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GENERALIZED CEBYSEV AND KY
FAN IDENTITIES AND INEQUALITIES

ASIF R. KHAN, JOSIP PECARIC AND MARJAN PRALJAK

(Communicated by Ana Vukeli¢)

Abstract. We give generalization of CebySev and Ky Fan integral identities and inequalities for
functions of two variables by using higher order derivatives. Generalized discrete CebySev iden-
tity and inequality is also discussed.

1. Introduction

A. M. Ostrowski [1] gave the following generalization of CebySev inequality for
monotonic functions f and g such that f’ and g’ are continuous on [a,b] and p is a
positive integrable function on [a, b]

T(f7gvp):f/(é)gl(n)T(x_a’x_a’p)a (1)

where

1(G8p) = [ ol [ p0r g [ ptorias [ pogas @

For other generalizations of this result [2] can be seen. In [3] J. Pecari¢ gave further
generalizations of this by using the following functional

= [ senseaaac [ [ penrenma @

where p and f are integrable functions on I? = [a,b] x [a,b].

PROPOSITION 1. Let p: I> — R be an integrable function such that
X(x,x) =X (x,x) Vx€ [a,b]
and either
X(x,y) >0, a<y<x<b;, X(xy)=0, a<x<y<b
Mathematics subject classification (2010): 26A51, 26D15, 26D99.

Keywords and phrases: CebySev identities, Ky Fan identities, convex functions.

The research of the second and the third authors were fully supported by Croatian Science Foundation under the
project 5435.

© depay, Zagreb 185

Paper JMI-10-16


http://dx.doi.org/10.7153/jmi-10-16

186 A.R. KHAN, J. PECARIC AND M. PRALJAK

or its reverse inequalities are valid. Where

X(x,y) = /xb/uyp(s,t)dtds

X(x,y) = /ax /yhp(S,t)dtds.

and

If f: I> = R has continuous partial derivatives fao) = %f(x,y),
fon = a%f( y), and f ) aiayf()c,y). Then there exist &, 1 € [a,b] such that

C(f7p>:f(l,l)(€7n)c(('x—a)(y_a)7p)' €))

In [5] Ky Fan considered the inequality

// w(x,y)f )dxdy<B/f

for non-negative and non-increasing functions f and g and some real constant B such
that ff w(x,y)dx < B for a <y <b and also [ w(x,y)dy < B for a < x < b where

w: [a,b] X [a,b] — R is an integrable function. For some generalization of this result J.

Pecari¢ [3] considered the following expression

K(f,p,q) = /a bcI(X)f(X»X)dx— /a ' /H bp(x7y)f(x,y)dxdy (5)

where f, p, and g are integrable functions and by using this he gave the following
result.

PROPOSITION 2. Let p: 1> — R and q: 1 — R be integrable functions such that
P(aay) = Q(y)7 P(x7a) = Q(x)v P(x7y) < Q(max{xay})v Vx,y € [avb]

where Q(x) = [P q(t)dt, P(x,y) = [” fybp(s,t)dtds.

If f : I> — R has the continuous partial derivatives Jfa.0)s fo,1), and f1.1) on I?. Then
K(fvpvq):f(l,l)(évn)K((x_a)(y_a)7p7q) for 5777 € [a7b}' (6)

Let p:I> — R and ¢g:I — R be two integrable functions. Then we define the following
notations for simplification of statements of the theorems:

i b b — ) (s —v)/
P (x,y) = / / p(sJ)%%drds, (7)

” (x,y) //pst x)' (- )dtds (8)

]l
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iy [P (5=x) (s—a)
00 (x) = / o) s ©)

b b s—x)N (s—y)M
R(x,y) :/mux{xy}/ p(s,t)( !) ( M}')) dtds —

/ / N' G ;;:)Mdtds (10)

s—x)V (s—y)M
Ry = [ axmq(s)—( I g

et e

(x_a)N+l(y _a)MJrl
(NF1)!(M~+1)!

At this point we are needed a useful definition from [6] and for that we are needed
some notations as follows: let D = [a,b] x [c,d] denote a rectangle in R? and S(D)
denote the system of all rectangles [x1,x2] X [y1,y2] contained in D. Having a function
u:D— R, weput Fy([x1,x2] X [y1,y2]) = u(x1,y1) = ulxz,y1) — ulxi,y2) + u(xz,y2)
for [x1,x2] X [y1,¥2] € S(D). The function of rectangles F, : S(D) — R just defined is
said to be a function of rectangles associated with u.

