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MORE ON Lp –INTEGRABILITY

YI ZHAO AND SONGPING ZHOU

(Communicated by J. Pečarić)

Abstract. In this paper, we give a further generalization to Lp -integrability of trigonometric
series connecting with derivatives of the sum-functions.

1. Introduction

The mean value bounded variation concept generalized monotonicity and is con-
sidered as the ultimate condition ([8]).

A nonnegative sequence A = {an} is said to satisfy the mean value bounded vari-
ation condition if there is a λ � 2 and a positive constant M0 depending upon the
sequence A and λ only such that for all n we have

2n

∑
k=n

|Δak| :=
2n

∑
k=n

|ak −ak+1| � M0

n

λn

∑
k=n/λ

ak, (1)

where
λn
∑

k=n/λ
means ∑

n/λ�k�λn
, and we may assume that M0 > 1 without loss of gener-

ality.
We denote the set of nonnegative sequences satisfying (1) as MVBVS (Mean Value

Bounded Variation Sequences)
Let 1 � p < ∞ , denote Lp

2π to be the space of p -power integrable functions f (x)
of period 2π equipped with the norm

‖ f‖Lp =
(∫ π

−π
| f (x)|pdx

)1/p

,

write in short L2π = L1
2π . Consider the trigonometric series

S(x) ≡
∞

∑
n=1

an sinnx (2)

or

S(x) ≡
∞

∑
n=1

an cosnx, (3)

and its sum function is written by f (x) or g(x) respectively.
In Lp -integrability, the work [6] proved the following theorem:
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THEOREM 1.1. Let 1 < p < ∞ , 1/p−1 < γ < 1/p. Suppose that a nonnegative
sequence {an} satisfies (1) , consider the trigonometric series (2) or (3) , and its sum
function is denoted by f (x) . Moreover, {an} is the Fourier coefficients of f (x) ∈ L2π .
Then, x−γ f (x) ∈ Lp

2π if and only if

∞

∑
n=1

np+pγ−2ap
n < ∞.

The precedent references could be found in [1], [2], [5] and [3].
In this paper, we will generalize the above result (Theorem 1.1) by relaxing the

restriction of γ while connecting with derivatives of the sum-function.
We remark that, in the proof of the main result in this paper, applications of several

classical inequalities (Lemma 2.1–Lemma 2.3) are very useful.
We always assume that 1 < p < ∞ , 1/p+1/q = 1. For γ > 1/p−1, define

κγ = 2k, 2k−1+1/p < γ < 2k+1+1/p, k = 0,1,2, · · · .

Exactly, we prove that

THEOREM 1.2. Suppose that a nonnegative sequence {an} satisfies condition
(1) , and consider the trigonometric series (2) , and its sum function is denoted by f (x) .
Let 1 < p < ∞ . If 2k−1+1/p< γ < 2k+1+1/p, k = 0,1, · · · , then x−γ+κγ f (κγ )(x) ∈
Lp

2π and {nκγ an} is the Fourier coefficients of f (κγ )(x) if and only if

∞

∑
n=1

np+pγ−2ap
n < ∞. (4)

Throughout the paper, we always use M (M(p)) to stand for a positive constant
(depending upon p only) that may not be necessarily the same at each occurrence.
Sometimes, also use O(1) to indicate the upper bound.

2. Proof

We first mention several inequalities.

LEMMA 2.1. Let a nonnegative sequence {an} satisfy condition (1) , then

an � 2M0

n

λn

∑
k=n/λ

ak.

This is an already well-known inequality, one could refer to, for instance, [8] or
[7].
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LEMMA 2.2. If p � 1 and αn � 0 , then for any sequence {μn} of positive num-
bers, it holds that

∞

∑
n=1

μn

(
n

∑
k=1

αk

)p

� pp
∞

∑
n=1

μ1−p
n

(
∞

∑
k=n

μk

)p

α p
n , (5)

and
∞

∑
n=1

μn

(
∞

∑
k=n

αk

)p

� pp
∞

∑
n=1

μ1−p
n

(
n

∑
k=1

μk

)p

α p
n . (6)

These inequalities were due to Leindler and proved in [4, Theorem 1].

LEMMA 2.3. Let p > 1 , s < p−1 , and f (x) be a nonnegative function defined on
[0,∞) . Write F(x) =

∫ x
0 f (t)dt . If f p(x)xs is integrable on [0,∞) , then (x−1F(x))pxs

is integrable on [0,∞) , and

∫ ∞

0

(
F(x)

x

)p

xsdx �
(

p
p− s−1

)p ∫ ∞

0
f p(x)xsdx

holds.

