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NEW REFINEMENTS OF GENERALIZED ACZEL’S
INEQUALITY AND THEIR APPLICATIONS

JINGFENG TIAN AND SHANHE WU

(Communicated by J. Pecari¢)

Abstract. In this paper, we give several new refinements of generalized Aczél’s inequality. More-
over, as applications, some new refinements of integral form of generalized Aczél-type inequality
are given.

1. Introduction

In 1956, Aczél [1] established the following inequality, which is called Aczél’s
inequality.

THEOREM A. If a;, b; (i=1,2,...,n) are positive numbers such that a} —
St ,a? >0 and b3 — 3! ,b? >0, then

n n n
(a% — Za?) <b% — z blz) < (albl — Za,-b,-)
i=2 i=2 i=2

As we all know, Acz€l’s inequality has many applications in the theory of func-
tional equations in non-Euclidean geometry, and many authors (see [2, 4-15] and refer-
ences therein) have given considerable attention to this inequality and its refinements.

In 1959, Popoviciu [3] derived an exponential generalization of the Aczél inequal-
ity, which is stated in the following theorem.

THEOREM B. Let p > g > 1, %—!— é =1, andlet a;, b; (i=1,2,...,n) be positive
numbers such that a — ¥ ,af >0 and b? — 3! , b1 > 0. Then

2

ey

1 N ]
<a1; - zag’> ’ (b‘{ - zbgf> " <aibi - Yab: @
i=2 i=2 i=2

Later, in 1982, Vasi¢ and Pecari¢ [5] presented a reversed version of inequality (2)
as follows.
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THEOREM C. Let ¢ <0, p >0, Il—?—l—é =1, and let a;, b; (i=1,2,...,n) be
positive numbers such that a — ¥ ,al >0 and b? -3} ,b! > 0. Then

1 1
n F n E n
(a’f—Zaf) (b’f—%b?) > aib _Eéaibi' 3)
i=2 i= i=

In another paper, Vasi¢ and Pecari¢ [6] presented a further extension of inequality
@ A A

THEOREM D. Let a,, >0, 4;>0, aj =3 4] >0, r=12,....n, j=
1,2,...,m, andletzj 1)L > 1. Then

m n % n m
{1 (- %) ” < e 5 [T @

J= r=2j:1

Recently, Tian in [4] gave the reversed version of inequality (4) as follows.
THEOREM E. Let arj>0(r=12,...,n, j=12,....m), 1 #0, 1; <0 (j =

2,3,...m), T, & <La)y—!,al>0(j=12,..,m). Then

ﬁ(ﬂf’;—i )_ lf[ Elflla, 5)

j=1 r=2
Moreover, in [4] Tian established an integral type of inequality (5).
THEOREM F. Let A1 >0, ;<0 (j=2,3,---,m), z;ﬂzuij =1, let M; >0
(j=1,2,---,m), andlet f; (j=1,2,---,m) be positive Riemann integrable functions
on la,b] such that M?j - fff?j (x)dx > 0. Then

m . b ) L/ m b m
H(W’— / f.?’(x)dX) 7T [ T (6)
J=1 a J=1 @ j=1

Obviously, the integral form of inequality (4) under the assumption Z;f': 1 7%, =1
is also valid, i.e.,

THEOREM G. Let ;>0 (j=1,2,---,m), ¥7_, %, =1,let M;>0 (j=1,2,---,m),
andlet f; (j=1,2,---,m) be positive Riemann integrable functions on [a,b| such that

— J2 £} (x)dx > 0. Then

m ) b ) L/ m b m
H(W’— / f.?’(x)dX) 7 <IIM;- [ TTseds @)
j=1 a j=1 @ j=1

The main purpose of this work is to give new refinements of inequality (4) and (5).
As applications, refinements of inequalities (6) and (7) are also given.
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2. New refinements of generalized Aczél’s inequality

We need the following lemmas in our deduction.