G()()C,y) =

12)

DEFINITION 1. We say that a function u : D — R is absolutely continuous on D
in the sense of Carathéodory if the following two conditions hold:

(a) the function of rectangles F, associated with u is absolutely continuous, i. e.
for every € > 0, there exists 6 > 0 such that if P;,...,P, € S(D) are mutually
non-overlapping rectangles with the property Y* | |P| < &, where |- | denotes
the area of a rectangle, then Zf-; 1 F,(P)<e

(b) the functions u(a,-) : [a,b] — R and u(-,¢) : [c;d] — R are absolutely continuous.

If u: D — R is absolutely continuous in the sense of Carathéodory, then for every
(x,y) € D it admits the integral representation

x y Xy
u(x,y):u(a,c)+/ u(lﬁo)(s,c)ds—k/ u(oﬁl)(a,t)dt—k/ / uiy(s,t)deds, (13)

where the partial derivatives in (13) exist almost everywhere (for details see [6]).
Let f,p:I> — R and ¢: I — R be three functions such that p,q are integrable and
fv,m) exists and is absolutely continuous in the sense of Carathéodory. Then C(f,p)

and K(f,p,q), given below are well defined:

C(f,p) Z Zfl./ a,a [ )(a a)— P(i’j)(a,a)}

i=0j=0

5 / fivirp ) [P () =PV (x.a) | di



188 A.R. KHAN, J. PECARIC AND M. PRALJAK

N b p _
=3 [ fomen@n) [P @y - P @y, aa
i=0"4

where C(f,p) is defined in (3).

K(f,p.9) = K(f.p.a) - zzf,, (a,a) [0 (@) = P (a,0)|

j=0i=0

_ Z/ f(N+1,j)(X,a) [Q(N,j)(x) —P(NJ)(x,a)} dx
j=0/a

N b . .
=2 [ famen (@) [Q¥0) P )] (15)
—0’a

where K(f,p,q) is defined in (5).

For discrete identity and inequality we are needed some notions and notations
which may be stated as (see [7]): Let I,J be two real intervals of R and f be a real-
valued function defined on /. The n-th order divided difference of f at distinct points
XiyXit1,---,Xirn in I is defined recursively by:

xjsf]=f(xj), i<j<i+n

Xit 1y Xigns 1= [Xis oo Xign—13 f]
Xitn — Xi

[xia"' 7xi+n;f] =

We denote [xi,...,Xitn; f] by A(n)f(x,-).

We say that f: I — R is a convex function of order n (or n-convex function) if for
all choices of (n+1) distinct points x;,...,X;, inequality A, f(x;) >0 holds. Itis
well-known that if £ exists, then f is n-convex if and only if f () > 0.

Let f be a real-valued function defined on I x J. Then the (n,m) order divided
difference of the function f at distinct points X;,...,Xj4n, €1, ¥j,...,¥j+m € J is defined
by

A f (X253 7) = iy ooy Xigns [V oo Vs 1]

A function f: I xJ — R is said to be convex of order (n,m) or (n,m)-convex if

inequality
Ay f (xi,7) =0
holds for all distinct points x;,...,Xj1n €1, ¥j,...,¥j+m € J. Itis known that if the partial

+m
derivative 5 8{, exists, then f is (n,m)-convex iff = a{" >0.

We also define (n,m) order finite difference of the function f forxel, yeJ,
h,k € R, as follows

A F(x,y) = MM () = AT (AL F(x,3)
3 S 1y () (’j)f<x+ iy + i),

i=0j=0 !
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provided x+ih el fori=0,1,....,n and y+ jk e J for j=0,1,....m
Divided and finite order differences of a sequence a;; are defined as A, ,,)aij =

A f(xi,y;) and Alm) g, = AE ] )f(x,-,yj), respectively, where x; =i, y; = j and
FAL o} x {L...,nz} — R is the function f(i,j) = a;;.

Now we are ready to state discrete Cebygev identity and inequality as follows (see
[3]). Let

22171]“11 22171]“1/’ (16)

i=1j= i=1j=

where g;; and p;; (1 <i,j<N) are real numbers.