It can be found in [9, page 20].
Then we establish some other inequalities or lemmas.

LEMMA 2.4. Let a nonnegative sequence {an} satisfy condition (1) , then, for
any natural number κ � 1 , {nκan} satisfies condition (1) .

Proof. Let {an} satisfy condition (1) , by writing An = nκan , we check that

|ΔAj| =
∣∣a jΔ jκ +( j +1)κΔa j

∣∣� M
(
a j j

κ−1 + jκ |Δa j|
)
,

so that, by (1),

2n

∑
j=n

|ΔAj| � M
n

(
2n

∑
j=n

jκa j +nκ
λn

∑
j=n/λ

a j

)
� M

n

λn

∑
j=n/λ

Aj. �

LEMMA 2.5. Let An = nκγ an . If {an} satisfies (1) and (4) , then

lim
n→∞

An = 0,
∞

∑
n=1

|ΔAn| < ∞. (7)

Proof. By condition (4), for the λ appearing in (1), we have

lim
n→∞

nλ

∑
k=n/λ

kp+pγ−2ap
k = 0. (8)
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Note for 2k−1+1/p< γ < 2k+1+1/p , k = 0,1,2, · · · that κγ = 2k , i.e.,

κγ −1+1/p < γ < κγ +1+1/p, (9)

therefore,
− ε0 := −1+1/p+ κγ − γ < 0. (10)

Applying Lemma 2.1, we deduce that

An = nκγ an � 2M0n
κγ−1

λn

∑
k=n/λ

ak � M
nλ

∑
k=n/λ

kκγ−1ak = M
nλ

∑
k=n/λ

k1+γ−2/pakk
−2+2/p+κγ−γ ,

hence by Holder’s inequlity and (10),

An � M

(
nλ

∑
k=n/λ

kp+pγ−2ap
k

)1/p( nλ

∑
k=n/λ

k−1−ε0q

)1/q

� M

(
nλ

∑
k=n/λ

kp+pγ−2ap
k

)1/p

,

thus with (8), lim
n→∞

An = 0. Similarly, by Lemma 2.4,

∞

∑
k=1

|ΔAk| =
∞

∑
j=0

2 j+1

∑
k=2 j

|ΔAk| �
∞

∑
j=0

M
2 j

2 jλ

∑
k=2 j/λ

Ak � M
∞

∑
j=0

2 jλ

∑
k=2 j/λ

kκγ−1ak

� M
∞

∑
k=1

kκγ−1ak � M

(
∞

∑
k=1

kp+pγ−2ap
k

)1/p( ∞

∑
k=1

k−1−ε0q

)1/q

< ∞,

this proves the second inequality in (7). �

LEMMA 2.6. Suppose that a nonnegative sequence {an} satisfies condition (1) ,
and consider the trigonometric series (2) , its sum function is denoted by f (x) . Let
1 < p < ∞ . If 2k−1+1/p < γ < 2k+1+1/p, k = 0,1, · · · , and condition (4) holds,
then x−γ+κγ f (κγ )(x) ∈ Lp

2π and {An} is the Fourier coefficients of f (κγ )(x) .

Proof. Considering the series

∞

∑
n=1

An sin(nx+ κγπ/2) =
∞

∑
n=1

(−1)kAn sinnx, k = 0,1, · · · . (11)

By Lemma 2.5 and the classical results (see, e.g., [9]), the series (11) converges to
its sum function h(x) in (0,π ] . Assume that x ∈ [ π

n+1 , π
n ) , by using the inequality

|sinx| � |x| and Abel’s transformation, we get

|h(x)| � π
n

n

∑
j=1

jA j +
n+1

π

∞

∑
j=n

|ΔAj|.
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Therefore, ∫ π

0
x(κγ−γ)p|h(x)|pdx � M

∞

∑
n=1

n(γ−κγ )p
∫ π/n

π/(n+1)
|h(x)|pdx

�M
∞

∑
n=1

n(γ−κγ )p−p−2

(
n

∑
j=1

jA j

)p

+M
∞

∑
n=1

n(γ−κγ )p+p−2

(
∞

∑
j=n

|ΔAj|
)p

=:I1 + I2.

By (5) and (4), we deduce that (2+ p− γ p+ κγp > 1 by (9))

I1 � Mpp
∞

∑
n=1

n((γ−κγ )p−p−2)(1−p)

(
∞

∑
j=n

j(γ−κγ )p−p−2

)p

(nAn)p

� M

(
p

1+ p− γ p+ κγp

)p ∞

∑
n=1

np+pγ−2ap
n < ∞.

