a} is invex with respect
to η with η(x,y) = x− y , then F is said to be C -quasiconvex in the sense of Luc [9].

DEFINITION 2.4. Let K be invex with respect to η . A vectorial function F : K →
Y is said to be

(i) strictly prequasi-invex of type (I) iff, ∀x,y ∈ K,x �= y,∀λ ∈ (0,1) ,

F(y+ λ η(x,y)) �C\{0} F(x)∨F(y).

(ii) strictly prequasi-invex of type (II) iff, for any x,y ∈ K,x �= y ,

F(x) �C F(y) ⇒ F(y+ λ η(x,y)) �C\{0} F(y), ∀λ ∈ (0,1).

REMARK 2.4. (1) Definition 2.4 generalizes Definition 1.4 of [3] to vectorial
functions.
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(2) A strictly prequasi-invex of type (I) vectorial function is also strictly prequasi-
invex of type (II), but the converse is not true in general;

(3) If Y = R and C = R+ , then (i) and (ii) of Definition 2.4 are equivalent and both
reduce to the definition of numerical strictly prequasi-invex functions [3, 10].

DEFINITION 2.5. Let K be invex with respect to η . A vectorial function F : K →
Y is said to be

(i) semistrictly prequasi-invex of type (I) iff, ∀x,y ∈ K with F(x) �= F(y) ,

F(y+ λ η(x,y)) �C\{0} F(x)∨F(y), ∀λ ∈ (0,1).

(ii) semistrictly prequasi-invex of type (II) iff, for any x,y ∈ K with F(x) �C\{0}
F(y) ,

F(y+ λ η(x,y)) �C\{0} F(y), ∀λ ∈ (0,1).

REMARK 2.5. (1) Definition 2.5 is vectorial generalizations of numerical semistrictly
prequasi-invex functions (see [3, 4, 10, 11]).

(2) A semistrictly prequasi-invex of type (I) vectorial function is also semistrictly
prequasi-invex of type (II), but the converse is not true in general.

(3) If Y = R and C = R+ , then (i)-(ii) of Definition 2.5 are equivalent and both
reduce to the definition of numerical semistrictly prequasi-invex functions.

In the study of generalized invex functions, the following condition is important.
Condition C See [13]. Let K ⊂ Rn be invex with respect to η : X ×X → X . We

say that η satisfies Condition C iff, for any x,y ∈ X ,λ ∈ [0,1] ,

η(y,y+ λ η(x,y)) = −λ η(x,y), η(x,y+ λ η(x,y)) = (1−λ )η(x,y).

PROPOSITION 2.2. Let K be invex with respect to η and η satisfy Condition C.
Then for any x,y ∈ K,λ ,λ1,λ2 ∈ [0,1] ,

η(y+ λ1η(x,y),y+ λ2η(x,y)) = (λ1−λ2)η(x,y),
η(y+ λ η(x,y),y) = λ η(x,y).

Proof. The conclusions have been shown in the proofs of Theorem 3.1 in [10] and
Theorem 2.4 in [3]. �

Condition D Let F : K ⊂ X → Y be a vectorial function. We say that F satisfies
Condition D iff

F(y+ η(x,y)) �C F(x), ∀x,y ∈ K.

REMARK 2.6. Condition D is a vectorial generalization of Condition D in the
numerical sense (see [3, 4]).
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REMARK 2.7. Strict prequasi-invexity of type (I) (res. (II)) implies that prequasi-
invexity of type (I) (res. (II)) as well as semistrict prequasi-invexity of type (I) (res. (II)).
However, prequasi-invexities do not imply semistrict prequasi-invexities, and semistrict
prequasi-invexities do not imply prequasi-invexities. For details, we refer to Examples
1.1-1.4 of [3].

The following cone semicontinuity was introduced in [14].

DEFINITION 2.6. Let F : K → Y be a vectorial function. F is said to be cone
lower semicontinuous iff for each x0 ∈K and any d ∈ intC , there exists a neighborhood
U of x0 such that F(x) ∈ F(x0)− d + intC for all x ∈ U. We say F is cone upper
semicontinuous if and only if −F is cone lower semicontinuous.

The lower level-closedness was introduced in [9].