PROPOSITION 3. The inequality
Cala,p) 20 17)

holds for all real numbers a;ji,j=1,...,n such that A\yAy a;; > 0i,j=1,...,N—1
if and only if
Xjrj=Xjj1 (j=1...,N=1)

and
Xij=20, j+1<i<n I1<j<N-1

Xij>0, 1<i<j—1,2<j<N

holds. If Ay Axa;j <0(i,j=1,...,n—1), then the reverse inequality in (17) is valid,
where X;; = erv=i2£:1 Drs and Y,-j =Y Zﬁvzj Drs-
This paper consist of four main sections. In the second and the third sections

generalization of Cebygev and Ky Fan identities and inequalities are given respectively.
Last section is devoted to generalized discrete CebySev identity and inequality.

2. Generalized éebyéev Identity and Inequality
To prove the main theorem we use the following lemma (see [4]).

LEMMA 1. Let p,f : I> — R be two functions such that p is integrable and
Svr1amy and fiy ary1) exist and are absolutely continuous. Then we have

b b
/ / p(x,y)f(x,y)dydx
= Z Zfl./ a,a)P (a a)
i=0j=0

+ 2/ f(NH?J»)(x,a)P(N’j)(x,a)dx
j=0"4
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N b ,
£ 2 [ S (@npay)dy
i=0"4
b b NM
+ [ v )P ) dva,

where P(J) is defined in (8).

THEOREM 1. Let p,f : 1> — R be two functions such that p is integrable and
Svr1my and fiy ary1) exist and are absolutely continuous. Then we have

C(f,p) —/Q/pxyf(xxdydx //pxyf(xy)dydx
N
Z

||M§

[P(i’j) (a,a) — plij) (a,a)]
=+ 2/ f(NJrl,j)(x7a) [F(NJ) (x7a) _P(N7j)(xaa):| dx

j=0"4

&P B(i.M) (i.M)
# 2 [ famen (@) [P (@) - P )] ay

i=07/a

b b

+/ / SN+ 1. m41) (6Y)R(x,y)dydx, (18)

where P, PU) | and R(x,y) are defined in (7), (8), and (10) respectively.

Proof. To prove this identity first we find expression for || f i) f p(x,y)f(x,x)dydx
as follows. First we expand f(x,x) in Taylor expansion of two variables and multiply
it with p(x,y) and integrate it over [a,b] X [a,b] by variables x and y to get

b b
[ ey pendyax

- :b ,fo (%f@-,,-)(a,a)("j—!‘”i) /abp(x,y)(x%!“ydy] i

v [ ﬁ(}( [ oS as) [ pen! dy] i
L
LU (i )
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In the first summand we change the order of summation, use linearity of integral
and get
(x—a)’ (x—a)’

i!

dydx.

S3 [ [ penfiosaa)

i=0j=0

By using Fubini’s theorem, the second summand is rewritten as:

/Q[ O(/fzvﬂdsa )/pxy dy]d
80 o)
= Ji)/ab/ax/abp(x,}’)f(Nﬂh,')(s,a) (x;,s)N (x;!a>jdydsdx

= 0/ / / Py fv1,5) (s, a)(xN,S)N (xJ )dydxds

Similarly, the third summand is rewritten as:

X N Y—a i . M
/b [/h/ p(x,y) <Zf(i,M+l)(a,[)( g ) ) ( Ml') dtdy] I
a a Ja =0 ! 1

N b rb prx PRV ¢ M
= 2/ / / P(x,y)f(i,MH)(a,t)(x i'a) (XM') dtdydx
i—0/a Ja Ja | |

N b b b i M
:2/ / / p(x7y)f(i.,M+1)(a»l)(xi7,a)%dydxdz.
i=0’/a Ja Jt ! !

Finally, the fourth summand is rewritten as:

/b [/h/x (/xp(x,)’)f(NH,MH)(s,t)(x;!S)Nds> (x;/lt!)Mdtdy} I
—/ / / / POy fivsrmin (s, t)( N') G Mt>Mdsdtdydx
_/ / /max{”}/ POGY) five1,m41) (S5 ’)( N'> (x ;/It!)Mdydxdtds,

we add up all these results to get

/b/hl’(xJ)f(X,x)dydx

x—a) (x—a)l
//ny (i.)) )( ,)( .')dydx
10]0 1 J:
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S Pt X—SN x—aj
= Z/ / / p(x,y)f<N+17j>(s7a)( N,) ( S ) dydxds
j=0Ja Js Ja ! I

N b rb b (e M
= 2/ / / P(X,y)f(i,MH)(a,f) k i'a) (xMt') dydxdt
i—ova Ja Jt ! !

b rb b b (x—S)N(x—t)M
- / / /m . / PO fi ey (5:0) S S dyddrds.

