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SIMULTANEOUS APPROXIMATION WITH THE RAFU METHOD

E. CORBACHO

(Communicated by A. Guessab)

Abstract. Let f be a function k times continuously differentiable in [a,b] , then we will prove
that the RAFU method provides a sequence (Hn)n defined in [a,b] such that for each j = 0, ...,k∥∥∥ f ( j) −H( j)

n

∥∥∥�
[

M−m√
n

+ω
(

f (k),
b−a

n

)]
(b−a)k− j

being n � 2 , ‖.‖ the uniform norm, M and m the maximum and the minimum of f (k) in

[a,b] respectively and ω
(

f (k), b−a
n

)
its modulus of continuity. The called RAFU remainder

in Taylor’s formula will be presented. The simultaneous approximation problem will be solved
from average samples, from linear combinations, from local average samples given by convo-
lution, from approximate values and in the case of non-uniformly spaced data of f (k) . We will
also study the numerical differentiation case. Our approach is easily realizable in computations.
Some examples will be given.

1. Introduction

Let f be an arbitrary function defined in [a,b] and let a = x0 < x1 < ... < xn = b
be a partition of [a,b] for each natural n . The RAFU (radical functions) method on
approximation is an approximation procedure to the function f by a sequence (Cn)n of
radical functions defined by the formula

Cn(x) = f (x1)+
n

∑
p=2

[ f (xp)− f (xp−1)] ·Fn (xp−1,x) (1)

being Fn (xp,x) =
2n+1√xp−a+ 2n+1√x−xp
2n+1
√

b−xp+ 2n+1√xp−a
, p = 1, ..., n− 1. For details about RAFU ap-

proximation, we refer to reader to [1, 2, 3].
Most of existed studies on the simultaneous approximation problem were only

concerned with the density, so theoretical results are very difficult to apply in practice.
For example, from the result due to K. Kopotun [6], one observes that it is not easy to
find the algebraic polynomials (more precisely the linear operators) which approximate
a function and its derivatives. In [4] the hypothesis of the procedure of Hermite inter-
polation given by B. Della Vecchia, G. Mastroianni and P. Vértesi are difficult to use.
The problem is solved using feed-forward neural networks by N. Hahm and B. I. Hong
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in [5] and T.F. Xie and F.L. Cao in [7]. Both approximation methods are constructed
from the initial function f .

Our proposal is different. Our approach is original and unknown. This paper deals
with a constructive approximation procedure in which the terms of (Hn)n will be de-
fined from f ( j)(a) , j = 0, 1, ..., k and the values of f (k)(x) at some points of [a,b] .
So, this way to solve the simultaneous approximation problem can be useful to solve,
for instance, differential equations. Moreover, we will also see we can obtain the above
main result by considering average samples, linear combinations, local average sam-
ples given by convolution or approximate values of the previous data. The mentioned
theorem holds using numerical approximations of the derivatives if necessary. We will
also give an error formula in the case of non-uniformly spaced data.

A trivial corollary will show that in simultaneous approximation Taylor’s polyno-
mial and RAFU approximation are connected and this is another special contribution
of this work.

The paper does not impress with the difficulties it overcomes. It does not con-
tain complicated calculations or reasonings, but we think that the importance of this
technique to solve these problems will balance the deficiency of difficulties. The pa-
per is organized as follows. In Section 2 we give the main results. In Section 3 we
will show that concise algorithms can be easily implemented to solve the simultaneous
approximation problem and some examples will be shown. All proofs are in Section 4.

2. Main results

An important question that remained to be answered in RAFU approximation dealt
with differentiability, namely each radical function Fn (xp,x) is not differentiable at
x = xp . In the works published about the RAFU method until now [1, 2, 3], all function
f was approximated by using a sequence (Cn)n , defined as (1), but from now on, if f
is a smooth function, this approximation procedure provides a sequence of functions
(Hn)n with the same smoothness that f and which converges uniformly to it.