DEFINITION 2.7. Let F : K → Y be a vectorial function. F is said to be lower
level-closed iff, for all a ∈ Y , the set {x ∈ K : F(x) �C a} is closed.

REMARK 2.8. If Y = R and C = R+ , both cone lower semicontinuity and lower
level-closedness reduce to the ordinary lower semicontinuity.

3. Characterizations of Vectorial Prequasi-invex Functions

In what follows, unless otherwise specified, we always assume that:

(i) K ⊂ X is an invex subset with respect to η : X ×X → X .

(i) η satisfies Condition C, F : K → Y is a vectorial function and f : K → R is a
numerical function.

First we recall a criteria for convex set.

LEMMA 3.1. See [2, 12]. Let S be a nonempty closed set in Rn . Then S is convex
if and only if for each x,y ∈ S , there exists β ∈ (0,1) such that

βx+(1−β )y∈ S.

Now we generalize Lemma 3.1 as follows:

LEMMA 3.2. Let S be a nonempty closed set in X and η : X × X → X be a
vectorial function such that y+η(x,y) ∈ S for all x,y∈ S . Then S is invex with respect
to η if and only if for each x,y ∈ S , there exists β ∈ (0,1) such that

y+ β η(x,y) ∈ S. (1)
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Proof. The necessity is obvious from Definition 2.1. We prove the sufficiency.
Suppose on the contrary that there exist x,y ∈ S and λ ∈ (0,1) such that

y+ λ η(x,y) /∈ S.

Let

u = sup{t ∈ [0,λ ) : y+ tη(x,y) ∈ S} and v = inf{t ∈ (λ ,1] : y+ tη(x,y) ∈ S}.
Obviously,

0 � u < λ < v � 1, yt := y+ tη(x,y) �∈ S, ∀t ∈ (u,v).

Moreover, yu,yv ∈ S since S is closed. Therefore, for any β ∈ (0,1) ,

yu + β η(yv,yu) = y+[u+ β (v−u)]η(x,y) /∈ S,

which contradicts (1) since yu,yv ∈ S . Thus S is invex with respect to η . �
The following result gives a characterization of vectorial prequasi-invex of type (I)

functions under lower level-closedness condition.

THEOREM 3.1. Let F : K → Y be lower level-closed and satisfy Condition D.
Then F is prequasi-invex of type (I) if and only if for each x,y ∈ K , there exists α ∈
(0,1) such that

F(y+ αη(x,y)) �C F(x)∨F(y). (2)

Proof. Since F is lower level-closed,

Sa = {z ∈ K : F(z) �C a}
is closed for all a ∈Y . We know that y+η(x,y) ∈ Sa for all x,y ∈ Sa since F satisfies
Condition D. Now we show Sa is invex with respect to η . Let x,y ∈ Sa . It follows
from (2) that there exists α ∈ (0,1) such that

F(y+ αη(x,y)) �C F(x)∨F(y) �C a.

This implies that for each x,y ∈ Sa , there exists α ∈ (0,1) such that

y+ αη(x,y) ∈ Sa.

By Lemma 3.2, Sa is invex with respect to η for all a ∈ Y . Thus F is prequasi-invex
of type (I) from Proposition 2.1. �

To establish the criteria for vectorial prequasi-invex functions of type (II), we first
introduce the following condition.

Condition P Let F : K → Y be a vectorial function. We say that F satisfies
Condition P iff, for all x,y ∈ K with F(x) �C F(y) , and for all λ1,λ2 ∈ [0,1] , one has

either F(y+ λ1η(x,y)) �C F(y+ λ2η(x,y))

or F(y+ λ1η(x,y)) �C F(y+ λ2η(x,y)).
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THEOREM 3.2. Let F be cone lower semicontinuous (or lower level-closed) and
satisfy Condition D and Condition P. Then F is prequasi-invex of type (II) if and only
if for any given x,y ∈ K with F(x) �C F(y) , there exists α ∈ (0,1) such that

F(y+ αη(x,y)) �C F(y). (3)

.

Proof. The necessity is obvious. To prove the sufficiency, we assume on the con-
trary that there exist x,y ∈ with F(x) �C F(y) and λ ∈ (0,1) such that

F(y+ λη(x,y)) ��C F(y).