When we change the names of variables on the right hand side x <> s, y <> ¢ then

we get:
/h /bP(X’Y)f(x,x)dydx
720,20//”“ il S0
///pst (1) ( xa)( N')N(s;!a)jdtdsdx
+lz(')///p“ (1) ( Y)(S_a)l%dtdsdy

(=" (5=
L s e S I drasayas

By using defined notations we finally get

)+
dtds

b b

/ / plx.y)f (x.)dydx

= 2 Eflj a,a)P (a a)
i=0j=0

+Z/ f(N+1,j)(x»a)F(N7j) (x,a)dx
j=0"¢4

Norb —(i.M)
£ [ fimen (@) P ™ a,y)dy
i=0"4

b b b b (S—X)N (S—y)M
+/a /a f(NH’MH)(x’y)/max{x,y}/a p(s;t) N1 i dtdsdydx,

where P/ is defined in (8). Using the above expression for ff ffp(x,y)f(x,x)dydx
and Lemma 1 in

p= [ [ pensenavar— [ [ ptesteravas

we get our required identity.
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REMARK 1. If in Theorem 1, we put f(x,y) = f(x)g(y) and p(x,y) = p(x)p(y),
then we may state the following corollary.

COROLLARY 1. Let p,f,g : 1 — R be three functions such that p is integrable
and ™) and g™) exist and are absolutely continuous. Then we have

T(f,&p)=T(FPn(f),Pu(g), )+T(RN(f)»PM(g)J’)"'T(PN(f)»RM(g)»p)

+/p dx/ / /max{xy} Igv(s_X)Ng(MH)([):;!(S_y)MP(S)dsdydx

- [ Enp@a [ Rate)optas (19

where B(h)(x) =Yk, w Ri(h)(x) = [ Mi),()Nds, keN, and h isa

function and T(f.g,p) is defined in (2).

REMARK 2. We can get (19) directly by using Taylor formula for functions f and

COROLLARY 2. Let p,f: 1> — R be two functions such that p is integrable and
Svr1amy and fyp+1) exist and are absolutely continuous. Then for % + % =1;s51>
1; we have

1T(f.p) I< (//lfNHMH (xy|dydx) (//nyvclydx) 20)

where C(f,p) and R(x,y) are defined in (14) and (10) respectively.

Proof. We can get (20) easily by using Holder’s inequality for integrals in Theo-
rem 1.

THEOREM 2. Let p,f: 1> — R be two functions such that p is integrable and f
is (N+1,M+ 1)-convex. Then

C(f,p) =0 if R(x,y)>0 Vx,y€la,b]

where C(f,p) and R(x,y) are defined in (14) and (10) respectively.

Proof. If f is (N + 1,M + 1)-convex function it may be approximated uniformly
on I? by polynomials having non-negative partial derivatives of order (N + 1,M +1).
Indeed, Bernstein polynomials

B(x,y) = zoio (1) ()@t hat o=y —api oy
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where h = (b—a)/n and k = (b — a)/m, converge uniformly to f on I* as n —
oo, m — oo provided that f is continuous. Furthermore, the following formula can be
proven by induction

B?Nﬁl,MH)(xJ) =

o)) R T )-

x (AﬁH’MH) fla+iha+ jk)) (x—a)(b—x)"" N1 (y—a)l (b —yy" M=),

Since f is (N +1,M +1)-convex, A £ > 0 for bk >0, 50 B 1) 0.

Since R(x,y) is continuous and B(NJrl M) = >0 on I? so by (14) we obtain

nm ( _t)
C(B™ B ———dtd
/ / (N+1,M+1) x y |:/r;wx{x t}/ p M! T

//pst N' (t;;:) dtds]dydx

or we can write

C(B™™,p / / Bn]\’;:-lMH X,y)R(x,y)dydx. (21)
Now by letting n,m — oo through an appropriate sequence, the uniform convergence of
B’ZA'IZI w1y 1O fveimen) gives our desired result.

