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MORE ON LP-INTEGRABILITY

Y1 ZHAO AND SONGPING ZHOU

(Communicated by J. Pecari¢)

Abstract. In this paper, we give a further generalization to L7 -integrability of trigonometric
series connecting with derivatives of the sum-functions.

1. Introduction

The mean value bounded variation concept generalized monotonicity and is con-
sidered as the ultimate condition ([8]).

A nonnegative sequence A = {a,} is said to satisfy the mean value bounded vari-
ation condition if there is a A > 2 and a positive constant M, depending upon the
sequence A and A only such that for all n we have

2n 2n M, An
Y A =Y Jar—a| < — Y, @, (1
k=n k=n Ly sy}
An )
where Y means Y ., and we may assume that My > 1 without loss of gener-
k=n/A n/A<k<An

ality.

We denote the set of nonnegative sequences satisfying (1) as MVBVS (Mean Value
Bounded Variation Sequences)

Let 1 < p < oo, denote Lgﬂ to be the space of p-power integrable functions f(x)
of period 27 equipped with the norm

1l = ( | If(X)”dX> "

write in short Ly, = Léﬂ. Consider the trigonometric series

=3

S(x) =Y apsinnx )
n=1
or B
Sx) = 2 a, cosnx, 3)
n=1

and its sum function is written by f(x) or g(x) respectively.
In L7 -integrability, the work [6] proved the following theorem:
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THEOREM 1.1. Let 1 <p <o, 1/p—1<y<1/p. Suppose that a nonnegative
sequence {a,} satisfies (1), consider the trigonometric series (2) or (3), and its sum
function is denoted by f(x). Moreover, {ay} is the Fourier coefficients of f(x) € Lag.
Then, x"7f(x) € Ly if and only if

N nP Y2k < oo,
n=1

The precedent references could be found in [1], [2], [5] and [3].

In this paper, we will generalize the above result (Theorem 1.1) by relaxing the
restriction of y while connecting with derivatives of the sum-function.

We remark that, in the proof of the main result in this paper, applications of several
classical inequalities (Lemma 2. 1-Lemma 2.3) are very useful.

We always assume that 1 < p <e, 1/p+1/g=1.For y>1/p— 1, define

Ky =2k 2k—1+1/p<y<2k+1+1/p, k=0,1,2,---.

Exactly, we prove that

THEOREM 1.2. Suppose that a nonnegative sequence {ay} satisfies condition
(1), and consider the trigonometric series (2), and its sum function is denoted by f(x).
Let | <p<oo If2k—14+1/p<y<2k+1+41/p, k=0,1,---, then x Y5 {5 (x) €
LY and {n*a,} is the Fourier coefficients of FU)(x) if and only if

N nPtPY gl < oo, (4)

n=1
Throughout the paper, we always use M (M(p)) to stand for a positive constant

(depending upon p only) that may not be necessarily the same at each occurrence.
Sometimes, also use O(1) to indicate the upper bound.

2. Proof

We first mention several inequalities.

LEMMA 2.1. Let a nonnegative sequence {a,} satisfy condition (1), then

2M0 An
a, < — ay.

k=n/A

This is an already well-known inequality, one could refer to, for instance, [8] or
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LEMMA 2.2. If p> 1 and oy, > 0, then for any sequence {l,} of positive num-
bers, it holds that

n=1 k=1 n=1

o0 n P oo oo P

Zm(Zw) <p’”2u$"’<2uk> o, (5)
k=n

and

- - [ - R P
S| Yow) <pP YT D] o (6)
n=1 k=n n=1 k=1

These inequalities were due to Leindler and proved in [4, Theorem 1].

LEMMA 2.3. Let p>1, s<p—1, and f(x) be a nonnegative function defined on

[0,00). Write F(x) = [ f(t)dt. If fP(x)x* is integrable on [0,c), then (x~'F(x))Px*
is integrable on [0,0), and

[ e ) o

It can be found in [9, page 20].
Then we establish some other inequalities or lemmas.

holds.

LEMMA 2.4. Let a nonnegative sequence {a,} satisfy condition (1), then, for
any natural number ¥ > 1, {n*a,} satisfies condition (1).