Let
A1(x,y) = {λ ∈ [0,1] : F(y+ λ η(x,y)) �C F(y)}.

It is easy to verify that
{λ ∈ A1(x,y) : λ < λ} �= /0

and
{λ ∈ A1(x,y) : λ > λ} �= /0 ( from Condition D).

Define
λ1 = sup{λ ∈ A1(x,y) : λ < λ}

and
λ2 = inf{λ ∈ A1(x,y) : λ > λ}.

It is easy to see that

0 � λ1 < λ < λ2 � 1 and λ �∈ A1(x,y), ∀λ ∈ (λ1,λ2). (4)

Now we show λ1,λ2 ∈A1(x,y) . From the definitions of λ1 and λ2 , there exist λ n
1 ,λ n

2 ∈
A1(x,y) satisfying λ n

1 → λ1 and λ n
2 → λ2 as n → ∞ .

Case I: F is cone lower semicontinuous. Since F is cone lower semicontinuous,
for any d ∈ intC , there exists an integer N such that

F(y+ λ1η(x,y)) �intC F(y+ λ n
1 η(x,y))+d �C F(y)+d

and
F(y+ λ2η(x,y)) �intC F(y+ λ n

2 η(x,y))+d �C F(y)+d

for all n > N . Since d ∈ intC is arbitrary, it follows that

F(y+ λ1η(x,y)) �C F(y) and F(y+ λ2η(x,y)) �C F(y).

Case II: F is lower level-closed. Since λ n
1 ,λ n

2 ∈ A1(x,y) and λ n
1 → λ1 and λ n

2 →
λ2 , we have

y+ λ n
1 η(x,y),y+ λ n

2 η(x,y) ∈ {z ∈ K : F(z) �C F(y)} (5)
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and
y+ λ n

1 η(x,y) → y+ λ1η(x,y),y+ λ n
2 η(x,y) → y+ λ2η(x,y). (6)

Since F is lower level-closed, the set {z∈ K : F(z) �C F(y)} is closed. It follows from
(5) and (6) that

F(y+ λ1η(x,y)) �C F(y), F(y+ λ2η(x,y)) �C F(y).

Thus λ1,λ2 ∈ A1(x,y) . Since Condition P is satisfied,

F(y+ λ1η(x,y)) �C F(y+ λ2η(x,y)) or F(y+ λ1η(x,y)) �C F(y+ λ2η(x,y)).

By the above inequality and (3), there exists α ∈ (0,1) such that

F(y+λ1η(x,y)+αη(y+λ2η(x,y),y+λ1η(x,y)))�C F(y+λ1η(x,y))∨F(y+λ1η(x,y)).
(7)

Let
λ0 = λ1 + α(λ2−λ1).

It is east to see that λ1 < λ0 < λ2 . By Condition C and Proposition 2.2,

y+ λ0η(x,y) = y+ λ1η(x,y)+ αη(y+ λ2η(x,y),y+ λ1η(x,y)).

Since λ1,λ2 ∈ A1(x,y) , it follows from (7) that

F(y+ λ0η(x,y)) �C F(y),

which contradicts (4). This completes the proof. �

COROLLARY 3.1. Let f : K → R be lower semicontinuous and satisfy Condition
D. Then f is prequasi-invex if and only if, for every x,y ∈ K , there exists some α ∈
(0,1) such that

f (y+ αη(x,y)) � max{ f (x), f (y)}
.

REMARK 3.1. Corollary 3.1 was first established in the setting of finite-dimension
spaces by Yang et al. (see Theorem 2.3 of [3]). It is worth mentioning that their proof
is based on Lemma 3.1 of [3] where the following stronger condition should be needed:
there exists some α ∈ (0,1) such that

f (y+ αη(x,y)) � max{ f (x), f (y)}, ∀x,y ∈ K.

REMARK 3.2. Theorems 3.1 and 3.2 generalize and improve Theorem 2.3 of [3].