THEOREM 3. Let p,f : I> — R be two functions such that p is integrable and
Svr1my and fiy arv1) exist and are absolutely continuous. If

R(x,y) =0
holds ¥ x,y € a,b], then there exist &, 1 € [a,b] such that
C(f.p) = fvsrmi1)(&,m)C(Go,p), (22)
where C(f,p), R(x,y), and Gy are defined in (14), (10), and (12) respectively.

Proof. Method 1:
We have

b b
P):/u /u SN+ 1. m41) (6Y)R(x, y)dy dx, (23)

using the Mean Value Theorem for double integrals we get

C(f,p) = fin+1m41) én//nydydx
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If we put f(x,y) = Go(x,y) in above expression then we get

C(Gy,p) =C(Go,p) //ny dydx,

and hence we get what we wanted.

Proof. Method 2:

Let L= min fN+1 M+1)(x,y), U= max fN+1 M+1)(x,y). Then the function
(xy)er (xy)el

G(x,y) =UGo(x,y) — f(x,y)
gives us
Ginvgrms1)(%,Y) =U = fing1.m41)(%,y) 20,

thatis G is (N + 1,M + 1)-convex function. Hence C(G, p) > 0 by Theorem 2 and we
conclude that

(f’ ) (G07 )7
similarly
LC(Go,p) < C(f.p).

Combining the two inequalities we get

LC(Go,p) < C(f,p) <UC(Go,p)
by using Mean Value Theorem we easily get (22).

REMARK 3. For N =M = 0 Theorem 3 is equivalent to Proposition 1. Also if
we choose f(x,y) = f(x)g(y) and p(x,y) = p(x)p(y) in Theorem 3 with N =M =0,
then we get (1).

THEOREM 4. Let p : I> — R be an integrable function and f,g : I*> — R be two
Junctions such that fiyy1y), fivms1) exist and are absolutely continuous and g €

CWNFIMED(12) with g(y1 ps1) # 0 on I If
R(x,y) =20, Vx,y€ la,b]
holds then there exist &, 1 € [a,b] such that

Joverm1)(E,m)

E ) )
8(N+1,M+1) (&.m) (&.p)

(f7 )_

where C(f,p) and R(x,y) are defined in (14) and (10) respectively.

Proof. Method 1:
Using (23) and Integral Mean Value Theorem we have

be 1,M+1) xy)
p = [ [ R ey ROy
8(N+1,M+1) xy)
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f<N+1M+1)((§,n)/”/b
. X, y)R(x,y)dydx
gv+1m+1) (&) Ja Ja 8w+ (5Y)R(x Yy
_ Joveimen(E,1m) Cle.p)

g(N+1,M+1)(§777)

Proof. Method 2:
Let h € CINFIM+1)(12) be defined as

h=C(g,p)f —C(f.p)g

using Theorem 3 there exist £, 11 € I such that

0=C(h,p) = hin+1.m+1)(&,M)C(Go, p),

or
[C(¢, P) fivi1m1)(E:M) = C(f, D)8+ 1.m+1)(E,M)]C(Go, p) = 0

which gives us the required result.
REMARK 4. For N =M = 0 Theorem 4 becomes Theorem 2 of [3].

THEOREM 5. Let p, f : I*> — R be two functions such that p is integrable and f
is (N+1,M+ 1)-convex. Then there exist &, 1 € [a,b] such that

C(f,p) =R(&,M) (fiv.m) (b,b) = fivany(a,b) = fiwmy (b,@) + fin .y (@,a))

where C(f,p) and R(x,y) are defined in (3) and (10).

Proof. Since R(x,y) is continuous and B(NJrl M1y =0on I?, where B"" is Bern-
stien polynomial, by same arguments used in the proof of Theorem 3 we obtain

b
B, p)= [ [ REIB pyoy) (r0) dydx
bob
= R on) [ [ By (e) dyd
—R(én,;mnn,m) ( (N, )(b b) (NM)(a b) ( ,M)(b7a) (NM)(a a)>
The points X, = (Eum, Tnm) have a limit point (§,n) in I? as n — oo, m — oo, s0

letting n,m — oo through an appropriate sequence, the uniform convergence of B'(“]’\TM)
to f(y ) gives our desired result.

