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AN ALMOST SURE CENTRAL LIMIT THEOREM
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(Communicated by J. Pečarić)

Abstract. In this paper, an almost sure central limit theorem is obtained for self-normalized
weighted sums of the φ mixing random variables. Our results extend and give substantial im-
provement for the result obtained by Zhang [12] and our results also extend the earlier work on
almost sure central limit theorem such as Wu [13].

1. Introduction and main results

Let {X ,Xn;n � 1} be a sequence of random variables and define Sn = ∑n
i=1 Xi ,

V 2
n = ∑n

i=1 X2
i . In recent years, many results about the limit theory for self-normalized

sums Sn/Vn were obtained. We can refer to Griffin and Kuelbs [1] for laws of iterated
logarithm, Bentkus and Götze [2] for Berry-Esseen bound, Lin [3] for Chung-type laws
of iterated logarithm, Gine and Götze [4] for the the asymptotic normality, Shao [5] for
large deviations, Hu et al. [6] for the Cramer type moderate deviations, Csörgó et al.
[7], [8] for Darling-Erdös theorem and Donsker’s theorem, Liu and Lin [9] and Pang
et al. [10] for asymptotics for self-normalized random products of sums for i.i.d. and
mixing sequences. We can also refer to Liu et al. [11] for central limit theorem (CLT)
for self-normalized weighted sums of mixing sequences, Zhang [12] for almost sure
central limit theorem (ASCLT) for self-normalized sums of mixing random variables
and Wu [13] for ASCLT about self-normalized partial sums for i.i.d. random variables.
However, there are few results about ASCLT for self-normalized weighted sums of
mixing random variables. Therefore, in the paper we shall investigate ASCLT for self-
normalized weighted sums of mixing random variables.

The almost sure central limit theorem (ASCLT) was first introduced independently
by Brosamler [14] and Schatte [15]. Since then many results about ASCLT have been
discovered. The classical ASCLT (Lacey and Philipp [16]) for {Xn;n � 1} , a sequence
of i.i.d. random variables with zero means, states that when Var(Xn) = σ2 ,
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lim
n→∞

1
logn

n

∑
k=1

1
k
I

{
Sk√
kσ

� x

}
= Φ(x) a.s. for any x ∈ R.

Here and in the following, I {.} denotes the indicator function, and Φ(x) is the dis-
tribution function of the standard normal random variable. We refer the readers to
Gonchigdanzan and Rempala [17], Li and Wang [18], Huang and Pang [19], Peng et al.
[20] for some ASCLT results with logarithmic averages. The purpose of this article is to
study and establish the ASCLT for self-normalized weighted sums of φ mixing random
variables. We will prove that the ASCLT still holds with other sequence {Dn;n � 1}
tending faster to infinity than the logarithmic averages.

In the following, C denotes a positive constant which may differ from one place
to another. The notation an ∼ bn means that limn→∞ an/bn = 1. We first introduce the
notation of φ mixing random variables sequence.

DEFINITION 1. A sequence {Xn}n∈N of random variables is said to be φ mixing
if limn→∞ φ(n) = 0, where

φ(n) = sup
k�1

φ(F k
1 ,F∞

k+n)

with
φ(F k

1 ,F∞
k+n) = sup

A∈F k
1 , B∈F ∞

k+n,

P(A)>0

{|P(B|A)−P(B)|} ,

and F b
a denotes the σ− field generated by Xa,Xa+1, ...,Xb .

In this paper, we consider a strictly stationary sequence {X ,Xn}n∈N of φ mixing
random variables that satisfies

∞

∑
n=1

φ
1
2 (2n) < ∞, (1.1)

Let {ani,1 � i � n,n � 1} be an array of real numbers that satisfies

n

∑
i=1

|ani| = O(n), (1.2)

lim
n→∞

∑n
i=1 a2

ni

n
= A > 0, (1.3)

n|an,i+ j −ani| � C j, 1 � i � n. (1.4)

And let

l(x) = EX2I{|X |� x}, A2
n = Var

(
n

∑
j=1

XjI{|Xj| � ηn}
)

, B2
n = nEX2

1 I{|X1| � ηn},

where

η j = inf

{
s : s � b+1,

l(s)
s2 � 1

j

}
, b = inf{x � 1 : l(x) > 0}, j = 1,2,3·
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We can easily get that B2
n = nl(ηn) ∼ η2

n as n → ∞ . And we assume that

A2
n ∼ βB2

n as n → ∞ and l(x) = EX2I{|X |� x} is slowly varying at∞. (1.5)

for some 0 < β < ∞ .
Our main result is the following theorem.

