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CONTINUOUS MONOTONE MAPS ON MATRICES

FOR ORDERS INDUCED BY THE GROUP INVERSE

MIKHAIL A. EFIMOV AND ALEXANDER E. GUTERMAN

(Communicated by J. Pečarić)

Abstract. We characterize continuous injective maps on the set of complex matrices which are

monotone with respect to
�
� -order or

cn
� -order. In particular, we prove that all such maps must

be automatically R -linear and surjective. We also present several examples of monotone maps
showing that our assumptions are indispensable.

1. Introduction

Let Mn(F) denote the space of square matrices of order n with coefficients from
the field F , and let GLn(F) denote the group of invertible matrices. By Dn(F)⊆Mn(F)
we denote the set of all diagonalizable matrices, where A ∈ Mn(F) is diagonalizable if
there exists P∈GLn(F) such that P−1AP is diagonal. It is said that a matrix A∈Mn(F)
has the index l ( IndA = l ) if rkAl = rkAl+1 and l is the smallest positive number with
this property. Note that any diagonalizable matrix A has index 1. A pair of matrices
A,B ∈ Mn(F) is called orthogonal, see [19], if AB = BA = 0, it is denoted by A ⊥ B .

DEFINITION 1. [15] Let A ∈ Mn(F) . The system of matrix equations AXA =
A, XAX = X , AX = XA has a solution X if and only if IndA = 1. This solution is
unique. It is called the group inverse of A, and is denoted by A� .

Group inverse is one of the matrix generalized inverses which has many useful
properties and applications. A more detailed information about group inverse can be
found for example in [1, 18]. An interesting application of the group inverse is the fact
that it can be utilized to introduce an order relation on matrices:

DEFINITION 2. [15] Let A,B ∈ Mn(F) . Then A
�
� B if and only if A = B or

IndA = 1 and AA� = BA� = A�B . Moreover, if A
�
� B and A �= B , then A

�
< B .
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A core-nilpotent decomposition of a matrix A ∈ Mn(F) is the sum A = CA +NA ,
such that CA ⊥ NA , IndCA = 1, NA is a nilpotent matrix. This decomposition exists
and is unique for all A ∈ Mn(F) , see [1, Chapter 4.8].

Below we provide the definitions of the matrix partial orders which will be useful
for our further considerations.

DEFINITION 3. [11, 16] We say that A�B for an arbitrary pair of matrices A and
B if and only if rk(B−A) = rkB− rkA .

DEFINITION 4. [12] Let A,B ∈ Mn(F) . Then A
cn
� B if and only if CA

�
� CB and

NA�NB .

Let � be a certain partial order relation on Mn(F) . For M ⊆ Mn(F) , the map
T : M → M is called monotone with respect to � -order if for arbitrary two matrices
A,B ∈ M the condition A � B implies T (A) � T (B) .

There are many results related to the investigations of monotone transformations
on matrices and operators. See for example [4, 5, 6, 13, 14, 17, 19, 20, 21] and refer-
ences therein. The investigation of monotone transformations for orders related to the
group inverse was started in [2]. In that paper the characterizations of linear bijective

maps for matrices over an arbitrary field which are monotone with respect to
�
< - and

cn
< -orders were obtained. In the paper [7] the approach which enabled to remove the
bijectivity assumption was discovered. After that in the paper [8] additive monotone

maps were characterized. Also, the characterization of injective maps preserving
�
� -

order on the set of diagonalizable matrices was obtained in [10]. The main goal of the
present paper is to characterize continuous injective maps on the set of complex ma-

trices that are monotone with respect to
�
� -order or

cn
� -order. As a corollary we show

that all such transformations are automatically surjective and R-linear. After that we
present some examples showing that our assumptions are indispensable.

We note that this paper is devoted only to finite dimensional matrix spaces. The
results for infinite dimension spaces will appear elsewhere.

In Section 2 of this paper we give the necessary definitions and facts about spec-
trally orthogonal matrix decompositions. Such decompositions are convenient tools for
describing the monotone maps. In Section 3 we formulate and prove the main charac-
terization result for such maps. Section 4 contains some corollaries and examples.