At the same time, since {an} satisfies (1), by Lemma 2.4, {An} satisfies (1). Then, for
any sufficiently large n , there is a λ � 2 such that

∞

∑
j=n

|ΔAj| �
∞

∑
j=0

2 j+1n

∑
l=2 jn

|ΔAl| � M
∞

∑
j=0

1
2 jn

λ2 jn

∑
l=2 jn/λ

Al � M
∞

∑
l=n/λ

Al

l
.

It follows that

I2 � M
∞

∑
n=λ+1

n(γ−κγ )p+p−2

(
∞

∑
l=n/λ

Al

l

)p

� M(p)
∞

∑
n=1

n(γ−κγ)p+p−2

(
∞

∑
j=n

A j

j

)p

.

Now applying (6) and (4), we have (γ p−κγ p+ p−2 > −1 by (9))

I2 � M(p)
∞

∑
n=1

n((γ−κγ)p+p−2)(1−p)

(
n

∑
j=1

j(γ−κγ )p+p−2

)p(
An

n

)p

� M(p)
∞

∑
n=1

nγ p+p−2ap
n < ∞.

The estimates of I1 and I2 already show that x−γ+κγ h(x)∈ Lp
2π . By Hölder’s inequality,

it is easy to verify that h(x)∈ L2π . From condition (7) and that the series (11) converges
to its sum function h(x) in (0,π ] , we know that {An} is the Fourier coefficients of h(x) .
Also it is obvious that h(x) = f (κγ )(x) almost everywhere by termwise integration.
Lemma 2.6 is proved. �

Proof of Theorem 1.2. The sufficiency can be derived from Lemma 2.6. Write
h(x) = f (κγ )(x) , since x−γ+κγ f (κγ )(x) ∈ Lp

2π , we have h(x) ∈ L2π . Let An = nκγ an ,
then {An} is the Fourier coefficients of h(x) , hence

H(x) :=
∫ x

0
h(t)dt =

∞

∑
j=1

Aj

j
(1− cos jx) = 2

∞

∑
j=1

Aj

j
sin2 jx

2
,
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so that

H
( π

2n

)
= 2

∞

∑
j=1

Aj

j
sin2 jπ

4n
� M

2n

∑
j=n

A j

j
. (12)

By Lemma 2.1, we have

J :=
∞

∑
n=2λ

np+pγ−2ap
n �

∞

∑
n=2λ

np+pγ−2

(
nλ

∑
l=n/λ

al

l

)p

�M(p)
∞

∑
n=2

np+pγ−2

(
∞

∑
l=n

al

l

)p

� M(p)
∞

∑
j=1

2 j+1

∑
n=2 j

np+pγ−2

(
∞

∑
l= j

2l+1

∑
k=2l

ak

k

)p

�M(p)
∞

∑
j=1

2 j+1

∑
n=2 j

np+pγ−2

(
∞

∑
l= j

2l+1

∑
k=2l

ak

k

)p

� M(p)
∞

∑
j=1

2 j(p+pγ−1)

(
∞

∑
l= j

2l+1

∑
k=2l

ak

k

)p

.

Applying (6) and (12), we get

J � M(p)
∞

∑
j=1

2 j(p+pγ−1)(1−p)

(
j

∑
k=1

2k(p+pγ−1)

)p(2 j+1

∑
l=2 j

al

l

)p

� M(p)
∞

∑
j=1

2 j(p+pγ−κγ−1)

(
2 j+1

∑
l=2 j

Al

l

)p

� M(p)
∞

∑
j=1

2 j(p+pγ−pκγ−1)Hp
( π

2 j+1

)
. (13)

Let

Φ(x) =
∫ x

0
|h(t)|dt.

Since (−γ + κγ)p < p−1, it follows from (13) with Lemma 2.3 that

J � M(p)
∞

∑
j=1

Φp
( π

2 j+1

)
2 j ((γ−κγ )p+p−1) � M(p)

∞

∑
j=1

∫ π/2 j

π/2 j+1
x(−γ+κγ )p

(
Φ(x)

x

)p

dx

� M(p)
∫ π

0
x(−γ+κγ )p|h(x)|pdx,

that already completes the proof of Theorem 1.2. �

For γ > 1/p−1, define

κ∗
γ =

{
0, −1+1/p < γ < 1/p,

2k+1, 2k+1/p < γ < 2k+2+1/p,
k = 0,1,2, · · · .