THEOREM 1. Let f be a function k times continuously differentiable in [a,b] ,
then there exists a sequence (Hn)n defined in [a,b] such that for each j = 0, ...,k∥∥∥ f ( j) −H( j)

n

∥∥∥�
[
M−m√

n
+ ω

(
f (k),

b−a
n

)]
(b−a)k− j

being n � 2 , ‖.‖ the uniform norm, M and m the maximum and the minimum of f (k) in

[a,b] , ω
(

f (k), b−a
n

)
its modulus of continuity and Hn(x) = ∑k−1

i=0 f (i)(a) (x−a)i

i! +Gn(x) ,

where Gn(x) =
∫ x
a G

′
n(t)dt , G

′
n(x) =

∫ x
a G

′′
n(t)dt ,..., G(k−1)

n (x) =
∫ x
a Cn(t)dt and

Cn(x) = f (k)(x1)+
n

∑
p=2

[ f (k)(xp)− f (k)(xp−1)] ·Fn (xp−1,x) (2)

being Fn (xp,x) =
2n+1√xp−a+ 2n+1√x−xp
2n+1
√

b−xp+ 2n+1√xp−a
, p = 1 , ..., n− 1 , xi = a+ ih , i = 0 , ...,n and

h = b−a
n .
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If f is a function k times differentiable in [a,b] , it is well-known that by the

Taylor’s formula, f (x) = T ( f ;a,x) + R( f ;a,x) , where T ( f ;a,x) = ∑k−1
i=0

f (i)(a)(x−a)i

i!

is Taylor’s polynomial of degree k− 1 of f at x = a and R( f ;a,x) = f (k)(α)(x−a)k

k! ,
for some α between a and x , is Taylor’s remainder. In simultaneous approximation,
Taylor’s polynomial and RAFU approximation are connected. More exactly,

COROLLARY 1. With the hypothesis of Theorem 1 , we have

‖R( f ;a,x)−Gn(x)‖ �
[
M−m√

n
+ ω

(
f (k),

b−a
n

)]
(b−a)k

where R( f ;a,x) is Taylor’s remainder of f .

DEFINITION 1. Let f be a function k times continuously differentiable in [a,b]

and let (Gn)n be the sequence uniformly convergent to R( f ;a,x) = f (k)(α)(x−a)k

k! on
[a,b] . We will say that the function Gn is the RAFU remainder of degree n of f .

The function f and its derivatives can be approximated from average samples of the
data f (k)(xp) , p = 1, ..., n used in Theorem 1. In fact,

COROLLARY 2. If the data f (k)(xp) , p = 1 , ..., n in (2) are substituted by kp =
f (k)(xp1)n1+...+ f (k)(xps)ns

n1+...+ns
, x1q ∈ [a,x1] or xpq ∈ (xp−1,xp] , p = 2 ,...,n , q = 1 ,..., s , n1 +

...+ns �= 0 , then Theorem 1 holds.

In many applications it is more realistic to assume that the available samples are local
average samples near a certain x . We consider the special case in which we know data

of the type
(

χ[−h,h] � f (k)
)

(x) =
∫ +∞
−∞ χ[−h,h](y) f (k)(x− y)dy =

∫ x+h
x−h f (k)(z)dz where �

denotes the convolution of the functions χ[−h,h] and f (k) . From these data, an analo-
gous assertion to Theorem 1 can be established.

COROLLARY 3. If the data f (k)(xp) , p = 1 , ..., n in (2) are defined by kp =∫ x̃p+h
x̃p−h f (k)(z)dz

2h , with [x̃1−h, x̃1 +h] ⊆ [a,x1] or [x̃p−h, x̃p +h] ⊆ (xp−1,xp] , p = 2 ,...,
n , then Theorem 1 follows.

The simultaneous approximation problem can also be solved from linear combinations
of the values f (k)(xp) , p = 1, ..., n given in Theorem 1.

COROLLARY 4. If the values f (k)(xp) , p = 1 , ..., n in (2) are changed by kp =
f (k)(x̃p)− f (k)(x̃p−1)

x̃p−x̃p−1
·(x′p− x̃p−1

)
+ f (k)(x̃p−1) with x′1 ∈ [x̃0, x̃1]⊆ [a,x1] or x′p ∈ [x̃p−1, x̃p]⊆

(xp−1,xp] , p = 2 ,..., n , then Theorem 1 holds.

