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IMPROVED CAUCHY-SCHWARZ NORM INEQUALITY FOR OPERATORS
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(Communicated by M. Fujii)

Abstract. Let A, B and X be operators on a complex seperable Hilbert space such that A and
B are positive. Cauchy-Schwarz norm inequality for operators asserts that

Lontll1? r r
lazxs2 ||| < naxr . iary,

for any real number r > 0 and every unitarily invariant norm ||.||. In this article we derive
several refinements of Cauchy-Schwarz norm inequality for operators. In particular, we show
improvements for the results of Hiai and Zhan [Linear Algebra Appl. 341 (2002) 151-169].
Besides, new type inequalities close to Cauchy-Schwarz norm inequality will be introduced.

1. Introduction

Let B(H) denote the space of bounded linear operators on a complex separable
Hilbert space H. Let ||.|| denote a unitarily invariant norm defined on a norm ideal
associated with it. It has been shown by Horn and Mathias [5] that if A, B € B(H),
then

IABI"|I” < [[(AA)"|| - [|(BB")"]|,

for every positive real number r and every unitarily invariant norm. This inequality can
be considerd as an operator version of the familiar Cauchy-Schwarz inequality for real
numbers. A stronger version of this inequality, which has been proved by Bhatia and
Davis [ 1], asserts that

2
[lA"XBI"[|” < [[lAAX || [IXBB"|']|,

forall A, B, X € B(H), and any r > 0, which is equivalent to

1 Liry2
[Jatxd]||" < axri-ixsry. M

for positive operators A, B and arbitrary X.
Hiai and Zhan [4] proved that if A, B, X € B(H) such that A, B are positive
and r > 0, then the function f (v) = |||[A"XB'~"|"||.|||A'~"XB"|"|| is convex on [0, 1],
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attains its minimum at v = J, its maximum at v =0 and v = 1. Moreover, f(v) =
S(1 —v). Thus for every unitarily invariant norm, we have the following refinement of
Cauchy-Schwarz norm inequality for operators

< [IlAX[l- X BI] 2)

||adxBs| "< |laxBf

}AlvaBV|r

Using some basic properties of convex functions, Hu [6] obtained the following
refinement of the second inequality in (2)
2 r r
+ (1 =2vo) [[[AX || l|X B[],

|lavxst = AiXB?

Al VXBV}

=

where vo = min{v, 1 —v}.

Our main task in this article is to derive other improvements of Cauchy-Schwarz
norm inequality with the help of the well-known Hermite-Hadamard inequality. In
addition, we establish new type inequalities close to Cauchy-Schwarz norm inequality
for operators.

2. Refinements of Cauchy-Schwarz norm inequality for operators via the
convexity

Hermite-Hadamard inequality, which includes a basic property of convex func-
tions and plays a central role in our investigation, asserts that if g is a convex real
valued function on the interval [a,b], then

H(25) <5t f o< 0

A recent refinement of the second inequality in Hermite-Hadamard inequality, due
to Feng [2], asserts that

g<a;b> - a/ 8t [()+2g< ;b)+g(b)]<w, 3)

where g is a convex real valued function on [a,b]. In the following lemma, we construct
a refinement of the first inequality in the Hermite-Hadamard inequality.

LEMMA 1. Let g be a real valued function which is convex on the interval |a, D).
Then

A(e2) A (52 2t o2

Proof. Using Hermite-Hadamard inequality, we have

f(457) = () 3 (55 3 [ (59 e (7))
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To prove the second inequality, note that

207

L[ (3atb\  (a+3b 1] (H+a . ath 1
218\ S\ )| 7218\ 2 A
A eyt —— [ gwar
T2 |a— g Jup bl Ju ®
1[ 2 4 b
2_b_a/a g(r)dr+— %go]
b
:b—a/a g(t)dt

This completes the proof. [l

In order to derive refinements of Cauchy- Schwarz norm inequality, we apply Lemma

1 and the inequality (3) to the functlon fv
—u], when 0 u < 2, and on the interval [I — u,u], when 1 5 <U<

interval [u, 1

= [[la"xB= ] [[|a"X B[] on the

THEOREM 2. Let A, B, X € B(H) such that A and B are positive. Then for
o<u<l, r>0, andfor every unitarily invariant norm,

2u+1

Adxph|

H

<

1
<—
-

<1l

H

3- 2;1 2u+l |
4

“4)

|AYXB'"|||.|||a" "X BY|

17’2:|

< [[lAxT | [1x B[]

Proof. First assume that 0 < u < L.

l\)

Then it follows by applying Lemma 1 and

the inequality (3) to the function f (v) = |||A"XB'~"|"||.|||A'~"XB"|"|| on the interval
[, 1 —pu] that
1 1 2u+1 1 1—p
()<l (5) (558 s ) rom
1
<3 [f( )+f( ﬂ < S(w). 5)
Thus,
H)A%XBZ H‘AZH+1 3 2” ' ‘A#XB# ! (6)
1 v 1- v 1—-v v
<m/ H’AXB |l1atrxm| || av
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<3/l

<]l

r

]

Now, assume that % < p < 1. Then by applying (6) to 1 — u, we get

1 2y+1 3— 2y 2u+l1 |
XB 7

Jlatxst [ < lax >
I
<—— H|AVXB1 At xs
2u—1
1 1| 2
|l
Since
r2 1
Lim |[asxB3|'||" = Lim H’AVXBI [t xs | av]
L p—it 20

the inequalities in (4) follow by combining the inequalities (6) and (7). O

Applying the inequality (3) to the function f(v) = |||A"XB""|"]|. H|A1 'XB'|'||

on the interval [0, 1], when 0 < u < 2 and on the 1nterval [u,1], when 1 <p<l, we
obtain the following theorem.