Similarly, we have
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THEOREM 2.7. Suppose that a nonnegative sequence {an} satisfies condition
(1) , and consider the trigonometric series (3) , its sum function is denoted by g(x) .
Let 1 < p < ∞ . If −1+1/p < γ < 1/p or 2k+1/p < γ < 2k+2+1/p, k = 0,1, · · · ,
then x−γ+κ∗

γ g(κ∗
γ )(x) ∈ Lp

2π and {nκ∗
γ an} is the Fourier coefficients of g(κ∗

γ )(x) if and
only if

∞

∑
n=1

np+pγ−2ap
n < ∞.

3. Approximation

The next aim of this paper is to discuss the approximation rate. Let f (x) ∈ Lp
2π ,

1 < p < ∞ , and γ > 1/p−1. Define the weighted modulus of continuity in Lp norm
as follows:

ω( f ,h)Lp,γ := sup
|t|�h

∥∥x−γ ( f (x+ t)− f (x))
∥∥

Lp .

THEOREM 3.1. Suppose that a nonnegative sequence {an} satisfies condition (1)
and (4) , consider the trigonometric series (2) , and its sum function is denoted by f (x) .
Let 1 < p < ∞ . If 2k−1+1/p< γ < 2k+1+1/p, k = 0,1, · · · , then x−γ+κγ f (κγ )(x) ∈
Lp

2π , and

ω
(

f (κγ ),
1
n

)
Lp,γ−κγ

� Mn−1

(
n−1

∑
k=1

k2p+pγ−2ap
k

)1/p

+M

(
∞

∑
k=n

kp+pγ−2ap
k

)1/p

.

THEOREM 3.2. Suppose that a nonnegative sequence {an} satisfies condition (1)
and (4) , consider the trigonometric series (3) , and its sum function is denoted by g(x) .
Let 1 < p < ∞ . If −1+1/p < γ < 1/p or 2k+1/p < γ < 2k+2+1/p, k = 0,1, · · · ,
then x−γ+κ∗

γ g(κ∗
γ )(x) ∈ Lp

2π , and

ω
(

g(κ∗
γ ),

1
n

)
Lp,γ−κ∗

γ

� Mn−1

(
n−1

∑
k=1

k2p+pγ−2ap
k

)1/p

+M

(
∞

∑
k=n

kp+pγ−2ap
k

)1/p

.

The proof of Theorem 3.1 and Theorem 3.2 is quite similar to that in [6, Theo-
rem2], we omit it here.

RE F ER EN C ES

[1] R. A. ASKEY AND S. WAINGER, Integrability theorems for Fourier series, Duke Math. J., 33 (1966),
223–228.

[2] JR. P. R. BOAS, Integrability Theorems for Trigonometric Transforms, Springer, Berlin-Heidelberg,
1967.

[3] R. J. LE AND S. P. ZHOU, A remark on “two-sided” monotonicity condition: an application to Lp

convergence, Acta Math. Hungar. 113 (2006), 159–169.
[4] L. LEINDLER, Generalization of inequalities of Hardy and Littlewood, Acta Sci. Math. (Szeged) 31

(1970), 279–285.



166 Y. ZHAO AND S. ZHOU

[5] L. LEINDLER, Relations among Fourier series and sum-functions, Acta Math. Hungar. 104 (2004),
171–183.

[6] D. S. YU, P. ZHOU AND S. P. ZHOU, On Lp integrability and convergence of trigonometric series,
Studia Math. 182 (2007), 215–226.

[7] S. P. ZHOU, Monotonicity Condition of Trigonometric Series: Development and Application, Science
Press, Beijing, 2012, in Chinese.

[8] S. P. ZHOU, P. ZHOU AND D. S. YU, Ultimate generalization to monotonicity for uniform con-
vergence of trigonometric series, Science China Math. 53 (2010), 1853-1862/available: arXiv:
math.CA/0611805 v1 27 Nov 2006.

[9] A. ZYGMUND, Trigonometric Series, Cambridge University Press, Cambridge, 1977.

(Received May 27, 2014) Yi Zhao
School of Science, Hangzhou Dianzi University

Hangzhou 310018 China
e-mail: zhaoyi@hdu.edu.cn

Songping Zhou
Institute of Mathematics, Zhejiang Sci-Tech University

Hangzhou 310018 China
e-mail: songping.zhou@163.com

Journal of Mathematical Inequalities
www.ele-math.com
jmi@ele-math.com