Proof. Let {a,} satisfy condition (1), by writing A,, = n*a,, we check that
|AA | = |ajAj + (+ 1) Aa| < M (a;j* ! +j*|Aa])
so that, by (1),
2n 2n An An
M M
Y A4 < — <2jKaj+nK Y a,-> <= Y A O
j=n m\j=n j=n/2 " jen/a

LEMMA 2.5. Let Ay = n*ay,. If {a,} satisfies (1) and (4), then

limA, =0, Y [A4,] <. (7)

n=1

Proof. By condition (4), for the A appearing in (1), we have

ni
lim kPTPY2ql = 0. (8)

n—oo

k=n/A
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Note for 2k—1+4+1/p<y<2k+1+1/p,k=0,1,2,--- that K, = 2k, i.e.,
Ky—1+1/p<y<xy+1+1/p, 9)

therefore,
—g=—1+1/p+1x,—y<O. (10)

Applying Lemma 2.1, we deduce that

An ni ni
Ap=n"a, <2Mon*r~! 2 ar <M 2 K lg,=M 2 KT P 2R Ry
k=n/A k=n/A k=n/A

hence by Holder’s inequlity and (10),
ni 1/p ni 1/q ni 1/p
A <M ( 2 k”+1’7’_2a£> ( 2 k—l—eoq> <M ( 2 kp+p7—2a£> ,
k=n/A k=n/A k=n/A

thus with (8), lim A, = 0. Similarly, by Lemma 2.4,
n—oo

oo o 2J+1 < 1 2 - 22
3 AA = Z\AAkISZE Y oMy Y Kl
k=1 J=0k=2/ J=0" k=2i/2 J=0k=2i /2

o oo p /o 1/q
<MY K la <M (Z kp+p7—2a£> (Z k‘1‘£0‘1> < oo,
k=1 k=1 k=1

this proves the second inequality in (7). [

LEMMA 2.6. Suppose that a nonnegative sequence {ay} satisfies condition (1),
and consider the trigonometric series (2), its sum function is denoted by f(x). Let
l<p<e. If2k—1+4+1/p<y<2k+1+1/p, k=0,1,---, and condition (4) holds,
then x~ V%1 f(59) (x) € LY and {A,} is the Fourier coefficients of F) (x).

Proof. Considering the series

=

Y Ausin(nx+kym/2) = Y (—1)* A sinnx, k=0,1,---. (11)

n=1 n=1

By Lemma 2.5 and the classical results (see, e.g., [9]), the series (11) converges to
its sum function A(x) in (0,7]. Assume that x € [;75,7), by using the inequality
|sinx| < |x| and Abel’s transformation, we get

T . n+1
) < 3+ 3 I
Jj= j=n
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Therefore,
T/n

x = /
/O x(KV_Y)p\h(x)\pdx <M Z n(Y—Ky)P/ |h(x)[Pdx

= m/(n+1)

oo n r p
<M Z n(Y—Ky)p—p=2 (2 jAj> M 2 n(Y=Ky)p+p=2 (2 IAA; )
n=1 j=1 n=1 j=n

=1+ 1.
By (5) and (4), we deduce that (2+ p —yp+kyp > 1 by (9))

. - P
L<mp’y n((r=x)p=p=2)(1-p) (Zj(Y—Ky)p—p—2> (nA,)P
n=1

J=n

P oo
)4 -2
M| — np+m/ al < .
h <1+P_YP+K)/P> ; "

At the same time, since {a,} satisfies (1), by Lemma 2.4, {A,} satisfies (1). Then, for
any sufficiently large n, there is a A > 2 such that

oo oo 2it1ly A2/in
PNLVVIESDY Z\AAI|<MZ > A1<MZ
j=n J=01=2/n M _2in s I= n/?L
It follows that
=) o A P 0 N A r
L<Mm Y n(Y=Ky)p+p=2 ( D _l> <M(p) Y, n\r—%)p+p=2 (2 _J> ]
n=A+1 I=n/A ! n=1 j=n J

Now applying (6) and (4), we have (yp — kyp+p—2> —1 by (9))

p AP
n((r=ry)p+p=2)(1-p) (Z] Y—Ky)p+p— 2) <_")
J=1 n

nP P 2gl < oo,

&
N
=
)
MX

3
Il
—

M s

<M(p)