THEOREM 1.1. Let {X ,Xn}n∈N be a strictly stationary sequence of φ mixing
random variables with zero means. Assume that (1.1) and (1.5) are satisfied, and
{ani,1 � i � n,n � 1} be an array of real numbers that satisfies (1.2)–(1.4). Let
0 � α < 1/2 and denote dk = 1

k exp((logk)α) , Dn = ∑n
k=1 dk , let

Tn =
n

∑
i=1

aniXi, V 2
n =

n

∑
i=1

X2
i .

Then

lim
n→∞

1
Dn

n

∑
k=1

dkI

{
Tk√
AβVk

� x

}
= Φ(x) a.s. for any x ∈ R. (1.6)

In Theorem 1.1, letting ani = 1,(1 � i � n) , we can obtain the following result:

COROLLARY 1.2. Let {Xn}n∈N be a strictly stationary sequence of φ mixing
random variables with zero means. Assume that (1.1) and (1.5) are satisfied. Let

Sn =
n

∑
i=1

Xi, V 2
n =

n

∑
i=1

X2
i ,

then

lim
n→∞

1
Dn

n

∑
k=1

dkI

{
Sk√
βVk

� x

}
= Φ(x) a.s. for any x ∈ R. (1.7)

In Theorem 1.1, letting ani = (n+1− i)/n, (1 � i � n) , we have

COROLLARY 1.3. Let {Xn}n∈N be a strictly stationary sequence of φ mixing
random variables with zero means. Assume that (1.1) and (1.5) are satisfied. Let

Tn =
n

∑
i=1

n+1− i
n

Xi, V 2
n =

n

∑
i=1

X2
i ,

then

lim
n→∞

1
Dn

n

∑
k=1

dkI

{ √
3Tk√
βVk

� x

}
= Φ(x) a.s. for any x ∈ R. (1.8)

In Theorem 1.1, letting ani = i/n, (1 � i � n) , we can get

COROLLARY 1.4. Let {Xn}n∈N be a strictly stationary sequence of φ mixing
random variables with zero means. Assume that (1.1) and (1.5) are satisfied. Let

Tn =
n

∑
i=1

i
n
Xi, V 2

n =
n

∑
i=1

X2
i ,
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then

lim
n→∞

1
Dn

n

∑
k=1

dkI

{ √
3Tk√
βVk

� x

}
= Φ(x) a.s. for any x ∈ R. (1.9)

REMARKS 1. Our results give substantial improvement for the result obtained in
Theorem 1 of Zhang [12] and extend the work done by him. In fact our Corollary 1.2
is Theorem 1 of Zhang [12].

REMARKS 2. Theorem 1.1 and Corollaries remain valid if we replace the weight
sequence dk by d∗

k with 0 < d∗
k � dk and∑n

k=1 d∗
k → ∞, n → ∞ .

2. Preliminaries

In order to prove the Theorem 1.1, we need the following lemmas.
Lemma 2.1 is due to Csörgó et al. [8].

LEMMA 2.1. Let X be a random variable with EX = 0 , then the following state-
ments are equivalent:

(a)l(x) = EX2I{|X | � x} is a slowly varying function at ∞;

(b)x2
P(|X | > x) = o(l(x));

(c)xE|X |I{|X |> x} = o(l(x));

(d)E|X |α I{|X |� x} = o(xα−2l(x)) for α > 2.

Lemma 2.2 is due to Ibragimov [21].

LEMMA 2.2. Let {Xn}n∈Z be a sequence of φ mixing random variables, X ∈
Lp(F k−∞) , Y ∈ Lq(F∞

k+n) , and p,q > 1 with 1/p+1/q = 1 . Then

|EXY −EXEY | � 2φ1/p(n)‖X‖p‖Y‖q.

Lemma 2.3 is due to Zhang [12].

LEMMA 2.3. Let {ξn,n � 1} be a sequence of uniformly bounded random vari-
ables and {dk} and {Dn} be defined as in Theorem 1.1. If there exist constants C > 0
and δ > 0 and a sequence of positive numbers {a(k)} such that ∑∞

n=1 a(2n) < ∞ and

E|ξkξ j| � C

((
k
j

)δ
+a(k)

)
for

j
k

> (logDn)2/δ ,

then

lim
n→∞

1
Dn

n

∑
k=1

dkξk = 0 a.s.
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We will use the following notations. For every 1 � i � k , let

Xki = akiXiI{|Xi| � ηk}, X̃ki = akiXiI{|Xi| > ηk}, X∗
ki = Xki −EXki,

X̃∗
ki = X̃ki−EX̃ki, T ∗

k =
k

∑
i=1

X∗
ki, T̃ ∗

k =
k

∑
i=1

X̃∗
ki, V

2
k =

k

∑
i=1

X2
i I{|Xi| � ηk}.