THEOREM 3. Let A, B, X € B(H) such that A and B are positive. Then
a)For 0 < u < %7 r > 0, and for every unitarily invariant norm,

[[a%xm [ []axat] ®)
1 v 1—v|" 1-v v|"
<= [ |laxsr | latxs || av
wJjo
1 r
<5 [Maxriixsr+2|||Jafxs' || ||la'-#x5%
1 r
<= [ }
2
b) For % < u <1, r>0, and for every unitarily invariant norm,
I+ 1+u
H)A Fxp [ | [a% xs ©)
<l / H’AVXBI Il hat-xs|” Hdv
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u l+u

1+
< 7 [laxriixsr H+2|HA

1 ll
2
In view of the fact that the function f(v) = |||A"XB'~"|"||.|||A' " XB"|"|| is de-

creasing on [0,3] and increasing on [3, 1 ],and based on the inequalities (8) and (9),
we obtain the following series of refinements of Cauchy-Schwarz norm inequality.

THEOREM 4. Let A, B, X € B(H) suchthat A and B are positive. Then
a)For0 <u<i 3, 1> 0, and for every unitarily invariant norm,

H|A“XBI’“|r H

< H‘A%XBI’% ' -5xps|

< ﬁ/ﬂH|AVXBl’V}r AxBY| || v
0

1 r
<7 [IAx - nixar)+2|atxp' -4 -4 xp4

il

il
<l (!

b) For % < u <1, r> 0, and for every unitarily invariant norm,

I
e Fxe

< 1— / H}AVXB1 |

r r Lax]
< 7 [Iaxri sy 24" xs

i

1+u r

|A1"’XBV}erv

- |7 Iu |7
2 2

1
<5 [IAXT - 11X Bl + | |4 x

]
3. Inequalities close to Cauchy-Schwarz norm inequality

In this section, we prove that the function f (v) = [||A"XB"|"||.|||A'~"XB'~"|"| is
convex on the interval [0,1] and use this convexity to obtain some inequalities that are
related to Cauchy-Schwarz norm inequality.
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THEOREM 5. Let A, B, X € B(H) such that A and B are positive. Then for
r > 0, and for every unitarily invariant norm, the function

F0) = 1AXB["]|. H A x|

is convex on [0, 1] and attains its minimum at v = % consequently, it is decreasing on

[O, 2] and increasing on [%7 l] .

Proof. Without loss of generality, we may assume that A > 0 and B > 0. Since
f(v) is continuous and symmetric with respect to v = % , all the conclusions will follow
after we show that

fO) < S =s5)+fv+5)] (10)
for vts € [0,1]. By the inequality (2), we have

m|»—

H|AVXBV|rH _ H }As(AvstBer.\')Bf.\'}rH

Av sXBv+S)B 25|

}%

|:H |A2S AV SXBV-‘rS

= [llarxB= )| Jax B ]
and

H|Al VXBl V

H|As Al v— SXBI V+S)B S|

}%

[H’Ak Al v— SXBI v+s

|A1 v— SXBI V+S)B—2S

i

- HHAl—<V—S>xBl—<V—S>

‘Al—(v+s)XBl—(v+s)

Upon multiplication of the above two inequalities we obtain

||\AVXBV\’||.H|A1—VXBl—V}’ <[ v—s).fv+s)2. (11)

Applying the arithmetic-geometric mean inequality to the right hand side of (11) yields
(10). This completes the proof. [J

Since the function f(v) = [||A"XB"|"|| ||A' "X B'~*|"|| is convex on [0,1], attains

its minimum at v = 1, and its maximum at v=0 and v =1, and f(v) = f(1 —v) for
0 <v < 1, we have the following results.

THEOREM 6. Let A, B, X € B(H) such that A and B are positive. Then for
0<v <1, r> 0, and for every unitarily invariant norm,
(12)

r2
H)A%XB% H gH|AVXBV|’H.H]Al—VXBl—V’
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A special case of the inequality (12) can be obtained as follows.

THEOREM 7. Let A, B € B(H) such that A and B are positive. Then for 0 < v <
1, r > 0, and for the operator norm,
< [I|AB["]| (13)

r2
H)A%B% H <H'AVBVIVH'H|A17VB17V’7'

In particular,

ated|” < pae). Jaret=) < s

1
< ||ABJ|Z for A, B >0 men-
tioned above is equivalent to the Lowner-Heinz inequality, Heinz-Kato inequality and
moreover,

REMARK 8. The operator norm inequality HA%B%

|A"B"|| < ||AB||" for r € [0,1],
see [3].
An equivalent formulation of the inequality (13) is obtained in the following the-

orem.

THEOREM 9. Let A, B € B(H) such that A and B are positive. Then for t > 1,
r > 0, and for the operator norm,
r2 -
| <ty |Ja=tm|

|45 <|laBy]

Proof. From Theorem 7, we have

r r r

11|72 11
[Ja28 ] < a7

1 1
[t

< ||AB|"||, fort > 1.

Replace A, B by A’, B', respectively. This completes the proof. [
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