REMARK 5. In Theorem 5 for the case N = M = 0 we obtain Theorem 6 of [3].
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3. Generalized Ky Fan Identity and Inequality

THEOREM 6. Let f,p:I> — R and q:1 — R be three functions such that p and
q are integrable and fiy 1) and fyy1) exist and are absolutely continuous. Then
we have

K(f.p.q) = zzf,, (a,a) [0 (@)~ P (a,0)|

Jj=0i=
/ five,j)(x,a) [Q(N’f)(x)—P(N’f)(x a)] dx
N b _
+ _2 [ Fimn (@) [90) P ay)] dy

+/ / fovermny (6 Y)R(x,y) dydzx,
where P()) QU1 and R(x,y) are defined in (8), (9), and (11) respectively.

REMARK 6. The proof of this theorem is analogous to proof of Theorem 1 if we
use the following substitution

b
| ey = (o).

REMARK 7. If in Theorem 6, we put f(x,y) = f(x)g(y) and p(x,y) = /(X)(qgfz)t

where ¢ is an integrable function such that | : q(t)dt # 0, then we may state the fol-
lowing Corollary.

COROLLARY 3. Let q,f,g:1— R be three functions such that q is an integrable
function such that ff q(t)dt #0 and ) and g™ exist and are absolutely continu-
ous. Then we have

T(f.g.q) = T(Pv(f),Pu(g),q) +T(Rn(f),Pu(g).q)+T(Pn(f),Ru(g),q)
N+1 s— )N oM+1) () (5 — )M
N / / /m " () (s —x)" g™ () (s —y) o(s)dsdydx

N! M!

[ R [ Rule)wato ax

where P(h)(x) = 3%, h(l)ai), Ri(h)(x ):faxwm, keN, and hisa
function and T(f,g,p) is deﬁned in (2).

COROLLARY 4. Let f,p:I> =R and q:I — R be three functions such that p
and q are integrable and f(y1m) and fivyy1) exist and are absolutely continuous.
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Then for %—I—tl =1, s,t > 1; we have
1
t

. b b § b b _
ctr) < ([ [ Vwerentorasar)” ([ [ Rerasar)

where C(f,p) and R(x,y) are defined in (14) and (11) respectively.

THEOREM 7. Let f,p:I*> =R and q:1— R be three functions such that p and
q are integrable and f(n11p) and fiy 1) exist and are absolutely continuous. Then

K(f.p,q) 20 if R(x,y)>0, Vx,y€a,b],

where K(f,p,q) and R(x,y) are defined in (15) and (11) respectively.
REMARK 8. The proof of this theorem is analogous to proof of Theorem 2.

THEOREM 8. Let f,p : 1> = R and q : I — R be three functions such that p
and q are integrable and f is (N+ 1,M)— convex function . We also assume that
Vx,y € [a,b]

R(x,y) > 0.

Then there exist &, M € [a,b] such that

K(f,p.q) = f(N+1,M+1)(§777)K(G07P761),

where K(f,p,q) and Gy are defined in (15) and (12) respectively.

REMARK 9. The proof of this theorem may also be given in two different ways
analogous to the proof of Theorem 3 and this theorem gives us Proposition 2 for N =
M=0.

THEOREM 9. Let f,g,p: 1> — R and q: I — R be four functions such that p
and q are integrable and f(yy1), f(vmy1) exist and are absolutely continuous and

g € CINFLMED) (12) ypigh g(+1m+1) # 0 on I, we also assume that Vx, y € [a,b]

R(x,y) = 0.
Then there exist &, M € [a,b] such that

fovermrn(8,m)

K(g,p,q)-
g(N+1,M+1)((§,77) ( )

K(f,p,q) =

REMARK 10. The proof of Theorem 9 may also be given in two different ways
analogous to the proof of Theorem 4. Also for N = M = 0 we get Theorem 16 of [3].
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4. Generalized Discrete Ceby§ev’s Identity and Inequality

Now we state discrete Cebyé.ev identity’s and inequality as follows: We will make
use of the following notation

(x,- —xk)(lH) = (xi —xk)(xi —xk+1) s (xi —xk+l) fOI'l 0 and ( —xk)(o) =1.

To state our main identity of this section we are needed the following lemma from [4].