LEMMA 2.4. Let f be a non-negative, bounded Lipschitz function and suppose
that the assumptions of Theorem 1.1 hold, then we have

lim
n→∞

1
Dn

n

∑
k=1

dk

[
f

(
T̃ ∗
k√

Aβkl(ηk)

)
−E f

(
T̃ ∗
k√

Aβkl(ηk)

)]
= 0 a.s. (2.1)

lim
n→∞

1
Dn

n

∑
k=1

dk

[
f

(
V

2
k

kl(ηk)

)
−E f

(
V

2
k

kl(ηk)

)]
= 0 a.s. (2.2)

lim
n→∞

1
Dn

n

∑
k=1

dk

[
I

{
k⋃

l=1

(|Xl| > ηk)

}
−EI

{
k⋃

l=1

(|Xl| > ηk)

}]
= 0 a.s. (2.3)

Proof. Let

ξk = f

(
T̃ ∗
k√

Aβkl(ηk)

)
−E f

(
T̃ ∗
k√

Aβkl(ηk)

)
,

for any j/k > (logDn)2/δ > 2. Noting the fact that f be a non-negative, bounded
Lipschitz function and kl(ηk) ∼ η2

k , then by Lemma 2.1 , Lemma 2.2 and (1.2) we
have

|Eξkξ j| =
∣∣∣∣∣cov

(
f

(
T̃ ∗
k√

Aβkl(ηk)

)
, f

(
T̃ ∗

j√
Aβ jl(η j)

))∣∣∣∣∣
�
∣∣∣∣∣cov

(
f

(
T̃ ∗
k√

Aβkl(ηk)

)
, f

(
T̃ ∗

j√
Aβ jl(η j)

)
− f

(
∑ j

i=2k+1 X̃∗
ji√

Aβ jl(η j)

))∣∣∣∣∣
+

∣∣∣∣∣cov

(
f

(
T̃ ∗
k√

Aβkl(ηk)

)
, f

(
∑ j

i=2k+1 X̃∗
ji√

Aβ jl(η j)

))∣∣∣∣∣
� CE

∣∣∣∣∣ f
(

T̃ ∗
j√

Aβ jl(η j)

)
− f

(
∑ j

i=2k+1 X̃∗
ji√

Aβ jl(η j)

)∣∣∣∣∣+Cφ1/2(k)

� C
E

∣∣∣∑2k
i=1 X̃∗

ji

∣∣∣√
jl(η j)

+Cφ1/2(k)

= C
E
∣∣∑2k

i=1 a ji [XiI{|Xi| > η j}−EXiI{|Xi| > η j}]
∣∣√

jl(η j)
+Cφ1/2(k)
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� C
∑2k

i=1 |a ji|E|X |I{|X | > η j}√
jl(η j)

+Cφ1/2(k) � C
2kEXI{|X |> η j}√

jl(η j)
+Cφ1/2(k)

� C
k√

jl(η j)
o(l(η j))

η j
+Cφ1/2(k) � C

[
k
j
+ φ1/2(k)

]
.

Then by (1.1) and Lemma 2.3 with δ = 1 we obtain (2.1).
To prove (2.2), let

Yk = f

(
V

2
k

kl(ηk)

)
−E f

(
V

2
k

kl(ηk)

)
,

Note that j/k > (logDn)2/δ > 2 and the fact that f be a non-negative, bounded Lips-
chitz function. Then by Lemma 2.2 and (1.2) we have

∣∣EYkYj
∣∣= ∣∣∣∣∣cov

(
f

(
V

2
k

kl(ηk)

)
, f

(
V

2
j

jl(η j)

))∣∣∣∣∣
�
∣∣∣∣∣cov

(
f

(
V

2
k

kl(ηk)

)
, f

(
V

2
j

jl(η j)

)
− f

(
∑ j

i=2k+1 X2
i I{|Xi| � η j}
jl(η j)

))∣∣∣∣∣
+

∣∣∣∣∣cov

(
f

(
V

2
k

kl(ηk)

)
, f

(
∑ j

i=2k+1 X2
i I{|Xi| � η j}
jl(η j)

))∣∣∣∣∣
� C

∑2k
i=1 EX2I{|X |� η j}

jl(η j)
+Cφ1/2(k)

� C
2kEX2I{|X | � η j}

jl(η j)
+Cφ1/2(k)

� C

[
k
j
+ φ1/2(k)

]
.