When we want to approach f and its derivatives from approximate values of f (k)(xp) ,
p = 1, ..., n , the following result can be useful.
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COROLLARY 5. With the hypothesis of Theorem 1 , if the values f (k)(xp) , p = 1 ,
..., n in (2) are unknown but we know f (k)(xp)+ ηp , with

∣∣ηp
∣∣< η , p = 1 ,...,n then

∥∥∥ f ( j) −H( j)
n

∥∥∥�
[
M−m+2η√

n
+ ω

(
f (k),

b−a
n

)
+ η

]
(b−a)k− j

To constructing the functions Hn we need to know f ( j)(a) , j = 0, 1, ..., k− 1
and f (k)(xp) , p = 1, ..., n . This can be a problem in practice. Next, we give a solution
to this drawback using numerical approximations of the first and second derivatives.

THEOREM 2. If a function f has four continuous derivatives in [a,b] , then there

exists a sequence (Hn)n defined in [a,b] such that
∥∥∥ f

′′ −H
′′
n

∥∥∥ � Kn ,
∥∥∥ f

′ −H
′
n

∥∥∥ �
Kn (b−a)+ h

2M2 and ‖ f −Hn‖ � Kn (b−a)2 + h
2M2 (b−a) where

Kn =

⎡
⎣M2 −m2 + (M1−m1)(b−a)2

48n2√
n

+ ω
(

f
′′
,
b−a
2n

)
+

(b−a)2 M1

48n2

⎤
⎦

n � 2 , M1 , m1 and M2 , m2 are the maximum and the minimum of f (4) and f
′′
in [a,b]

respectively, ω
(

f
′′
, b−a

2n

)
the modulus of continuity of f

′′
, Hn(x)= f (a+h)− f (a)

h (x−a)+

f (a)+Gn(x) , being Gn(x) =
∫ x
a G

′
n(t)dt , G

′
n(x) =

∫ x
a Cn(t)dt and

Cn(x) = k1 +
n

∑
p=2

[kp− kp−1] ·Fn (xp−1,x)

where Fn (xp,x) =
2n+1√xp−a+ 2n+1√x−xp
2n+1
√

b−xp+ 2n+1√xp−a
, p = 1 , ... , n− 1 , xi = a + ih , i = 0 , ... ,n ,

h = b−a
n and the k j are given by the formulas kp =

f (xp)−2 f
( xp+xp−1

2

)
+ f (xp−1)

( h
2)

2 , p = 1 ,

..., n .

COROLLARY 6. If we define in Theorem 2 the data kp by the formula kp =
f (xp+1)−2 f(xp)+ f (xp−1)

h2 , p = 1 , ..., n− 1 and kn = kn−1 , then we only need to know
the values f (xp) p = 0 , ..., n and the mentioned theorem is also valid. In this case,

Kn =

⎡
⎣M2 −m2 + (M1−m1)(b−a)2

12n2√
n

+ ω
(

f
′′
,
b−a

n

)
+

(b−a)2 M1

12n2

⎤
⎦

Finally, the RAFU method can be used to solve the simultaneous approximation
problem in the case of non-uniformly spaced data.

THEOREM 3. Let Pn = {a = x0,x1, ...,xsn = b} be a partition of [a,b] with δ (sn)=
min

1� j�sn

∣∣x j − x j−1
∣∣ and Δ(sn) = max

1� j�sn

∣∣x j − x j−1
∣∣ such that 3(b−a)

nK � δ (sn) � Δ(sn) � h
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being h = b−a
n and K � 2 a positive integer. Let f be a function k times continuously

differentiable in [a,b] , then there exists a sequence (Hn)n defined in [a,b] such that for
each j = 0, ...,k

∥∥∥ f ( j) −H( j)
n

∥∥∥�
[
6K
5

M−m√
n

+ ω
(

f (k),Δ(sn)
)]

(b−a)k− j

being n � 2 , M and m the maximum and the minimum of f (k) in [a,b] respectively

and ω
(

f (k),Δ(sn)
)

its modulus of continuity, Hn as usual and

Cn(x) = f (k)(x1)+
sn

∑
p=2

[ f (k)(xp)− f (k)(xp−1)] ·Fn (xp−1,x)

with Fn (xp,x) =
2n+1√xp−a+ 2n+1√x−xp
2n+1
√

b−xp+ 2n+1√xp−a
, p = 1 , ..., sn −1 .