LEMMA 2. Let (x;,y;) € I* = [a,b] x [a,b] (i,j = 1,...,N), be mutually distinct
elements and let f be a real-valued function on I*. Let pij (i,j=1,...,N), be real
numbers. Then the following identity holds:

1:1]:1
m—ln—1 N N .
=323 > Y pulr—x) 0 —y) WA fx131)
k=0 t=0 s=t+1r=k+1
m—1 N N N
+ z z z P.vr(x.v _xt—n+1)(n71)(yr —y1)(k)A(n’k)f(x,,n,yl)(x, —x,,n)
k=0 1=+ 15—t refet-1
N n-1 N N .
+ Z Z 2 psr(xs _xl)(t) (yr _yk—1n+1)(’n_ )A(t,rn)f(x17yk—m)(yk _yk—m)
k=m-+1t=0 s=t+1r=k

N N N
£ 2% (X bl aae)" e me) ")

k=m+1t=n+1 s=tr=
X A(n,m)f(xtfnaykfm)(xt _xtfn)(yk —}’k—m),

where Ay i) f (x,y) represents divided difference of function f of two variables.

THEOREM 10. Let (x;,y;) € I* = [a,b] x [a,b] (i,j = 1,...,N), be mutually dis-
tinct elements and let f be a real-valued function on I*. Let pij (i,j=1,...,N), be
real numbers. Then the following identity

N N
ZEPUJC (xi,yi) Zzpijf(xi»yj) (24)

i=1j= i=1j=1

M [

X1,y1)

2

t=0
N N
X 3 Z x—x1) 0 (ys —y)®
s=max{t k}+1 r=1
u k
- 2 psr s_xl )(yr_yl)()
s=t+1r=k+1
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m—1 N

+ z 2 Ank (X —n> ¥1) (X = Xp—n) X

k=0 t=n+1

N N
X 2 Epsr(xs_xt—n+l)(n71)(ys_yl)(k)

\':mux{t k+1}r=1

N
_2 2 Pr (g xt—n+l)(n1)(yr_y1)(k)‘|
s=t r=k+1
N
+ Z ZAtm xlayk—m)(yk_yk—m)x
k=m+1t=
N
X Z Zpsr(xs_xl)(t)(ys_ykferl)(m_l)
\':mux{tJrl k}r=1

s=t+1r=k

N N
+ Z Z A(n,m)f(xl*n:ykfm)(xf _xl*n)(yk _ykfm) X
k=m-+1t=n+1

N N
< | X Y parlrs = x )" 0y = e )Y

s=max{t,k} r=1

N N

B 2 2 Pir(xs _xt—n+1)("7l)(>’r _Ykm+1)(ml)] )

s=t r=k

holds, where A i) f (x,y) represents divided difference of function f of two variables.

Proof. We start the proof by considering the expression

Pijf (xi,yi)

=
Ve

Il
—_

~

Il
—

where p;; is defined as

b= [ P 1=,
770, i# .

So using this definition and Lemma 2, we get

=
=

N N
ZZ uf Xi, i) Zzpzjf Xi, Vi)

:1]: l=lj=1
N

Z fx1,y1) Z Zpsr s_xl y _yl)(k)

s=max{t+1,k+1} r=1

m

Il
I M
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N N
+ 2 2 Ank xt nyyl)( xtfn) 2 Zp.\'r(x.\'_xt—n+1)(n71)(y.v_yl)(k)

=0r=n+1 s=max{t k+1} r=1
+ Z ZAtm xlayk*m)(yk_ykfm)x
k=m+1t=

X Z Zpsr s_xl y _ykferl)(m_l)

s=max{t+1,k}r=1

N N
+ Z Z A(n,m)f(xt—myk—m)(xt _xt—n)(yk _yk—m)><

k=m+1t=n+1

N N
X Z Zp"(x‘_xf—n+1)(n_l)(y_\~—ykfmﬂ)(’"_l).

s=max{t k} r=1

So, we easily get our required result by putting the expressions of 2?’: | 21}’:1 Dij X
x f(xi,yi) and T 0 piif (xi,y) in Calf,p) = Xy 200 pijf (xi, i)
- Z{\]zl 2]:1 pljf(xhyj)'

REMARK 11. If weput x; =i, y; = j and f(x;,y;) = f(i, ) = a;; in Theorem 10
then we get following corollary.