2. Preliminaries

The notion of spectrally orthogonal matrix decompositions are introduced and in-
vestigated in our paper [9]. These decompositions are essentially used in the present
paper, so we recall below basic definitions and properties. Firstly we need the following
counting functions:
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kA : F×N → Z+ defined by the rule: for λ ∈ F and r ∈ N the value kA(λ ,r) is
equal to the number of Jordan blocks of A of the size r , corresponding to the eigenvalue
λ (if there are no Jordan blocks of A with λ of the size r then kA(λ ,r) = 0);

KA : F → Z+ determines the total number of Jordan blocks of A , corresponding

to the eigenvalue λ , i.e., KA(λ ) =
∞
∑

r=1
kA(λ ,r) .

Observe that the set of eigenvalues SpecA = {λ ∈ F | KA(λ ) > 0} .
Now we are ready to define spectrally orthogonal matrix decompositions.

DEFINITION 5. Let F be a field and let A ∈ Mn(F) with A = CA + NA be the
core-nilpotent decomposition of A . The maps Si : F×Mn(F) → Mn(F) , i = 1,2,3 are
called spectrally orthogonal decompositions of A if S1

A(0) = NA and for any λ �= 0

the matrix S1
A(λ ) = Xλ is such that Xλ

�
� A , KXλ (λ ) = KA(λ ) and KXλ (μ) = 0 for all

μ ∈ F\ {0,λ} .
S2

A(λ ) = S1
A+I(λ +1)−S1

A(λ ) for all λ ∈ F;

S3
A(λ ) = S1

A(λ )−λS2
A(λ ) for all λ ∈ F.

The correctness of this definition is proved in [9, Lemma 2.14]. Below we list the
most important properties of these maps.

THEOREM 1. [9, Theorems 2.18, 2.20] Let A ∈ Mn(F) .
1. If λ /∈ SpecA ⊆ F then Si

A(λ ) = 0 for i = 1,2,3 .
2. rk(S2

A(λ )) = degχA
(z−λ ) is the multiplicity of λ in the characteristic polyno-

mial χA .
3. Si

A(λ ) ⊥ S j
A(μ) for all λ �= μ , i, j = 1,2,3 .

4. Si
A(λ )S2

A(λ ) = S2
A(λ )Si

A(λ ) = Si
A(λ ) for all λ ∈ F , i = 1,2,3 .

5. The matrix S2
A(λ ) is idempotent for all λ ∈ F .

6. The matrix S3
A(λ ) is nilpotent for all λ ∈ F .

7. A = ∑
λ∈F

S1
A(λ ) = ∑

λ∈F

(λS2
A(λ )+S3

A(λ )) , I = ∑
λ∈F

S2
A(λ ) .

8. For any polynomial f ∈ F[t] it holds that

f (A) = ∑
λ∈F

( f (λ )S2
A(λ )+

f ′(λ )
1!

S3
A(λ )+ . . .+

f (n−1)(λ )
(n−1)!

(S3
A(λ ))n−1).

9. F[A] = { f (A)} f∈F[t] = 〈{S2
A(λ ),S3

A(λ ), . . . ,(S3
A(λ ))n−1}λ∈F

〉 , and nonzero ma-

trices from the system {S2
A(λ ),S3

A(λ ), . . . ,(S3
A(λ ))n−1}λ∈F

are linearly independent.
10. If λ ∈ F then Si

A(λ ) ∈ Mn(F) , i = 1,2,3 .
11. If A commutes with some B ∈ Mn(F) , then Si

A(λ ) commute with B for all
λ ∈ F and i = 1,2,3 .

12. If IndA = 1 and A is orthogonal to some B ∈ Mn(F) then
a) for λ �= 0 all matrices Si

A(λ ) are orthogonal to B,
b) Si

A+B(λ ) = Si
A(λ )+Si

B(λ ) for λ �= 0 and i = 1,2,3 .

c) Si
A(λ ) ⊥ S j

B(μ) for all λ ,μ ∈ F\ {0} , i, j = 1,2,3 .
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13. If A
�
�C for some C ∈ Mn(F) , then for all Λ ⊆ F\ {0} we have ∑

λ∈Λ
Si

A(λ )
�
�

∑
λ∈Λ

Si
C(λ ) , i = 1,2 . In particular, Si

A(λ )
�
� Si

C(λ ) for λ �= 0 and i = 1,2 .

The following property of matrix maps, which is closely related with the mono-
tonicity, was introduced in [9]:

DEFINITION 6. The map T : Mn(C) → Mn(C) is 0-additive, if for any matrices
A,B ∈ Mn(C) with A ⊥ B we have:

(i) T (A) ⊥ T (B) ; (ii) T (A+B) = T (A)+T(B) .