3. Algorithms and examples

We want to know if the approximation procedure is easy to implement. This will

be true if the expressions of the functions G( j)
n (x) can be obtained easily. The next

result shows that this it is possible.

LEMMA 1. If we define Gn(x) =
∫ x
a G

′
n(t)dt , G

′
n(x) =

∫ x
a G

′′
n(t)dt ,..., G(k−1)

n (x) =∫ x
a Cn(t)dt where

Cn(x) = M +N 2n+1
√

x

being M and N real numbers, then for all j = 0 , ...,k−1 it verifies that

G( j)
n (x) = M

xk− j

(k− j)!
+N

(2n+1)k− j xk− j 2n+1
√

x

∏k− j
i=1 (2ni+ i+1)

−
[
K1,a

xk− j−1

(k− j−1)
+ ...+Kk− j−1,ax+Kk− j,a

]
where K1,a , ...., Kk− j,a are real numbers.

Proof. It is trivial. �
From this result, the formulas of the functions G( j)

n in the case in which x ∈
[xp−1,xp] and the function Cn is defined as (2) are given by

G( j)
n (x) =

[
k1 +

p

∑
i=2

(ki − ki−1) 2n+1
√

xi−1 −a
2n+1
√

b− xi−1 + 2n+1
√

xi−1−a

]
xk− j

(k− j)!
+

(2n+1)k− j

∏k− j
i=1 (2ni+ i+1)

[
p

∑
i=2

(ki − ki−1) (x− xi−1)
k− j 2n+1

√
x− xi−1

2n+1
√

b− xi−1 + 2n+1
√

xi−1−a

]
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Figure 1: Simultaneous approximation with Theorem 1

−
[
K1,a

xk− j−1

(k− j−1)
+ ...+Kk− j−1,ax+Kk− j,a

]
and this provides that easy algorithms can be implemented.

Consider the function f (x) = sin(x) and its first and second derivatives defined in
[0,4] .

In Figure 1 we show the approximation errors by using Theorem 1 and n = 200.
The simultaneous approximation errors in case of Corollary 5 and n = 200 are in

Figure 2. Here f (k)(xp)+ηp = f (k)(xp)(1+0.01Random[Real,{−1,1}]), p = 1,...,n
where Random denotes a random number with uniform distribution on [−1,1] and 0.01
is the considered relative error level of the data.

In Figure 3 we give the approximation errors by using the numerical differentia-
tion formulas mentioned in Corollary 6 for n = 200.

Theorem 3 is used to approach the f (x) = sin(x) and its first and second deriva-
tives in [0,0.5] by considering n = 10, K = 2 and sn = 15. In this example we have
used the values of f

′′
at the points of the partition

Pn = {0,0.02,0.05,0.09,0.14,0.17,0.21,0.26,0.31,0.34,0.39,0.42,0.44,0.48,0.5}
which verify that 0.015 � δ (sn) � Δ(sn) � 0.05. The results are in Figure 4.
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Figure 2: Simultaneous approximation with approximate data
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Figure 3: Simultaneous approximation with numerical differentiation formulas
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Figure 4: Simultaneous approximation in the case of non-uniformly spaced data

4. Proofs

Until the proof of Corollary 6 we will consider partitions Pn of [a,b] with x j = a+
j · b−a

n , j = 0,1, ...,n . Moreover, each interval [xk−1,xk] of length b−a
n will be divided

into three equal parts:
[
xk−1,xk−1 + b−a

3n

]
,
[
xk−1 + b−a

3n ,xk − b−a
3n

]
,
[
xk − b−a

3n ,xk
]