In order to establish criteria for vectorial prequasi-invex functions under cone up-
per semicontinuity condition, we need the following lemmas.
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LEMMA 3.3. In addition to Condition D, assume that the following Jensen type
condition is satisfied: there exists α ∈ (0,1) such that

F(y+ αη(x,y)) �C F(x)∨F(y), ∀x,y ∈ K. (8)

Then the set

A2 = {λ ∈ [0,1] : F(y+ λ η(y,x)) �C F(x)∨F(y),∀x,y ∈ K}
is dense in [0,1] .

Proof. Suppose that A2 is not dense in [0,1] . Then there exist a λ0 ∈ (0,1) and a
neighborhood N(λ0) of λ0 such that

N(λ0)∩A2 = /0. (9)

Then
{λ ∈ A2 : λ � λ0} �= /0 ( from Condition D)

and
{λ ∈ A2 : λ � λ0} �= /0.

Define
λ1 = inf{λ ∈ A2 : λ � λ0}, λ2 = sup{λ ∈ A2 : λ � λ0}. (10)

It follows from (9) that
0 � λ2 < λ1 � 1.

Since α ∈ (0,1) , we can choose u1,u2 ∈ A2 such that

u1 � λ1,u2 � λ2 and max{α,1−α}(u1−u2) < λ1−λ2. (11)

It follows from (8) that

F(y+u2η(x,y)+ αη(y+u1η(x,y),y+u2η(x,y))
�C F(y+u1η(x,y))∨F(y+u2η(x,y)).

Let λ = αu1 +(1−α)u2 . It follows from Proposition 2.2 that

y+ λη(x,y)
= y+[u2 + α(u1−u2)]η(x,y)
= y+u2η(x,y)+ αη(y+u1η(x,y),y+u2η(x,y)).

Since u1,u2 ∈ A2 ,

F(y+ λη(x,y))
= F(y+u2η(x,y)+ αη(y+u1η(x,y),y+u2η(x,y)))
�C F(y+u1η(x,y))∨F(y+u2η(x,y))
�C F(x)∨F(y).
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This implies λ ∈ A2 .
If λ � λ0 , from (11), we have

λ −u2 = α(u1−u2) < λ1−λ2.

Again from (11), we have λ < λ1 , which contradicts (10).
Similarly, λ < λ0 provides a contradiction to (10). Therefore, A2 is dense in

[0,1] . �
In addition to Condition P, by using similar ideas as in Lemma 3.3, we can prove

the following result.

LEMMA 3.4. In addition to Condition D and Condition P, assume that the fol-
lowing condition is satisfied: there exists α ∈ (0,1) such that for all x,y ∈ K with
F(x) �C F(y) ,

F(y+ αη(x,y)) �C F(y). (12)

Then, the set

A3 = {λ ∈ [0,1] : F(y+ λ η(y,x)) �C F(y),∀x,y ∈ K with F(x) �C F(y)}
is dense in [0,1] .

THEOREM 3.3. Let F be cone upper semicontinuous and satisfy Condition D and
Condition P. Then F is prequasi-invex of type (II) if and only if F satisfies inequality
(12).

Proof. The necessity is obvious. We prove the sufficiency. By Lemma 3.4, the set

A3 = {λ ∈ [0,1] : F(y+ λ η(y,x)) �C F(y),∀x,y ∈ K with F(x) �C F(y)}
is dense in [0,1] . Then, ∀α ∈ (0,1),∃{αn} ⊂ (0,1)∩A3 such that αn < α for all n
and αn → α as n → ∞ .

Let x,y ∈ K such that F(x) �C F(y) . Define

z = y+ αη(x,y), yn = y+
α −αn

1−αn
η(x,y).

It is easy to see that

0 <
α −αn

1−αn
< 1 and yn → y as n → ∞.

Since K is invex with respect to η , yn ∈ K for all n . It follows from Proposition 2.2
that

yn + αnη(x,yn) = y+ αη(x,y) = z.

The cone upper semicontinuity of F implies that for any d ∈ intC , there exists an N
such that

F(yn) �intC F(y)+d, ∀n > N.
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Since αn ∈ A3 and F satisfies Condition P,

F(z) = F(yn + αnη(x,yn))
�C F(x)∨F(yn)
�C F(x)∨ (F(y)+d), ∀n > N.

Since d ∈ intC is arbitrary,

F(y+ αη(x,y)) �C F(x)∨F(y) = F(y).