The theorem below is the important tool to prove our main result.

THEOREM 2. [10, Theorem 1.12] Let F be an arbitrary algebraically closed
field. Assume n � 3 and consider injective map T : Dn(F)→Dn(F) which is monotone

with respect to
�
� -order. Then there exist a matrix P ∈ GLn(F) , a nonzero endomor-

phism f : F → F , and an injective map σ : F → F satisfying the condition σ(0) = 0
such that

T (A) = ∑
λ∈F

σ(λ )P−1(S2
A(λ )) f P for all A ∈ Dn(F)

or
T (A) = ∑

λ∈F

σ(λ )P−1[(S2
A(λ )) f ]tP for all A ∈ Dn(F),

here spectrally orthogonal matrix decomposition Si
A(λ ) ∈ Mn(F) , i = 1,2,3 is defined

above, see Definition 5.

3. Main result

We will further assume that F = C .

THEOREM 3. Let n � 3 and assume that the map T : Mn(C)→Mn(C) is injective
and continuous. Assume that at least one of the following conditions is true:

a) T is monotone with respect to
�
� -order;

b) T is monotone with respect to
cn
� -order;

c) T is 0-additive map.
Then there are P ∈ GLn(C) , α ∈ C\ {0} such that

T (X) = αP−1XP for all X ∈ Mn(C) or
T (X) = αP−1XtP for all X ∈ Mn(C) or
T (X) = αP−1XP for all X ∈ Mn(C) or
T (X) = αP−1X

t
P for all X ∈ Mn(C) ,

here X is the matrix obtained from X by the elementwise complex conjugation.
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Proof. We start by assuming the condition a).
1. Let A ∈ Dn(C) be an arbitrary diagonalizable matrix, rkA = r . It can be easily

checked that there exist diagonalizable matrices A1, . . . ,An , such that Ar = A and

0
�
< A1

�
< · · · �

< An.

Thus

0
�
< T (A1)

�
< · · · �

< T (An).

Therefore by [2, Lemma 3.4] matrices T (A1), . . . ,T (An) are also diagonalizable. In
this case T (A) = T (Ar) is diagonalizable and T (Dn(C)) ⊆ Dn(C) .

2. By Theorem 1.12 from [10] (see Theorem 2 in this text) we can assume that
there are P ∈ GLn(C) , nonzero endomorphism f : C → C and injective map σ0 : C →
C , σ0(0) = 0 such that

T (A) = ∑
λ∈C

σ0(λ )P−1(S2
A(λ )) f P for all A ∈ Dn(C)

or
T (A) = ∑

λ∈C

σ0(λ )P−1[(S2
A(λ )) f ]tP for all A ∈ Dn(C).

Composing, if necessary, the map T with the similarity by P−1 and transposition,
we obtain an injective continuous map T1 : Mn(C) → Mn(C) , satisfying the condition

T1(A) = ∑
λ∈C

σ0(λ )(S2
A(λ )) f for all A ∈ Dn(C).

Now we define a map d : C → Mn(C) by the following rule:

d(λ ) = T1(E11 + λE12) = σ0(1)(E11 + f (λ )E12).

Since σ0(1) �= σ0(0) = 0 and the map d is continuous, endomorphism f : C → C is
also continuous. Recall that there are only two nonzero continuous endomorphisms of
field C : the identity map and the complex conjugation. Thus f (λ ) = λ for all λ ∈ C

or f (λ ) = λ for all λ ∈ C .
Denote T2(A) = (T1(A)) f . Here for X = (xi j) we denote X f = ( f (xi j)) , i.e. the

matrix for which f is applied elementwise. So, the map T2 : Mn(C) → Mn(C) is injec-
tive and continuous and

T2(A) = ∑
λ∈C

σ(λ )S2
A(λ ) for all A ∈ Dn(C),

where σ(λ ) := f (σ0(λ )) .

3. Let us prove that the function σ : C → C is linear. First we note that the
function σ : C → C is continuous and injective. Indeed,

T2(μE11) = ∑
λ∈C

σ(λ )S2
μE11

(λ ) = σ(0)S2
μE11

(0)+ σ(μ)S2
μE11

(μ) = σ(μ)E11,
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and the map T2 is injective and continuous.
Let μ ,ν ∈ C\ {0} , μ �= ν . Set

Aμ,ν = μE11 +E12 + νE22,

Xμ,ν = μE11− μ
ν − μ

E12,

Yμ,ν = νE22 +
ν

ν − μ
E12.