LEMMA 2.1. [4] Let a;; >0 (r=1,2,...,n,j=1,2,...,m), let Ay, be a real
number, A; <0 (j=1,2,....m—1), and let B = max{¥]_| A;,1}. Then

n m m n ﬂ,
> [1ay >n'PT1 (Zarj) . (8)
j=1 \r=1

r=1j=1

LEMMA 2.2. [8] Let a;; >0 (r=1,2,...,n,j=1,2,...;m), let A,; >0 (j =
1,2,...,m), and let y:min{z;-"zllj, 1}. Then

n o m y h m n )“./'

o AR 1 (O I ©)
r=1j=1 j=1 \r=1

LEMMA 2.3. [7]Let 0<x <1, oo > 0. Then

x
max{o, 1}

RI—

(1-0)% <1 (10)

LEMMA 2.4. [2] Let a;,x; (i=1,2,...,n) be real numbers such that a; >0 and
xi>—1.IfA, =3 a;<1, then
n n
[T +x)% <14 awi. (11)
i=1 i=1
Ifeither a; > 1 (i=1,2,...,n) or a; <0 (i=1,2,...,n), and if all x; are positive or
negative with x; > —1, then the reverse inequality of (11) holds.

LEMMA 2.5. Let Ay <A < ... <Ay <0, ler X; > 1 (j=1,2,...,m), and let
m>=2. Then

m 2\ % m 1 m—1 Y y 2
H(l-x/) "+TIx = 1_2_7L1 D (Xj’—Xjfll> . (12)

j=1

Proof. From the hypotheses in Lemma 2.5, it is easy to verify that

0> ! > ! > > ! > !
A] = 2,2 R Am71 = A’m’
and 1 1 1 1
— <0(j=23,....m—1),— ——— <0.
o, 2 SoU T T
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: 1 1 1 1 1
Co?sequentlly, accor({mg to 21T1 + —11— (212 211) + 2112 + ? + (35 — 2_)
-t 2lm72 + 2lm72 + (2117171 o 2111172) + 2117171 + 2lmfl + (E o 2lm71) + 20 - ll

%2+...+%m < 0, by using Lemma 2.1 we have
m—1 o ﬁ m—1 At A ﬁ
H {X +(1_Xj+1 )] ' l_Il [Xj+l +(1-X; )} !
J=
m_2 /+1 Ajt1 M,H ﬁ
l_Il J+1 Xj+l )}
j:
S 1
X[ m_|_ I_Xl ):| 221 X |:X1M+(1_X1M):| 22
= '\ 24 G4\ 25 (il ﬁ*ﬁ
< T |0 () (g o
j=
(X mEI 2lm I(XA ) n— I(le)imiﬁ(xll)ﬁ

2 j+1 l l j+1 ZAhl_ﬁ
+ H (1-x j+1) (I_Xj) (1_ YR !

Jj=1

1 1

—

X

s (1= X)) ot (1= X ) Pt (1= Xom) P (1 X]) P, (13)

m—1
which is equivalent to the following inequality:

m—1 m m

T [i- ()] < floeflo-xs. as

J=1 J=1 Jj=1

On the other hand, applying Lemma 2.4 we have

1 1
A A e A\ 2]
) T T (]

Jj=1

m—1

i1

~

m—1 1

A oA\ 2
SUS ) as
j:

Combining inequalities (14) and (15) we can get inequality (12). The proof of
Lemma 2.5 is completed.

LEMMA 2.6. Let A, >0, A1 < Ay < .</lm1<01etO<Xm<1,Xj>1
(j=12,....m—1),andlet m>2, B = max{zj 1/1,1} Then

1
m AR m - 1 m—1 2 2 2
Hl<1—x,.-’) +11X =0 1—2—M2(Xjf—xjfj) .6
=

j=1 j=1
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Proof. The proof of Lemma 2.6 is similar to the one of Lemma 2.5, and we omit
it. O

LEMMA 2.7. Let A1 > > A >

> A >0,let 0<X; <1 (j=1,2
let m>2, y:min{2, 17 L1} Then

,2,...,m), and

j=1

1
m l)t m . 1 m—1 A Ay 2
1-X"7 +IIxi<n"f1- — (x.f_x.f+> . (17
E( J i ! 2max{A;, 21} 2 ! i+ (a7

Proof. From the hypotheses in Lemma 2.7, it is easy to verify that

0< ! < ! < < < !
/II\M\'”\ 71\1111’

and 1 1 1 1

— — >0(j=2,3,....m—1),— ——>0.

o, 22U T T

Consequently, according to ﬁ + ﬁ + (2}% 211) + 212 + 212 + 13 — 212) +
1 1 1 1 1 1 1 11

-t 2lm72 + 2lm72 + (2117171 a 2111172) + 2117171 + 2lmfl + (E 2lm71) + 20 - Tl +
%2 +...+ t > 0, by using Lemma 2.2 we have

j=1

(oo

m2r Aok
j+1 Ajt1 j+1 j
x9N | [Xj+1 (1-x jH1 )} ! !