Hence by (1.1) and Lemma 2.3 with δ = 1 we obtain (2.2).
Now we prove (2.3). Let

Zk = I

{
k⋃

l=1

(|Xl| > ηk)

}
−EI

{
k⋃

l=1

(|Xl | > ηk)

}
,

Note that j/k > (logDn)2/δ > 2 and I(A∪B)− I(B) � I(A) for any sets A and B. Then
by Lemmas 2.1 and 2.2 we get

∣∣EZkZ j
∣∣= ∣∣∣∣∣cov

(
I

{
k⋃

l=1

(|Xl | > ηk)

}
, I

{
j⋃

m=1

(|Xm| > η j)

})∣∣∣∣∣
�
∣∣∣∣∣cov

(
I

{
k⋃

l=1

(|Xl | > ηk)

}
, I

{
j⋃

m=1

(|Xm| > η j)

}
−I

{
j⋃

m=2k+1

(|Xm| > η j)

})∣∣∣∣∣
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+

∣∣∣∣∣cov

(
I

{
k⋃

l=1

(|Xl| > ηk)

}
, I

{
j⋃

m=2k+1

(|Xm| > η j)

})∣∣∣∣∣
� E

∣∣∣∣∣I
{

j⋃
m=1

(|Xm| > η j)

}
− I

{
j⋃

m=2k+1

(|Xm| > η j)

}∣∣∣∣∣+Cφ1/2(k)

� E

∣∣∣∣∣I
{

2k⋃
m=1

(|Xm| > η j)

}∣∣∣∣∣+Cφ1/2(k) � 2kP(|Xl| > η j)+Cφ1/2(k)

� Ck
1

η2
j

o(l(η j))+Cφ1/2(k) � C

[
k
j
+ φ1/2(k)

]
.

Hence by (1.1) and Lemma 2.3 with δ = 1 we obtain (2.3). �

LEMMA 2.5. Suppose that the assumptions of Theorem 1.1 hold. Then we have

Tk√
Aβkl(ηk)

d→ N . (2.4)

Here and in the sequel, N is a standard normal random variable, and
d→ denotes the

convergence in distribution.

Proof. Suppose that the assumptions of Theorem 1.1 hold. Liu et al. [11] obtained

Tk√
AβVk

d→ N .

On the other hand, suppose that the assumptions of Theorem 1.1 hold. Liu and Lin [9]
obtained

V 2
k

B2
k

P→ 1.

Here B2
k = kl(ηk) . By Slutsky theorem, hence we can obtain (2.4). �

LEMMA 2.6. Suppose that the assumptions of Theorem 1.1 hold. Then we have

lim
n→∞

1
Dn

n

∑
k=1

dkI

{
T ∗
k√

Aβkl(ηk)
� x

}
= Φ(x) a.s. for any x ∈ R. (2.5)

Proof. For arbitrary ε > 0, by Markov’s inequality and lemma 2.1, there exists
sufficient large N such that when k > N we have

P

(
|Tk −T ∗

k |√
Aβkl(ηk)

� ε

)
� C

∑k
i=1 |aki|E|X |I{|X |> ηk}√

Aβkl(ηk)

� C
ko(l(ηk))√
Aβkl(ηk)ηk

� C
ko(l(ηk))√
Aβkl(ηk)

= o(1).

(2.6)
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By lemma 2.5, (2.6) and Slutsky theorem we have

T ∗
k√

Aβkl(ηk)
d→ N . (2.7)

Let f be a bounded Lipschitz function having a derivative h bounded by C . From (2.7)
we have

E f

(
T ∗
k√

Aβkl(ηk)

)
→E f (N ) . (2.8)

On the other hand, noting that (2.5) is equivalent to

lim
n→∞

1
Dn

n

∑
k=1

dk f

(
T ∗
k√

Aβkl(ηk)

)
= E f (N ) a.s. (2.9)

Hence, to prove (2.5), it suffices to show that

lim
n→∞

1
Dn

n

∑
k=1

dk

[
f

(
T ∗
k√

Aβkl(ηk)

)
−E f

(
T ∗
k√

Aβkl(ηk)