Thus F is prequasi-invex of type (II). �
By using similar method as in Theorem 3.3, we can prove the following result.

THEOREM 3.4. Let F be cone upper semicontinuous and satisfy Condition D.
Then F is prequasi-invex of type (I) if and only if F satisfies inequality (8).

REMARK 3.3. Theorems 3.3 and 3.4 generalize Theorem 2.1 of [3] and Theorem
2.4 of [4].

The following result gives a characterization of vectorial prequasi-invex of type
(II) functions under semistrict prequasi-invexity condition.

THEOREM 3.5. Let F : K → Y be semistrictly prequasi-invex of type (II) and
satisfy Condition P. Then F is prequasi-invex of type (II) if and only if F satisfies
inequality (12).

Proof. The necessity is obvious. To prove the sufficiency, by contradiction, sup-
pose that there exist x,y ∈ K with F(x) �C F(y) and λ ∈ (0,1) such that

F(y+ λ η(x,y)) ��C F(y).

Let
z = y+ λ η(x,y).

It follows that
F(z) ��C F(y) �C F(x).

Since F satisfies Condition P, the above inequality implies that

F(z) �C\{0} F(y) �C F(x). (13)

If F(x) �C\{0} F(y) , then we have

F(z) �C\{0} F(y)

since F is semistrictly prequasi-invex of type (II). This contradicts (13).
If F(x) = F(y) , it follows from (13) that

F(z) �C\{0} F(y) = F(x). (14)
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Consider the following two cases:
(i) 0 < λ < α < 1. Define

z1 = y+
λ
α

η(x,y).

Since Condition C is satisfied, from Proposition 2.2, we have

z = y+ αη(z1,y) = y+ λ η(x,y). (15)

Further, from Condition P, we have

F(y) �C F(z1) or F(y) �C F(z1). (16)

It follows from (12), (15) and (16) that

F(z) �C F(z1)∨F(y). (17)

Again from Condition P, we have

F(z1) �C F(z) or F(z1) �C F(z).

By (14), (17) and the above inequality,

F(z) �C F(z1). (18)

Define

b =
λ (1−α)
α(1−λ )

.

Then 0 < b < 1 since 0 < λ < α < 1. By Proposition 2.2,

z+bη(x,z) = y+
λ
α

η(x,y) = z1.

The semistrict prequasi-invexity of type (II) of F implies that

F(z1) �C\{0} F(z),

which contradicts (18).
(ii) 0 < α < λ < 1. In this case, we can get a contradiction by exchanging the

roles of α and 1−α and λ and λ −α in case (i). �

REMARK 3.4. Theorem 3.5 generalizes Theorem 2.3 of [3].
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4. Characterizations of Vectorial Semistrictly Prequasi-invex Functions

This section is devoted to criteria for vectorial semistrictly prequasi-invex func-
tions via Jensen type inequalities.

THEOREM 4.1. Let F : K →Y be prequasi-invex of type (II) and satisfy Condition
P. Then F is semistictly prequasi-invex of type (II) if and only if there exists α ∈ (0,1)
such that for every x,y ∈ with F(x) �C\{0} F(y) ,

F(y+ αη(x,y)) �C\{0} F(y). (19)

Proof. The necessity is obvious. To prove the sufficiency, suppose on the contrary
that there exist x,y ∈ K with F(x) �C\{0} F(y) and λ ∈ (0,1) such that

F(y+ λ η(x,y)) ��C\{0} F(y). (20)

Let
z = y+ λ η(x,y).

By Condition P,

F(y+ λ η(x,y)) �C F(y) or F(y+ λ η(x,y)) �C F(y). (21)

It follows from (20), (21) and the fact F(x) �C\{0} F(y) that

F(z) �C F(y) �C\{0} F(x). (22)

The prequasi-invexity of type (II) of F further implies that

F(z) �C F(y).

The above inequality together with (22) leads to

F(z) = F(y) �C\{0} F(x). (23)

Define a sequence {zk} ⊂ K by

zk = z+ αη(zk−1,z), k = 1,2,3, · · · .

where z0 = z . It follows from (19) that

F(zk) �C\{0} F(z), k = 1,2,3, · · · . (24)

By Proposition 2.2,

zk = z+ αkη(x,z) = y+[λ + αk(1−λ )]η(x,y).
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Choose an integer k1 such that

λ > (1−α)αk1−1(1−λ ).