PROPOSITION 1. Let Pn be a partition of [a,b] and let En be the step function

defined by En(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k1 x ∈ [a,x1]
k2 x ∈ (x1,x2]
...

kn x ∈ (xn−1,b]

being k j real numbers. Let Cn be the radical

function associated to En , Cn(x) = k1 + ∑n
j=2[k j − k j−1] ·Fn

(
x j−1,x

)
. Then, for all

n � 2 it follows that
|Cn(x)−En(x)| � Mn−mn√

n if x ∈ [a,b]\∪n−1
k=1

(
xk − b−a

3n ,xk + b−a
3n

)
∣∣Cn(x)−

[
k j(1−αx)+ k j+1αx

]∣∣ � Mn−mn√
n if x ∈ (x j − b−a

3n ,x j + b−a
3n

)
and j =

1 ,..., n−1
being Mn and mn the maximum and the minimum of the k j respectively and αx ∈

(0,1) a number that depends upon x .

For a proof, the reader can see [2].

PROPOSITION 2. Let f be a continuous function defined in [a,b] . Then there
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exists a sequence of radical functions (Cn)n defined in [a,b] as (1), such that

‖Cn − f‖ � M−m√
n

+ ω
(

f ,
b−a

n

)

for all n � 2 , where ‖.‖ denotes the uniform norm, M and m are the maximum and
the minimum of f in [a,b] respectively and ω

(
f , b−a

n

)
its modulus of continuity.

For details, the reader can see [2].

Proof. Theorem 1.
It is well-known that if g∈C [a,b] , then G(x) =

∫ x
a g(t)dt is well-defined, G′(x) =

g(x) on [a,b] and
∫ b
a g(t)dt = G(b)−G(a) . Moreover, it is also known that if (gn)n

is a sequence of continuous functions defined on [a,b] which converges uniformly to
the function g on [a,b] and we define Gn(x) =

∫ x
a gn(t)dt , then the sequence (Gn)n

converges uniformly to the function G on [a,b] .
Define the continuous functions Cn in [a,b] from the continuous function f (k) as

(1). Moreover, we consider the following well-defined functions in [a,b] as G( j)
n (x) =∫ x

a G( j+1)
n (t)dt for j = 0, ...,k−2 and G(k−1)

n (x) =
∫ x
a Cn(t)dt . Then, by Proposition 2

and the above properties, the following limits are uniform on [a,b]

lim
n→∞

Cn(x) → f (k)(x)

and for all j = 0, ..., k−1

lim
n→∞

G( j)
n (x) = f ( j)(x)− f (k−1)(a)

(x−a)k−1− j

(k−1− j)!
− ...− f ( j+1)(a)(x−a)− f ( j)(a)

Now, we define Hn(x) = ∑k−1
i=0 f (i)(a) (x−a)i

i! +Gn(x) and we obtain for the k index∥∥∥∥∥∥ f (k)(x)−
(

k−1

∑
i=0

f (i)(a)
(x−a)i

i!
+Gn(x)

)(k)
∥∥∥∥∥∥

=
∥∥∥ f (k)(x)−Cn(x)

∥∥∥� M−m√
n

+ ω
(

f (k),
b−a

n

)
and for the k−1 index∥∥∥∥∥∥ f (k−1)(x)−

(
k−1

∑
i=0

f (i)(a)
(x−a)i

i!
+Gn(x)

)(k−1)
∥∥∥∥∥∥

=
∥∥∥ f (k−1)(x)− f (k−1)(a)−G(k−1)

n (x)
∥∥∥

=
∥∥∥∥
∫ x

a
f (k)(t)dt−

∫ x

a
Cn(t)dt

∥∥∥∥�
[
M−m√

n
+ ω

(
f (k),

b−a
n

)]
(b−a)
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Proceeding in this way, we finish obtaining that∥∥∥∥∥ f (x)−
(

k−1

∑
i=0

f (i)(a)
(x−a)i

i!
+Gn(x)

)∥∥∥∥∥

=

∥∥∥∥∥ f (x)− f (k−1)(a)
(x−a)k−1

(k−1)!
− ...− f

′
(a)(x−a)− f (a)−Gn(x)

∥∥∥∥∥
�
[
M−m√

n
+ ω

(
f (k),

b−a
n

)]
(b−a)k

This completes the proof. �
Proof of Corollary 1 is trivial by using Taylor’s formula and Theorem 1.