() s (e () %

{H (=X 1-xP) 5 (1-x )__]}

/+1

(1= X2 Tt (1= X 1) Pt (1= Xin) 3 T (1-XP) 7, (18)

which is equivalent to the following inequality:

m—1 2 ﬁ €1

Aj Ajy1 j 1 AN 75
[ |1 {1— (Xjf—xjg) } > ] |1Xj+ [ |1(1—Xj’) il 9
J= J= J=
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On the other hand, applying the arithmetic-geometric means inequality we obtain

-1
_ X )L]+1 2 - 1 m—1 : le X}LjJrl 2 m
[ () e et & [ ()
j=

1 m=l ) N2 !
[1——1 (X?lf Xﬁ?” 0

Hence, by using the above inequality and Lemma 2.3 we have

- (- }1’

m—1 m—1

i=1 Jj=1

~.
.

=1
<l1- ! mil(xkf le“)
T m-Dmax{ 2y SV

1 m—1 y Y 2
:1—f2<xjf—xfiﬁl). Q1)

Combining inequalities (19) and (21) we can get inequality (17). The proof of
Lemma 2.7 is completed. [

THEOREM28 Leta,;j >0 (r=1,2,....n, j=1,2,....m), i <A <...< Ay,
alj s 2a” >0 (j=1,2,...,m), let m>2,n>2, and let r:max{z;ﬂ:”ij,l}.
Then

H(au zau)ll>”l TH“IJ EH“U

j=1 r=2j=
_ lj A (12
Canan...ap"d i apj it 22)
2M = e\ i ’
JRU= Ny gy

The inequality (22) is also valid for A, >0, A <A < ... < Ay <O.

Proof. Case (I). When A{,4;,...,4,; <0, then T= 1. On the one hand, from the
hypotheses of Theorem 2.8 we have
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: >1 (j=1,2,...,m). (23)
CHE
1j
ul'/:fz," alj 1
Consequently, by using Lemma 2.5 with a substitution X; = (%) 4 in
a;
(12), we have
L Aj A L
lm—I ;l=2arj] Aj +ﬁ al;’ z¢*2ar; Aj
n Aj n Aj
j=1 “1/' j=1 alj
A; A1
> 1_Lm§ LA Rk
g M3 a gt
= 1j 1(j+1)
Aj Aj+1 B
l m—1 n a / a i+1
- g B )] @
Jj=1Ltr=2 Na; al(jH)
which implies
U TR %
1 (- 2%)
j=1 r=2
L Aj Ajt1 2
a 2 A anan..am "G [S (4 Y
> ;— p) Y e —L )25
/'Hlalj H(za”> 2 =1 Z‘2 PR )
= = e R (VA

On the other hand, applying Lemma 2.1, we obtain

Il (2“3})% <Y [lay- (26)

=1 \r=2 r=2 j=1

Combining inequalities (25) and (26) we can get inequality (22).
Case (IT). When A, > 0,A1,..., 4,1 < 0. From the hypotheses of Theorem 2.8,
it is easy to verify that

2 L
(e~ Spap)

0< : <1, 27)
(afn)
and
Aj n Aj JLL
@”_zﬁﬂ”)j>1 (G=1,....m—1). (28)

1

A.
(alj') g
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Consequently, by the same method as in Case (I), and using Lemma 2.6 with a

alm _N\n [/Lm Am )LJ: _\n )Lj €1
substitution X, — % X;— (%f“) Y(j=1,....m—1) in(16),
Am'\ A a,’
( Dm " 1j
we obtain the desired inequality.
The proof of Theorem 2.8 is completed. O
If we set 371 /1 < 1, then from Theorem 2.8 we obtain the following refinement

of inequality (5) under the assumption A} <A <... <Ay, 0r 4, >0, 4 <A <
Am_l <0.