Let

β1 = λ + αk1(1−λ ),
β2 = λ − (1−α)αk1−1(1−λ ),
y = y+ β1η(x,y),
x = y+ β2η(x,y).

It is easy to see that
0 < β2 < λ < β1 < 1.

Inequality (24) implies that

F(y) = F(zk1) �C\{0} F(z). (25)

Furthermore, from Condition P, we have

F(x) �C F(y) or F(x) �C\{0} F(y).

Consider the following two cases:
(i) F(x) �C F(y) . By Condition C and Proposition 2.2,

y + αη(x , y) = y+ β1η(x,y)+ α(β2−β1)η(x,y) = y+ λ η(x,y) = z.

Since F is prequasi-invex of type (II),

F(z) �C F(y),

which contradicts (25).
(ii) F(x) �C\{0} F(y) . Since z = y + αη(x , y) , it follows from (19) that

F(z) �C\{0} F(x). (26)

On the other hand, we have
F(x) �C F(y) (27)

since F is prequasi-invex of type (II). Combining (26) and (27), we have

F(z) �C\{0} F(y),

which contradicts (23). The proof is complete. �
The following result is a direct consequence of Theorem 4.1.

COROLLARY 4.1. Let f : K → R be a numerical prequasi-invex function. Then
f is semistictly prequasi-invex if and only if there exists α ∈ (0,1) such that for every
x,y ∈ with f (x) �= f (y) ,

f (y+ αη(x,y)) < max{ f (x), f (y)}.



CHARACTERIZATIONS FOR VECTORIAL PREQUASI-INVEX TYPE FUNCTIONS 115

REMARK 4.1. Corollary 4.1 was first proved by Yang et al ( see Theorem 3.1 of
[3]) with additional condition: for every x,y ∈ K with f (x) �= f (y) ,

f (y+(1−α)η(x,y)) < max{ f (x), f (y)}

in the finite-dimension setting.

THEOREM 4.2. Let F : K →Y be lower level-closed and satisfy Condition D and
Condition P. If there exits α ∈ (0,1) such that for every x,y ∈ K with F(x) �= F(y) ,

F(y+ αη(x,y)) �C\{0} F(x)∨F(y), (28)

then F is prequasi-invex of type (I).

Proof. , By Theorem 3.1, it is sufficient to show that, for every x,y ∈ K , there
exists λ ∈ (0,1) such that

F(y+ λ η(x,y)) �C F(x)∨F(y).

Suppose on the contrary that there exist x,y ∈ K such that

F(y+ λ η(x,y)) ��C F(x)∨F(y), ∀λ ∈ (0,1). (29)

If F(x) �= F(y) , it follows from (28) that

F(y+ αη(x,y)) �C\{0} F(x)∨F(y),

which contradicts (29).
If F(x) = F(y) , then (29) implies that

F(y+ λ η(x,y)) ��C F(x) = F(y), ∀λ ∈ (0,1),

which together Condition P leads to

F(y+ λ η(x,y)) �C\{0} F(x) = F(y), ∀λ ∈ (0,1). (30)

It follows from (30) and Proposition 2.2 that

F(y+ λ η(x,y)+ αη(x,y+ λ η(x,y))
= F(y+ γη(x,y)) �C\{0} F(x) = F(y), ∀λ ∈ (0,1), (31)

where γ = λ + α(1−λ )∈ (0,1) .
Inequalities (28) and (30) imply that

F(y+ λ η(x,y)+ αη(x,y+ λ η(x,y))
�C\{0} F(y+ λ η(x,y))∨F(x) = F(y+ λ η(x,y)),∀λ ∈ (0,1). (32)
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It follows from (28), (31) and (32), and Proposition 2.2 that

F(y+(1−α)γη(x,y))
= F(y+ γη(x,y)+ αη(y,y+ γη(x,y)))
�C\{0} F(y)∨F(y+ γη(x,y))
= F(y+ γη(x,y))
�C\{0} F(y+ λ η(x,y)), ∀λ ∈ (0,1).