3
Il
—

The estimates of I; and I, already show that x™¥**rh(x) € L} . By Holder’s inequality,
it is easy to verify that /(x) € Ly, . From condition (7) and that the series (11) converges
to its sum function % (x) in (0, 7], we know that {A,} is the Fourier coefficients of /(x).
Also it is obvious that i(x) = f7)(x) almost everywhere by termwise integration.
Lemma 2.6 is proved. [J

Proof of Theorem 1.2. The sufficiency can be derived from Lemma 2.6. Write
h(x) = f09)(x), since x Y% f(%) (x) € L5, we have h(x) € Loz. Let A, = n*ay,
then {A,} is the Fourier coefficients of /(x), hence

/h i%(l—cos;x 22 sm—
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so that
2n A

H(%):Zi% .~ >M2 (12)

By Lemma 2.1, we have

w - P
Ji= Y aPtrrigh <Y np+p7—2< % %)

n=27A n=214 l:n/l

l=n j 1p=27 =jk= 2l

8

i%‘ (i”i‘ ak)” ng e (iz’z“ “).

J=1n=2J Jk=2! Jk=2!

Applying (6) and (12), we get

o P /oj+l P
J<M(p) Y 2iprrr-1 (2 Pk(p+py= 1)) (2 ﬂ)
j=1 k=1 1=2J !
oo 2j+1 A
<M(p) 2 2Ji(p+py—1—1) (2 _l>
J=1 1=21 !
- .
< M(p) zlzf@*l’y PR P (F) . (13)
j:

Let

X) = /Ox\h(t)\dt.

Since (—y+Ky)p < p— 1, it follows from (13) with Lemma 2.3 that

- n/2 p
T<M(p) 3@ (7 ) 2/ mI D < wa(p 2 / (rrp (@D(x)) "
j=1

/2/+1
T
<M(p) [ AT P,

that already completes the proof of Theorem 1.2. [

For y>1/p—1, define

. 0, —-1+1/p<y<l1/p,
o
T\ 2k+1,2k+1/p<y<2k+2+1/p,

k=0,1,2,--.

Similarly, we have
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THEOREM 2.7. Suppose that a nonnegative sequence {ay} satisfies condition
(1), and consider the trigonometric series (3), its sum function is denoted by g(x).
Let 1 <p<oo If —1+1/p<y<l/por2k+1/p<y<2k+2+1/p, k=0,1,--,
then x V%7 g(%7) (x) € LY and {n*ra,} is the Fourier coefficients of g7 (x) if and
only if
N nP P2l < oo,

n=1

3. Approximation

The next aim of this paper is to discuss the approximation rate. Let f(x) € L%,

1 < p<eo,and y> 1/p— 1. Define the weighted modulus of continuity in L” norm
as follows:
o(f,h)ery = sup 7 (FOc+1) = F()]| -

[t|<h

THEOREM 3.1. Suppose that a nonnegative sequence {ay} satisfies condition (1)
and (4), consider the trigonometric series (2), and its sum function is denoted by f(x).
Let 1 <p<oo If2k—1+1/p<y<2k+1+1/p, k=0,1,---, then x Y% (¥ (x) €
Ly . and

1 n—1 1/p oo 1/p
® (f(’<7’)7 —) <Mn! ( k2p+p7—2a£> +M (ka+p7—2a£> :
LPy—Ky =1

n k= k=n

THEOREM 3.2. Suppose that a nonnegative sequence {ay} satisfies condition (1)
and (4), consider the trigonometric series (3), and its sum function is denoted by g(x).
Let l <p<oo If =1+ 1/p<y<1/por2k+1/p<y<2k+2+1/p, k=0,1,---,

then x 7751 g% (x) € Ly . and

| 1 1/p - 1/p
® (g(K;),—> <Mn™! (Z k2p+m’_2a£> +M (Z kpﬂ’y_zaf:) :
LPy—xy

n k=1 k=n

The proof of Theorem 3.1 and Theorem 3.2 is quite similar to that in [6, Theo-
rem2], we omit it here.
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