COROLLARY29 Leta,,>0(r_12 o, j=12...m), i< <...<
Am> ,1/1 lalj Iy 2a”>0(]—1,2, .,m). Then

fi(d-£)” > flov- 1o

j=1
lj )LjJrl 2
Canap...aip "G i G i+ (29)
24 LS\ ’
=L Ny gy

The inequality (29) is also valid for A, >0, A <A < ... < Ay <O.

In particular, putting m =2, A, =p >0, L, =¢<0, a1 =a,, ap=b, (r=
1,2,...,n) in Theorem 2.8, we obtain a new refinement and generalization of inequality

Q).

COROLLARY 2.10. Let a, >0, by >0 (r=1,2,...,n), af =¥ ,al >0, b] -
bl >0, p>0,9<0,p= max{% + 57 1}. Then, the following inequality holds:

L ; 1
r=2 r=2
aib a  bpI\1?
> n'Pajby — Za, e [Z (—p - —qﬂ : (30)
2q [[Z\ay Db

If we set % + é =1 in Corollary 2.10, then the following refinement of inequality
(3) holds.

COROLLARY 2.11. Let a,>0, b, >0 (r=1,2,...,n),let p>0, <0, 141 =
1, andlet a} — 3! ,al >0, b —3" bl > 0. Then

1 n 1
(-3 -2
r=2 =2

P g\ 12
> ayb) — Zarb—“l—bl[z<“—;—%>]. 31)
1

r=2 \4]



NEW REFINEMENTS OF GENERALIZED ACZEL’S INEQUALITY AND THEIR APPLICATIONS 255

THEOREM 2.12. Let a,; >0 (r=1,2,...,n, j=12,....m), i 2 A >... >
Am >0, aﬁ.— ;‘zzafj’-' >0 (j:1727...,m),letm>27n>2,andletp=111in{2;-”:1QLL
Then

]

m }L i h m n m
j_ J —-pP _
(alj 2 arj) sn H‘ll/ 2 H“rj
j=1 r= j=1 r=2j=1
anap...ap; "<& Y al{tl) ?
m r] r]
e | S5 @)
j=1 Lr=2 alj al(JH)

Proof.
From the hypotheses of Theorem 2.12, it is easy to verify that

1
() — Sy aa)

0< : <1l (j=12,...,m). (33)

Ajy 2

(all)

Consequently, by the same method as in Theorem 2.8, and using Lemma 2.7 with

Lo L
a substitution X; — (%) % (j=1,2,...,m) in (17), we obtain the desired

ap;
inequality. [J
If we set Z;”zl )LL > 1, then from Theorem 2.12 we obtain the following refinement
]

of inequality (4) under the assumption A; > A, > ... > 4, > 0.

COROLLARY2 13. Let ar,>0 (r=012,...n, j=1,2,....m), 4 =2 A >
Am >0, ZJ IA >1, aitj py 2a”>0 (]—1 2,...,m), andlet m>2, n>2. Then

j=1 r=2 j=1 r=2j=1
Aj Ajy1
m—1rT n J a’ 2
apaiy .- 611m r(j+1)
ez fim DA 34
2max{7Ll, Z[%(a al-’“ )] &Y
N 11 1(j+1)

In particular, putting m =2, Ay =p>A =9 >0, a1 =a,, ap=>b, (r=
1,2,...,n) in Theorem 2.12, we obtain a new refinement and generalization of inequal-
ity (2).

-1}
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COROLLARY 2.14. Let a, >0, b,>0 (r=12,...,n), let p=q>0, p=
min{}—)—f—é,l},andlet al =3 ,al >0, b1 —3" ,b{ > 0. Then

L n 1
(o-34) -2
r=2

r=2
_ i ai1by n Ll{«7 b(ri 2
<n'"Payb, — ab—i{ (——— . (3%
DI v ] PV
If we set + + é =1 in Corollary 2.14, then the following refinement of inequality
(2) holds.
COROLLARY 2.15. Let a, >0, b, >0 (r=1,2,....n), let p,q >0, 11—?+§ =1,
andlet a =¥ ,af >0, b1 —3" bl >0. Then
n 1 n 1
P q
(-5 (15
r=2 =2
n n 14 q
a1b1 ay b
< albl — arbr |: ( ):| . (36)
Z’z 2max{p,q} E& a’f

3. Applications
In this section, we show two applications of the inequalities newly-obtained in

Section 2.
Firstly, we present a new refinement of inequality (6).