)]
= 0 a.s. (2.10)

The proof of (2.10) is similar to that of (2.1). So we omit it here. �

3. Proof of Theorem 1.1

In order to prove (1.6), it suffices to prove the following two inequalities:

limsup
n→∞

1
Dn

n

∑
k=1

dkI

{
Tk√
AβVk

� x

}
� Φ(x) a.s. for any x ∈ R. (3.1)

liminf
n→∞

1
Dn

n

∑
k=1

dkI

{
Tk√
AβVk

� x

}
� Φ(x) a.s. for any x ∈ R. (3.2)

To prove (3.1), noting that for x � 0 and 0 < δ < 1/2 we have

limsup
n→∞

1
Dn

n

∑
k=1

dkI

{
Tk√
AβVk

� x

}

� limsup
n→∞

1
Dn

n

∑
k=1

dkI

{
Tk√
Aβ

� x
√

(1+ δ )kl(ηk)

}

+ limsup
n→∞

1
Dn

n

∑
k=1

dkI
{
V 2

k > (1+ δ )kl(ηk)
}

� limsup
n→∞

1
Dn

n

∑
k=1

dkI

{
T ∗
k√
Aβ

�
(

x+
δ√

1+ δ

)√
(1+ δ )kl(ηk)

}

+ limsup
n→∞

1
Dn

n

∑
k=1

dkI

{∣∣∣∣∣Tk −T∗
k√

Aβ

∣∣∣∣∣> δ
√

kl(ηk)

}
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+ limsup
n→∞

1
Dn

n

∑
k=1

dkI
{
V

2
k > (1+ δ )kl(ηk)

}
+ limsup

n→∞

1
Dn

n

∑
k=1

dkI

{
k⋃

l=1

(|Xl| > ηk)

}

= limsup
n→∞

1
Dn

n

∑
k=1

dk(M1 +M2 +M3 +M4). (3.3)

For x < 0, similar to (3.3),we have

limsup
n→∞

1
Dn

n

∑
k=1

dkI

{
Tk√
AβVk

� x

}

� limsup
n→∞

1
Dn

n

∑
k=1

dkI

{
Tk√
Aβ

� x
√

(1− δ )kl(ηk)

}

+ limsup
n→∞

1
Dn

n

∑
k=1

dkI
{
V 2

k < (1− δ )kl(ηk)
}

� limsup
n→∞

1
Dn

n

∑
k=1

dkI

{
T ∗
k√
Aβ

�
(

x+
δ√

1− δ

)√
(1− δ )kl(ηk)

}

+ limsup
n→∞

1
Dn

n

∑
k=1

dkI

{
|Tk −T ∗

k√
Aβ

| > δ
√

kl(ηk)

}

+ limsup
n→∞

1
Dn

n

∑
k=1

dkI
{
V

2
k < (1− δ )kl(ηk)

}
+ limsup

n→∞

1
Dn

n

∑
k=1

dkI

{
k⋃

l=1

(|Xl| > ηk)

}

= limsup
n→∞

1
Dn

n

∑
k=1

dk(K1 +K2 +K3 +K4). (3.4)

We only need to prove that (3.1) holds when x � 0 since for x < 0 we have the same
conclusion. By Lemma 2.6 we can easily get

lim
n→∞

1
Dn

n

∑
k=1

dkI

{
T ∗
k√
Aβ

�
(

x+
δ√

1+ δ

)√
(1+ δ )kl(ηk)

}
= Φ(

√
1+ δx+ δ ) a.s.

(3.5)
Let f1 be a real-valued functions such that

I{|x| � δ} � f1(x) � I{|x| � δ/2} and sup
x
| f ′(x)| < ∞.
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By Lemma 2.1 and kl(ηk) ∼ η2
k , for arbitrary ε1 > 0, there exists K1 such that when

k > K1

E|X |I{|X |> ηk} � ε1l(ηk))
ηk

, kl(ηk) � 2η2
k , (3.6)

for every k > K1 . Then by Markov’s inequality, Lemma 2.4 and (3.6) we have

limsup
n→∞

1
Dn

n

∑
k=1

dkM2 = limsup
n→∞

1
Dn

n

∑
k=1

dkI

{∣∣∣∣∣Tk −T ∗
k√

Aβ

∣∣∣∣∣> δ
√

kl(ηk)

}

� limsup
n→∞

1
Dn

n

∑
k=1

dk f1

(
T̃ ∗
k√

Aβkl(ηk)