Then Aμ,ν = Xμ,ν +Yμ,ν , X2
μ,ν = μXμ,ν , Y 2

μ,ν = νYμ,ν , Xμ,ν ⊥ Yμ,ν .
By inequality μ �= ν we have

S1
Aμ ,ν (μ) = Xμ,ν , S1

Aμ ,ν (ν) = Yμ,ν .

Compute T2(Aμ,ν) :

T2(Aμ,ν ) = ∑
λ∈C

σ(λ )S2
Aμ ,ν (λ ) = σ(μ)S2

Aμ ,ν (μ)+ σ(ν)S2
Aμ ,ν (ν)

=
σ(μ)

μ
S1

Aμ ,ν (μ)+
σ(ν)

ν
S1

Aμ ,ν (ν) =
σ(μ)

μ
Xμ,ν +

σ(ν)
ν

Yμ,ν

= σ(μ)E11 + σ(ν)E22 +
σ(ν)−σ(μ)

ν − μ
E12.

Now we are going to apply the methods from the complex analysis.
All the definitions and results which will be used below can be found in [22], see

also [3]. By continuity of T2 for all μ ∈ C \ {0} there exists lim
ν→μ

σ(ν)−σ(μ)
ν−μ . By [22,

p. 34] the function σ is analytic on the domain C \ {0} . Moreover, by continuity of
σ : C → C there exists lim

μ→0
σ(μ) and a single point of removable singularity 0 ∈ C .

Therefore σ is an entire function and hence it is analytic on the whole complex plane.
By [22, p. 187] any analytic function σ satisfy the following property (open map-

ping theorem): if σ is not a constant, then for each domain Ω ⊆C the set σ(Ω) is also
a domain.

Since σ is injective it is not a constant. Denote Ω0 = {z ∈ C | |z| < 1} then
Ω1 = σ(Ω0) is a domain and σ(0) = 0 ∈ Ω1 . Since the set Ω1 is open then there

exists ε > 0 such that Ω(ε) =
{

z ∈ C

∣∣∣|z| < ε
}
⊆ Ω1 .

Thus all values from the domain Ω(ε) are attained by the function σ on the domain
Ω0 . However the function σ is injective and σ(z) /∈ Ω(ε) for all

z ∈ C\Ω0 =
{

z ∈ C

∣∣∣|z| � 1
}
.

The point ∞ is a unique singular point of the analytic function σ . Assume, this
point is a removable singularity. Then σ is a constant which is not true. Let us show
that ∞ is not an essential singularity of the function σ .
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Assume the opposite. Thus by Casorati–Weierstrass (Sokhotski’s) Theorem (see
[22], p. 123) there exists a sequence of points zm , m = 1,2, . . . such that zm → ∞
as m → ∞ and lim

m→∞
σ(zm) = 0. Therefore there exists N1 such that for m > N1 we

have σ(zm) ∈ Ω(ε) . On the opposite side since zm → ∞ as m → ∞ there exists N2

such that |zm| > 1 for all m > N2 . Set N = max{N1,N2}+1 and obtain zN /∈ Ω0 ,
σ(zN) ∈ Ω(ε) which is impossible. The obtained contradiction shows that ∞ is not
essential singularity point of the function σ .

Thus the only existing possibility is that point ∞ is a pole. In this case the function
σ is a polynomial.

Set σ(z) = α
k
∏
s=1

(z− zs) where α ∈ C \ {0} , k is a degree of this polynomial,

zs ∈C , s = 1, . . . ,k are the roots. Since σ(zs) = 0 = σ(0) if s = 1, . . . ,k then z1 = z2 =
· · · = zk = 0 by the injectivity of σ . Hence σ(z) = αzk . In this case σ(1) = σ(e

2πi
k ) .

Since σ is injective it follows that k = 1. Hence σ(z) = αz , this shows the linearity of
σ .