THEOREM 3.1. Let B; >0 (j=1,2,....m),let 4, >0, 1 <A <... <Ay 1 <
0, Z;-"Zl %] =1, andlet fj (j=1,2,...,m) be positive integrable functions defined on

la,b] with B — [? £ (x)dx > 0. Then

b m

mosoo b yr
(G RACNE =118 [ Tl
j=1 “ j=1
Aj Ajrl
_Ble...Bmml[ b(f,-’(x)_f,-il (x))dxr 3

Proof. For any positive integers n, we choose an equidistant partition of [a,b] as

b— b— b—
a<a+Ta<---<a+Tak<---<a+ a(n—1)<b,

b— b—
ai» i:07l7"'7n7 A-)Ck: a k=l727---,n.
n

Xi=a-+
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In view of BY — [? f}7(x)dx > 0 (j = 1,2,...,m), it follows

A
Bj — lim

n—00

if?"(wm)b‘—“ S0(=1,2..,m).
k=1

n n

Consequently, there exists a positive integer N, such that for all n,/ > N and j =
1,2,....m,
)Lj 2 Qt,j k(b - a) b—a
B; —kglfj (a—I—T W > 0.

And then, by using Theorem 2.8, for any n > N, we find

lm_[ [B?f_ ifjk,- (‘HM)b;arj

n n

18-3 (Hfj<a+k(b—a)>> (b_a>;l+;2+._.+llm

n

L A k(b—a)\ b—a\1?
Tl (e ) )] e

Jj+1

Since

we have

j=1 k=1 n n
ULy W [ k(b—a) b—a
M- 3 (e ) ) (%)
=1 =1 \j=1
BlB2 Bmm1|:n (l A k(b—a) b—a
- —fi’a+
24 Fz‘l kg‘l B’}J J n n
1 k(b—a)\ b—a\]*
=il (a+7( a)>—a)] : (39)
B}J+l n n
j+1

Noting that fj(x) (j=1,2,...,m) are positive Riemann integrable functions on

[a,b], we know that [T}, fj(x) and f?j (x) are also integrable on [a,b]. Letting n —
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oo on both sides of inequality (39), we get the desired inequality (37). The proof of
Theorem 3.1 is completed. [

We give here a direct consequence from Theorem 3.1. Putting m =2,A; =g <
0,4, =p>0,B, =a;,B, =0y, f1 = f,f» =g in (37), we obtain a special important
case follows.

COROLLARY 3.2. Let p and q be real numbers such that p > 0,q <0 and % +
=1, let aj,b; >0, and let f,g be positive integrable functions defined on [a,b] with
— [P fP(x)dx > 0 and b? — [° g9(x)dx > 0. Then

(- [ rreas) : (b? - [ rar) é
o 1o [ (EE

Nextly, we give a new refinement of inequality (7).

1
q

THEOREM 3.3. Let B; >0 (j=1,2,....m),let Ay 22> ... 2 A, >0, 21 1/1
I, m>2,andlet f; (j=1,2,...,m) be posmve integrable functions defined on |a, b]
with B;Lj - f:ffj (x)dx > 0. Then

(o 0w) <o

J

A A
m—1 b i Sy 2
- Ble...iiﬂl T [/ (f, x(%c)_fjﬁl.( )) ]] . “n
2max{/117—2 }j:l a B,»'/ B,'j:]l

Proof. The proof of Theorem 3.3 is similar to the one of Theorem 3.1, and we
omitit. [

Putting m = 2,2,1 p,z,z =q,B1 =a1,B, =b1,f1 = f,f, = g in (41), a special
case to the last theorem follows.

COROLLARY 3.4. Let p and q be real numbers such that p > q > 0 and %—i— P

1, let a;,b; >0, and let f,g be positive integrable functions defined on [a,b] with
— [2 f7(x)dx > 0 and b] — [ g%(x)dx > 0. Then

(- [ 000s) (1t~ [ soas)’

< arby — /abf(x)g(x)dx— ‘gzl Ub (f’;g,” - g[;(,{x)>dx] } 42)
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