Letting

λ =
1−α
2−α

in the above inequality, we get a contradiction. �
By using Theorem 3.2 and similar method as in Theorem 4.2, we can prove the

following result.

THEOREM 4.3. Let F : K → Y be cone lower semi-continuous (or lower level-
closed) and satisfy Condition D and Condition P. Suppose that inequality (19) holds.
Then F is prequasi-invex of type (II).

The following result is a direct consequence of Theorem 4.2 and 4.3.

COROLLARY 4.2. Let f : K → R be lower semi-continuous and satisfy Condi-
tions D. If there exits α ∈ (0,1) such that for every x,y ∈ K with f (x) �= f (y) ,

f (y+ αη(x,y)) < max{ f (x), f (y)},

then f is prequasi-invex.

REMARK 4.2. Corollary 4.2 was first proved by Yang et al (see Theorem 3.3 of
[3]) in the finite-dimension setting. However, our result improves Theorem 3.3 of [3]
since their proof is based on Theorem 2.3 of [3] (see Remark 3.1).

By Theorems 4.1 and 4.3, we have the following result.

THEOREM 4.4. Let F : K → Y be cone lower semi-continuous (or lower level-
closed) and satisfy Condition D and Condition P. Then F is semitrictly prequasi-invex
of type (II) if and only if F satisfies inequality (19).

REMARK 4.3. Theorem 4.4 generalizes Corollary 3.1 of [3].

5. Characterizations of Vectorial Strictly Prequasi-invex Functions

In this section, we give some criteria for vectorial strictly prequasi-invex functions
via Jensen type inequalities.
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THEOREM 5.1. Assume that F : K → Y satisfies the following conditions:

(i) F is prequasi-invex of type (I).

(ii) η(x,y) = 0 if and only if x = y.

Then F is strictly prequasi-invex of type (I) if and only if for every x,y ∈ K with x �= y,
there exists α ∈ (0,1) such that

F(y+ αη(x,y)) �C\{0} F(x)∨F(y). (33)

Proof. The necessity is obvious. To prove the sufficiency, we suppose on the
contrary that there exist x,y ∈ with x �= y and λ ∈ (0,1) such that

F(y+ λ η(x,y)) ��C\{0} F(x)∨F(y).

Let
z = y+ λ η(x,y).

Since F is prequasi-invex of type (I),

F(z) �C F(x)∨F(y).

The above two inequalities imply that

F(z) = F(x)∨F(y). (34)

From Condition C and assumption (ii), we have

x �= z and y �= z.

By (33), there exist β1,β2 ∈ (0,1) such that

F(z+ β1η(x,z)) �C\{0} F(x)∨F(z) and F(y+ β2η(z,y)) �C\{0} F(y)∨F(z). (35)

Let
x = z+ β1η(x,z) and y = y+ β2η(z,y).

Combining (34) and (35), we have

F(x) �C\{0} F(z) and F(y) �C\{0} F(z). (36)

By Proposition 2.2,

x = y+[λ + β1(1−λ )]η(x,y) and y = y+ β2λ η(x,y).

Let

u1 = λ + β1(1−λ ),u2 = β2λ ,u =
λ −u2

u1−u2
.
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It is easy to see that u1,u2,u ∈ (0,1) . Again from Proposition 2.2, we have

y +uη(x, y) = y+ λ η(x,y) = z.

Since F is prequasi-invex of type (I),

F(z) �C F(x)∨F(y). �

In addition to Condition P, by using similar method as in Theorem 5.1, we can
prove the following result.

THEOREM 5.2. Assume that F : K → Y satisfies the following conditions:

(i) F is prequasi-invex of type (II) and satisfies Condition P.

(ii) η(x,y) = 0 if and only if x = y.

Then F is strictly prequasi-invex of type (II) if and only if for every x,y ∈ K with x �= y
and F(x) �C F(y) , there exists α ∈ (0,1) such that

F(y+ αη(x,y)) �C\{0} F(y). (37)

REMARK 5.1. Some analogous results for numerical functions were proved by
Yang et al. (see Theorem 4.1 of [3]) and Luo and Xu (see Theorem 2.4 of [4].