4. Since σ(z) = αz for all z ∈ C we have

T2(A) = ∑
λ∈C

σ(λ )S2
A(λ ) = ∑

λ∈C

(αλ )S2
A(λ ) = α ∑

λ∈C

λS2
A(λ ) = αA

for all A ∈ Dn(C) .
Let X ∈ Mn(C) be an arbitrary matrix. Then there exists a family {Aq} ⊆ Dn(C)

of diagonalizable matrices such that lim
q→∞

Aq = X . By the continuity assumption on T2

we have
T2(X) = lim

q→∞
T (Aq) = lim

q→∞
αAq = αX ,

i.e. T2(X) = αX for all matrices X ∈ Mn(C) .
Therefore by the definitions of T2 and T1 the map T has the required form.
Let us assume now that the condition b) is satisfied. Let A∈Dn(C) be an arbitrary

diagonalizable matrix, rkA = r . It can easily be checked that there exist diagonalizable
matrices A1, . . . ,An , such that Ar = A and

0
cn
< A1

cn
< · · · cn

< An.

Thus
0

cn
< T (A1)

cn
< · · · cn

< T (An).

Therefore by [2, Lemma 3.4] matrices T (A1), . . . ,T (An) are also diagonalizable. In

this case T (A) = T (Ar) is diagonalizable and T (Dn(C)) ⊆ Dn(C) . Since
�
� - and

cn
� -orders coincide on the set of diagonalizable matrices Dn(C) the rest of the proof
coincides with the proof in the case a).

c) We see that T (0) = T (0)+T (0) , whence T (0) = 0. Since the map T is injec-
tive we have T (X) �= 0 for X �= 0.

Let A ∈Dn(C) , k = rkA . Then there exist matrices A1, . . . ,An ∈ Dn(C) such that
A = A1 + . . .+Ak , rkAi = 1 for all i = 1, . . . ,n and Ai ⊥ Aj for all i �= j . Indeed, since
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the matrix A is diagonalizable then there exists PA ∈ GLn(C) such that matrix Ã =
P−1

A APA is diagonal and has the form Ã = diag(λ (A)
1 , . . . ,λ (A)

k ,0, . . . ,0) . Set λ (A)
s = 1

for k < s � n and Ãs = diag(0, . . . ,0,λ (A)
s ,0, . . . ,0) where λ (A)

s is on the position s .
For 1 � s � n we have Ãi ⊥ Ã j if i �= j . Moreover if As = PAÃsP

−1
A for 1 � s � n ,

then Ai ⊥ Aj for i �= j and A = A1 + . . .+Ak .
By 0-additivity of T we have T (Ai) ⊥ T (Aj) for i �= j and T (A) = T (A1)+ . . .+

T (Ak) . In addition T (Ai) �= 0 if i = 1, . . . ,n . Therefore rkT (Ai) = 1 and T (Ai) ∈
Dn(C) for all i . In this case T (A) ∈ Dn(C) thus T (Dn(C)) ⊆ Dn(C) .

By [9, Lemma 4.1] the map T |Dn(C) is monotone with respect to
�
� -order. Thus

the statement of the Theorem follows from item a). �

4. Corollaries and examples

The results below follow directly from Theorem 3.

COROLLARY 1. The map T is automatically surjective and R-linear in the con-
ditions of Theorem 3.

COROLLARY 2. Let the conditions of Theorem 3 are satisfied. Then the assump-
tions (a) and (b) are equivalent.

The following example shows that the assumption of injectivity is indispensable
in Theorem 3. Indeed, the following maps are non-standard and non-injective:

EXAMPLE 1. Let ‖ · ‖ be a norm in the space Mn(C) and ε > 0 is such that ε -
neighborhood of the matrix I in norm ‖ · ‖ does not contain singular matrices. We
define Tε as follows

Tε(X) = max{1− ε−1‖X − I‖,0}I.
Then Tε : Mn(C) → Mn(C) is non-injective continuous map which is monotone with

respect to
�
� -order and is not 0-additive. In particular, it is not R-linear and does not

have the form as in the statement of the theorem.

Proof. Let X ,Y ∈Mn(C) , IndX = 1 and X
�
�Y . Let us show that Tε(X)

�
� Tε(Y ) .

If X does not belong to the ε -neighborhood of the matrix I then

Tε(X) = 0
�
� Tε(Y ).

In the opposite case rkX = n . Hence X = Y and Tε(X) = Tε(Y ) .
Moreover, Tε is not 0-additive. Indeed,

Tε(E11)+Tε(I−E11) = 0 �= I = Tε(I). �

The following example shows us that the assumption of continuity is indispensable
in Theorem 3.
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EXAMPLE 2. [10, Example 4.2] Let T : Mn(F) → Mn(F) be defined as

T (A) = ∑
λ∈F

(λS2
A(λ )−S3

A(λ )).