Proof. Corollaries 2, 3 , 4 and 5.
Results of Corollaries 2, 3 and 4 are obtained taking into account that in all

these cases the sequence (Cn)n verifies that
∣∣∣Cn(x)− f (k)(x)

∣∣∣ � M−m√
n + ω

(
f (k), b−a

n

)
and this can be easily proved from Propositions 1 and 2. Corollary 5 holds because

the sequence (Cn)n obtained from approximate data verifies that
∣∣∣Cn(x)− f (k)(x)

∣∣∣ �
M−m+2η√

n + ω
(

f (k), b−a
n

)
+ η and this can be easily proved from Propositions 1 and 2

too. See [2] for details. �
Next, we give

Proof. Theorem 2.
Define

En(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k1 x ∈ [a,x1]
k2 x ∈ (x1,x2]
...

kn x ∈ (xn−1,b]

where kp =
f (xp)−2 f

( xp+xp−1
2

)
+ f (xp−1)

( h
2 )

2 , p = 1, ..., n . Taking into account the second-

order approximation of the second derivative,

∣∣∣En(x)− f
′′
(x)
∣∣∣=
∣∣∣∣∣∣
f (xp+1)−2 f

(
xp+xp+1

2

)
+ f (xp)(

h
2

)2 − f ′′(x)

∣∣∣∣∣∣=
∣∣∣∣∣ f ′′
(

xp + xp+1

2

)
+

(
h
2

)2
12

f (4)(ηp)− f
′′
(x)

∣∣∣∣∣� ω
(

f
′′
,
b−a
2n

)
+

(b−a)2 M1

48n2

where ηp is a real number belongs to (xp,xp+1) and x ∈ (xp,xp+1] for some p .
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On the other hand, in proofs of Propositions 1 and 2, for all p = 1, ..., n we can

take kp =
f (xp)−2 f

( xp+xp−1
2

)
+ f (xp−1)

( h
2 )

2 and obtain for x ∈ [a,b] that

|Cn(x)−En(x)| � 1√
n

[
M2−m2 +

(M1−m1) (b−a)2

48n2

]

Thus,
∥∥∥Cn− f

′′∥∥∥� Kn where

Kn =
M2 −m2 + (M1−m1)(b−a)2

48n2√
n

+ ω
(

f
′′
,
b−a
2n

)
+

(b−a)2 M1

48n2

Define Gn(x) =
∫ x
a G

′
n(t)dt , G

′
n(x) =

∫ x
a Cn(t)dt and

Hn(x) =
f (a+h)− f (a)

h
(x−a)+ f (a)+Gn(x)

In this way, ∥∥∥ f
′′
(x)−H

′′
n (x)

∥∥∥ =
∥∥∥ f

′′
(x)−Cn(x)

∥∥∥� Kn

Moreover ∥∥∥ f
′
(x)−H

′
n(x)

∥∥∥
=
∥∥∥∥ f

′
(x)−G

′
n(x)−

f (a+h)− f (a)
h

∥∥∥∥
=
∥∥∥∥
∫ x

a
f
′′
(t)dt −

∫ x

a
Cn(t)dt− f (a+h)− f (a)

h
+ f

′
(a)
∥∥∥∥

� Kn (b−a)+
h
2
M2

and finally
‖ f (x)−Hn(x)‖

=
∥∥∥∥ f (x)−Gn(x)− f (a+h)− f (a)

h
(x−a)− f (a)

∥∥∥∥
=
∥∥∥∥ f (x)−Gn(x)−

(
f
′
(a)+

h
2

f
′′
(η)
)