THEOREM 5.3. Let F : K → Y satisfy the following conditions:

(i) F is lower level-closed and satisfies Conditions D and P.

(ii) η(x,y) = 0 if and only if x = y.

Then F is strictly prequasi-invex of type (I) if and only if there exists α ∈ (0,1) such
that for every x,y ∈ K with x �= y,

F(y+ αη(x,y)) �C\{0} F(x)∨F(y). (38)

Proof. The conclusion follows from Theorems 4.2 and 5.1. �

THEOREM 5.4. Let F : K → Y satisfy the following conditions:

(i) F is cone lower semi-continuous (or lower level-closed) and satisfies Condition
D and Condition P.

(ii) η(x,y) = 0 if and only if x = y.

Then F is strictly prequasi-invex of type (II) if and only if there exists α ∈ (0,1) such
that for every x,y ∈ K with x �= y and F(x) �C F(y) ,

F(y+ αη(x,y)) �C\{0} F(y). (39)
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Proof. The conclusion follows from Theorems 4.3 and 5.2. �

THEOREM 5.5. Let F : K → Y satisfy the following conditions:

(i) F is cone upper semi-continuous and satisfies Condition D.

(ii) η(x,y) = 0 if and only if x = y.

Then F is strictly prequasi-invex of type (I) if and only if F satisfies inequality (38).

Proof. The conclusion follows from Theorems 3.4 and 5.1. �

THEOREM 5.6. Let F : K → Y satisfy the following conditions:

(i) F is cone upper semi-continuous and satisfies Conditions D and P.

(ii) η(x,y) = 0 if and only if x = y.

Then F is strictly prequasi-invex of type (II) if and only if F satisfies inequality (39).

Proof. , The conclusion follows from Theorems 3.3 and 5.2. �
In [3], Yang et al proved the following result.

THEOREM 5.7. See Theorem 4.3 of [3]. A numerical function f : K →R is strictly
prequasi-invex function if and only if f is semistrictly prequasi-invex and the following
condition holds: there exists α ∈ (0,1) such that for every x,y ∈ K with x �= y,

f (y+ αη(x,y)) < max{ f (x), f (y)}.

Now we improve the above theorem as follows:

THEOREM 5.8. Let F : K →Y be a vectorial function. Then F is strictly prequasi-
invex of type (I) if and only if F is semistrictly prequasi-invex of type (I) and satisfies
inequality (33).

Proof. The necessity is obvious. To prove the sufficiency, it is is sufficient to show
that x �= y,F(x) = F(y) imply that

F(y+ λ η(x,y)) �C\{0} F(x)∨F(y), ∀λ ∈ (0,1). (40)

For every x,y ∈ K with x �= y and F(x) = F(y) , it follows from (33) that there exists
β ∈ (0,1) such that

F(y+ β η(x,y)) �C\{0} F(x) = F(y). (41)

Set
z = y+ β η(x,y).
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Let λ ∈ (0,1) . If λ < β , then

u =
β −λ

β
∈ (0,1).

By Proposition 2.2,
z+uη(y,z) = y+ λ η(x,y).

Since F(z) �= F(y) , the semistrict prequasi-invexity of type (I) of F implies that

F(y+ λ η(x,y)) = F(z+uη(y,z)) �C\{0} F(y)∨F(z) = F(x)∨F(y). (42)

If λ > β , then

v =
λ −β
1−β

∈ (0,1).

Again from Proposition 2.2, we have

z+ vη(x,z) = y+ λ η(x,y).

Since F(z) �= F(x) and F is semistrictly prequasi-invex of type (I),

F(y+ λ η(x,y)) = F(z+ vη(x,z)) �C\{0} F(x)∨F(z) = F(x)∨F(y). (43)

Inequalities (41), (42) and (43) show that (40) holds. This completes the proof. �
By using similar method as in Theorem 5.8, we can obtain the following result.

THEOREM 5.9. Let F : K →Y be a vectorial function. Then F is strictly prequasi-
invex of type (II) if and only if F is semistrictly prequasi-invex of type (II) and satisfies
inequality (37).

REMARK 5.2. A uniform α ∈ (0,1) in Theorem 5.7 is needed, while conditions
in Theorems 5.8 and 5.9 have been weakened to a great extent.
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