Then
(1) T is bijective,

(2) T is strongly monotone with respect to the
�
� -order,

(3) T is not continuous,
(4) on the whole Mn(F) the map T is not additive, hence T is not of the form

described in Theorem 3.

The following example shows that without the continuity assumption the condi-
tions (a) and (b) of Theorem 3 may not be equivalent even for bijective maps.

EXAMPLE 3. Let n � 3, T : Mn(F) → Mn(F) be defined as

T (X) =

⎧⎪⎨⎪⎩
E12 +E23, if X = E12;

E12, if X = E12 +E23;

X , otherwise.

Then T is bijective and strongly monotone with respect to
�
< -order, but T is not mono-

tone with respect to
cn
� -order.

Proof. Since E12
cn
< E12 + E23 , and T (E12) = E12 +E23 �cn< E12 = T (E12 +E23) ,

we can conclude that T is not monotone with respect to
cn
� -order.

Let X
�
< Y . If T (X) = X and T (Y ) = Y then there is nothing to prove. On the

other hand, if T (X) �= X , then X is nilpotent, X �= 0, which contradict to X
�
< Y . So

T (Y ) �= Y , whence X = 0 and T (X)
�
< T (Y ) . �

Below we demonstrate that there are bijective strong preservers of
cn
� -order, which

are not continuous and are not of the form described in Theorem 3.

EXAMPLE 4. Let F = F be an algebraically closed field, n � 1. By M we denote
M = {A ∈ Mn(F) | kA(λ ,n) = 1 for some λ ∈ F\ {0}} . Suppose a map S : M → M is
bijective. We define the map T by the following rule:

T (X) =

{
S(X), if X ∈ M;

X , otherwise.

Then T is bijective and strongly monotone with respect to
�
< - and

cn
< -orders.
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Proof. Obviously, T is bijective. It is easy to see that rkA = n for all matrices

A ∈ M . Let A
cn
< B . Since rkA < n , A /∈ M , T (A) = A . Moreover, if B ∈ M then

A = 0 (in another case, the matrix B can be represented as a sum of two non-zero
orthogonal matrices, which contradicts to condition kB(λ ,n) = 1 for some λ ∈ F \
{0} ). Therefore, T (A) = 0

cn
< T (B) , and T is monotone with respect to

cn
< -order.

Similarly, T is monotone with respect to
�
<-order. Since T is invertible and an inverse

of T has the same form, T is strongly monotone with respect to
�
< - and

cn
< -orders. �

Now we are ready to provide an example of a continuous transformation which

preserve the
�
<-order. This transformation is not injective and is not of the form de-

scribed in Theorem 3, although it is not “wild”.

EXAMPLE 5. Let F = C or R , f (λ ) = λeλ : F → F . Then T (A) = f (A) is

monotone with respect to
�
< -order, continuous but not injective, where f (A) is defined

as a formal power series in A with the usual convention A0 = I .

Proof. It is routine to check that T is continuous.
Since f (0) = 0, then it is straightforward to see that T (A) is a 0-additive map.

Therefore, see [9, Lemma 4.1], T is monotone with respect to
�
� -order.

We are going to show now that T is also monotone with respect to
�
< -order, not

only
�
� -order. So, different comparable matrices can not be mapped to the same matrix.
In order to do this we firstly have to check that the kernel of T is zero. Indeed, it

is straightforward that f (λ ) = 0 if and only if λ = 0. Note that f ′(λ ) �= 0 in the point
λ = 0, here f ′ is a derivative of f . For any A �= 0 we have that either A has a non-
zero eigenvalue or A is nilpotent. If A has a non-zero eigenvalue λ , then consequently
the consideration of the Jourdan normal form of A implies that T (A) has a non-zero
eigenvalue f (λ ) . If A is nilpotent, then T (A) is similar to the matrix with f ′(0) �= 0
in the first superdiagonal (the diagonal above the main diagonal). Therefore, T (A) = 0
if and only if A = 0.

Now, suppose A
�
< B . Then A ⊥ (B−A) and (B−A) �= 0 by [9, Lemma 2.5.1].

Since T is 0-additive map, we have T (B) = T (A)+T (B−A) �= T (A) , and thus T (A)
�
<

T (B) .
T is not injective since f is not injective, indeed,

f (− ln2) = − ln2/2 = − ln4/4 = f (− ln4). �

The authors are grateful to the referee for the useful comments.
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