)

� limsup
n→∞

1
Dn

n

∑
k=1

dk

[
f1

(
T̃ ∗
k√

Aβkl(ηk)

)
−E f1

(
T̃ ∗
k√

Aβkl(ηk)

)]

+ limsup
n→∞

1
Dn

n

∑
k=1

dkE f1

(
T̃ ∗
k√

Aβkl(ηk)

)

= limsup
n→∞

1
Dn

n

∑
k=1

dkE f1

(
T̃ ∗
k√

Aβkl(ηk)

)

� limsup
n→∞

1
Dn

n

∑
k=1

dkEI

{
|T̃ ∗

k |√
Aβ

>
δ
√

kl(ηk)
2

}

� limsup
n→∞

C
Dn

n

∑
k=1

dk
E|T̃ ∗

k |√
kl(ηk)

� limsup
n→∞

C
Dn

n

∑
k=1

dk
∑k

i=1 |aki|E|X |I{|X |> ηk}√
kl(ηk)

� limsup
n→∞

C
Dn

n

∑
k=1

dk
kE|X |I{|X |> ηk}√

kl(ηk)

� limsup
n→∞

C
Dn

K1

∑
k=1

kdk√
kl(ηk)

+ lim
n→∞

sup
C
Dn

n

∑
k=K1+1

kdk√
kl(ηk)

ε1l(ηk)
ηk

� 0+ limsup
n→∞

C
Dn

n

∑
k=K1+1

ε1dk = ε1 a.s.

Now, letting ε1 → 0, we obtain

limsup
n→∞

1
Dn

n

∑
k=1

dkM2 = 0 a.s. (3.7)

By the same arguments as above we can get from Lemmas 2.1 and 2.4 that

limsup
n→∞

1
Dn

n

∑
k=1

dkM3 = 0 a.s. (3.8)
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limsup
n→∞

1
Dn

n

∑
k=1

dkM4 = 0 a.s. (3.9)

By (3.3)–(3.9), letting δ → 0 we can get that (3.1) holds.
Now to prove (3.2). Similarly to (3.3) and (3.4), for x � 0, we can obtain

liminf
n→∞

1
Dn

n

∑
k=1

dkI

{
Tk√
AβVk

� x

}

� liminf
n→∞

1
Dn

n

∑
k=1

dkI

{
Tk√
Aβ

� x
√

(1− δ )kl(ηk)

}

− limsup
n→∞

1
Dn

n

∑
k=1

dkI
{
V 2

k < (1− δ )kl(ηk)
}

� liminf
n→∞

1
Dn

n

∑
k=1

dkI

{
T ∗
k√
Aβ

�
(

x− δ√
1− δ

)√
(1− δ )kl(ηk)

}

− limsup
n→∞

1
Dn

n

∑
k=1

dkI

{∣∣∣∣∣Tk −T ∗
k√

Aβ

∣∣∣∣∣> δ
√

kl(ηk)

}

− limsup
n→∞

1
Dn

n

∑
k=1

dkI
{
V

2
k < (1− δ )kl(ηk)

}
− limsup

n→∞

1
Dn

n

∑
k=1

dkI

{
k⋃

l=1

(|Xl| > ηk)

}
.

(3.10)

If x < 0, we have

liminf
n→∞

1
Dn

n

∑
k=1

dkI

{
Tk√
AβVk

� x

}

� liminf
n→∞

1
Dn

n

∑
k=1

dkI

{
Tk√
Aβ

� x
√

(1+ δ )kl(ηk)

}

− limsup
n→∞

1
Dn

n

∑
k=1

dkI
{
V 2

k > (1+ δ )kl(ηk)
}

� liminf
n→∞

1
Dn

n

∑
k=1

dkI

{
T ∗
k√
Aβ

�
(

x− δ√
1+ δ

)√
(1− δ )kl(ηk)

}

− limsup
n→∞

1
Dn

n

∑
k=1

dkI

{∣∣∣∣∣Tk −T ∗
k√

Aβ

∣∣∣∣∣> δ
√

kl(ηk)

}

− limsup
n→∞

1
Dn

n

∑
k=1

dkI
{
V

2
k > (1+ δ )kl(ηk)

}
− limsup

n→∞

1
Dn

n

∑
k=1

dkI

{
k⋃

l=1

(|Xl| > ηk)

}
.

(3.11)
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The remaining proof is similar to that of (3.1), so we omit it here. Therefore, we
complete the proof of Theorem 1.1.
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