COROLLARY 5. Let pjj,a;j (i,j=1,...,N), be real numbers. Then the following
identity holds:

Z Epua” 2 Epual,

i=1j= i=1j=1

="§'§A<f*>au s a0

k=0 t=0 s=max{t,k}+1r=1

—éM%mCTXiﬁl

+2 ZA” )

=0 t=n+1

vm%mzwfti Y)-E ()

+ Z ZAtmalk m)

k=m+1t=

N s—1 k+m s—1\ /r—k+m—1
s=maxz{t‘+l,k}r=2‘1p”< ! )( m— ) S;H’Zpsr< 14 )( m—1 >‘|
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NN N N s—t+n—1\[(s—k+m—1
+ Z Z A(")a(z,‘—n)(,’c—m)|‘ Z Zp"( n—1 )( m—1 )

k=m+1t=n+1 s=max{tk} r=1
NN s—t+n—1\[(r—k+m—1

- 22[’.\7 9
== n—1 m—1

where A% g; j represents finite difference of order (t,k) of the sequence a;;.

REMARK 12. If we put n =m = 1, this Corollary gives us Theorem 3 of [1].

Before we state our next theorem, under the assumptions of Theorem 10 we define
some notations as follows:

m—1n—1

Calfp) =Cafip) = X, X, A f (x1,1) % (25)

k=0 t=0

N N
X [ 2 Zpsr(xs_xl)(t)(ys_yl)(k)

s=max{t+1,k+1}r=1

- 2 2 psr s_xl)(t)(yr_yl)(k)]

s=t+1r=k+1

m—1

- z 2 Ank xt n,y1)(xt—x,,n)><

k=0 t=n+1

N N
X Z Zpsr(xs_xtfnJrl)(n_l)(ys_yl)(k)

s=max{t k+1} r=1

N N
_Z Z psr(xs_xtn+1)(n_l)(yr_yl)(k)‘|

sS=t r=k+1
N n—1

2 z A(t,m)f(xl 7yk7m)(yk - kam) X

k=m+11=0

N N
x [ 2 Zpsr s_xl y _Yk7m+1)(m71)

s=max{t+1,k}r=1

N N

s=t+1r=k

N N
RA(t,k) = [ 2 Ep.\'r(x.\'_xt—n+1)(n71)(y.v_yk7m+l)(m71)

s=max{t k} r=1

N N

=3 bl — X)) " V(s —ykmm('“”] : (26)

s=t r=k
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THEOREM 11. Let x;,y; (i,j =1,...,N) be two real sequences that are either
both strictly increasing or both strictly decreasing and let f be (n,m)-convex function
and pi;j (i,j=1,...,N) be real numbers. Then

Ca(f,p) =0 if Ra(t,k)>0 t=n+1,....Nyk=m+1,...,N.
where Ca(f,p) and Ra(t,k) are defined respectively in (25) and (26).
REMARK 13. This result is easily followed by using identity (24).

REMARK 14. If we put x; =i, y; = j and f(x;,y;) = f(i,j) = a;j in previous
theorem for n = m = 1 then we get Theorem 3 of paper [3] and hence in this result for
aij = f(a;,b;) we get Corollary 2 of paper [3].

THEOREM 12. Let p;; (i,j =1,...,N), be real numbers. Let (x;,y;) € I* =
[a,b] x [a,b] (i,j=1,...,N), be mutually distinct elements and let f,g be a two real-
valued functions on I* such that inequalities

RA(t,k) >0, t=n+1,...Nsk=m+1,....N. 27)
and
LA(n,m)g(xhyj) < A(n,m)f(xivyj) < UA(n,m)g(xhyj) (28)
hold or reverse inequalities to (27) and (28) hold. Then
LCA(g,p) < Cal(f,p) SUCalg,p). (29)

If the reverse inequality to (27) holds, then the reverse inequalities in (29) are valid,
where Ra(t,k) is defined in (20)

Proof. Let Fi(xi,y;) = f(xi,y;) — Lg(xi,y;) and Fa(xi,y;) = Ug(xi,y;) — f(xi,y;)
then A(,, ) F1(xi,y;) = 0 and A, ) F2(xi,y;) > 0, so, from Theorem 11 we easily obtain
Theorem 12.

REMARK 15. If we put x; =1, yi=1] and f(xi,yj) :f(l7]) =dajj and g(i7j) = bij
in previous theorem then we get Theorem 4 of paper [3].
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