(x−a)− f (a)
∥∥∥∥

� Kn (b−a)2 +
h
2
M2 (b−a)

and this completes the proof. �
Proof of Corollary 6 is trivial.
From now on, we will consider partitions Pn = {x0 = a,x1, ...,xn = b} of [a,b]

with non-uniformly spaced data. Before proving Theorem 3 we have to prove some
new results.
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LEMMA 2. Let k be a positive integer. Then, for n � 2 it verifies that∣∣∣ 2n+1
√

nk −1
∣∣∣� (2k−1) 7√3

2
√

n and
∣∣∣ 2n+1
√

1
nk −1

∣∣∣� k
3
√

n

Proof. By induction on k. Cases k = 1 are in [3]. The proof finishes taking into
account that ∣∣∣ 2n+1

√
n±k −1

∣∣∣= ∣∣∣ 2n+1
√

n±k − 2n+1
√

n±1 + 2n+1
√

n±1−1
∣∣∣ . �

LEMMA 3. Let Pn = {a = x0,x1, ...,xs = b} be a partition of [a,b] with δ (s) =
min

1� j�s

∣∣x j − x j−1
∣∣ . Then, for any k = 1 , ..., s−1 and x ∈ [a,b]\

(
xk − δ (s)

3 ,xk + δ (s)
3

)
it

follows that:

1. 2n+1
√

δ (s)
b−a

1+ 2n+1
√

1
3

2 � Fn (xk,x) � 1 if x− xk > 0

2. 0 � Fn (xk,x) �
2n+1
√

b−a
δ (s)− 2n+1

√
1
3

2 if x− xk < 0

The proof can be obtained by elementary estimates.

LEMMA 4. Let K � 2 be a positive integer such that 3(b−a)
nK � δ (s) . Then, for

all n � 2 , it verifies that

∣∣∣∣∣1− 2n+1
√

δ (s)
b−a

1+ 2n+1
√

1
3

2

∣∣∣∣∣ � K
3
√

n and

∣∣∣∣∣
2n+1
√

b−a
δ (s)− 2n+1

√
1
3

2 −0

∣∣∣∣∣�
(6K−3) 7√3+2

12
√

n . Moreover, max
{

K
3 , (6K−3) 7√3+2

12

}
� 3K

5

The proof can be obtained easily from Lemma 2.

PROPOSITION 3. Let Ps = {a = x0,x1, ...,xs = b} be a partition of [a,b] and let
Es be a step function defined in [a,b] by

Es(x) = k1 · χ[x0,x1] +
s

∑
i=2

ki · χ(xi−1,xi ] ki ∈ R

If 3(b−a)
nK � δ (s) , being δ (s) = min

1� j�s

∣∣x j − x j−1
∣∣and K � 2 a positive integer, then for

all n � 2 it follows that:

1. |Cn(x)−Es(x)| � 6K
5

Ms−ms√
n if x ∈ [a,b]\∪s−1

j=1

(
x j − δ (s)

3 ,x j +
δ (s)
3

)

2.
∣∣Cn(x)−

[
k j(1−αx)+ k j+1αx

]∣∣� 6K
5

Ms−ms√
n if x ∈

(
x j − δ (s)

3 ,x j +
δ (s)
3

)
, j = 1 ,

..., s−1 .

where Ms and ms are the maximum and the minimum of the k j , αx ∈ (0,1) is a number
which depends only on x and (Cn)n is the sequence of radical functions associated to
Es .
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Proof. It is analogous to the proof given in [3] (p. 115-117) but now we use
Lemmas 2, 3 and 4. �

Finally, we prove Theorem 3.

Proof. In [3] (p. 117-118) there is a similar proof for the inequality

∥∥∥ f (k) −H(k)
n

∥∥∥� 6K
5

M−m√
n

+ ω
(

f (k),Δ(sn)
)

being n � 2, M and m the maximum and the minimum of f (k) in [a,b] respectively,

ω
(

f (k),Δ(sn)
)

its modulus of continuity and

H(k)
n (x) = Cn(x) = f (k)(x1)+

sn

∑
p=2

[ f (k)(xp)− f (k)(xp−1)] ·Fn (xp−1,x)

In this case, this proof would take into account Lemmas 2, 3 and 4 and Proposition 3.
The remainder of the proof is the same as Theorem 1. �
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