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Abstract. The aim of this paper is to establish some new nonlinear retarded integral inequalities
of Gronwall-Bellman type. More accurately we extend certain results which have been proved
in El-Owaidy et. al, [12] and Abdeldaim and Yakout [2] to some nonlinear retarded integral
inequalities. We also give some applications to estimate the solutions of some nonlinear retarded
differential equations to illustrate the effectiveness of some from our results.

1. Introduction

Differential and integral inequalities have become major tools in the analysis of
the differential and integral equations that occur in nature or are constructed by many
mathematicians. Integral inequalities that give explicit bounds on unknown functions
provide a very useful and important device in the study of many qualitative as well as
quantitative properties of solutions of nonlinear differential equations see for instance
[1, 3–10, 13, 15, 16, 19, 21–24].

Throughout this paper, R denoted the set of real numbers, I = [0,∞) is the subset
of R , ′ denotes the derivative. C (I, I) denotes the set of all continuous functions from
I into I and C 1(I, I) denotes the set of all continuously differentiable functions from I
into I .

One of the best known and widely used inequalities in the study of differential
equations can be stated as follows:

THEOREM 1.1. (Gronwall inequality [13]) Let u(t) be a continuous function
defined on the interval D = [α,α +h] and

0 � u(t) �
∫ t

α
[bu(s)+a]ds, ∀t ∈ D,

where α,h,a and b are nonnegative constants. Then, 0 � u(t) � ahebh , ∀t ∈ D.
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The Gronwall type (Theorem 1.1) integral inequalities provide a necessary tool for
the study of the theory of differential equations, integral equations and inequalities of
the various type. After the discovery of this integral inequality which resulting from
Gronwall [13], a number of mathematicians have shown their considerable interest to
generalize the original form of this inequality which were partly inspired by the Gron-
wall’s inequality for example in [2, 7–9, 11, 12, 14, 16, 17, 25]. Closely related to the
Gronwall inequality is the following theorem

THEOREM 1.2. (Gronwall-Bellman inequality [6]) Let f (t) and u(t) be real-
valued nonnegative continuous functions defined on D1 = [0,h] , and let u0 and h are
positive constants for which the inequality

u(t) � u0 +
∫ t

0
f (s)u(s)ds,∀t ∈ D1.

Then, u(t) � u0 exp(
∫ t
0 f (s)ds) , ∀t ∈ D1.

In [12], El-Owaidy et al introduced the following theorems

THEOREM 1.3. Let u(t) , g(t) , f (t) ∈ C (I, I) and satisfy the inequality

u(t) � u0 +
∫ t

0
f (s)

[
u(2−p)(s)+

∫ s

0
g(λ )uq(λ )dλ

]p

ds, ∀t ∈ I,

where u0 > 0 , and 0 < p � 1 , 0 � q < 1 , are constants. Then

u(t) � u0 +
∫ t

0
f (s)k(s)exp

(
p(2− p)

∫ s

0
f (λ )dλ

)
ds, ∀t ∈ I,

where

k(t) =
[
u(1−q)(2−p)

0 +(1−q)
∫ t

0
g(s)exp

(
−(1−q)(2−p)

∫ s

0
f (λ )dλ

)
ds

][ p
(1−q) ]

, ∀t ∈ I.

THEOREM 1.4. Let u(t) be a real valued positive continuous function and g(t) ,
f (t) ∈C (I, I),n(t) be a positive monotonic nondecreasing continuous function defined
on I and satisfy the inequality

u(t) � n(t)+
∫ t

0
f (s)

[
u(s)+

∫ s

0
g(λ )u(λ )dλ

]p

ds, ∀t ∈ I,

where p a constant such that p ∈ (0,1) . Then

u(t) � n(t)
[
1+

∫ t

0
f (s)k0(s)n(p−1)(s)exp

(
p(1− p)

∫ s

0
g(λ )dλ

)
ds

]
, ∀t ∈ I,

where

k0(t) =
[
1+(1−q)

∫ t

0
f (s)n(p−1)(s)exp

(
−(1− p)

∫ s

0
g(λ )dλ

)
ds

][ p
(1−p) ]

, ∀t ∈ I.
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Some applications of this results can be used to the study of existence, uniqueness
theory of differential equations and the stability of the solution of linear and nonlinear
differential equations (see [6–9, 16]). This century has seen considerable and fruitful
research in the field of inequalities and their applications in various branches of mathe-
matics.

However many real-life problems that have in the past sometimes been modeled by
initial-value problems for differential equations. Actually involve a significant memory
effect that can be represented in a more refined model using a differential equation
incorporating retarded or delayed arguments. In this situations, we need to discuss some
retarded nonlinear integral inequalities, where non retarded argument t is changed into
retarded argument α(t) . In order to study retarded differential and integral equations
we consider some inequalities with retarded argument. Closely related to the this type
from integral inequalities is the following theorem

THEOREM 1.5. (Lipovan [15]) Let u(t), f (t)∈C ([t0,T0],R+) , α(t)∈C ([t0,T0],
[t0,T0]) be nondecreasing with α(t) � t on [t0,T0] and let u0 be a nonnegative con-
stant, then the inequality

u(t) � u0 +
∫ α(t)

α(t0)
f (s)u(s)ds, t0 < t < T0,

implies that,

u(t) � u0 exp
(∫ α(t)

α(t0)
f (s)ds

)
, t0 < t < T0.

Recently, many new results on the nonlinear retarded inequalities can be found,
see for instance in [1, 4, 5, 10, 15, 18, 20–24]. The main objective of this paper is
investigate explicit bounds on retarded integral inequalities of Gronwall-Bellman type
which can be used as handy tools to study the qualitative behavior of certain retarded
differential and integral equations.

Pachpatte in [17] investigated the following retarded inequality

u(t) � u0 +
∫ t

a
g(s)u(s)ds+

∫ α(t)

a
h(s)u(s)ds, ∀ t ∈ J, (1.1)

where u0 is a constant. Replacing u0 by a nondecreasing continuous function n(t) in
the above inequality El-Owaidy et al in [10] studied the following nonlinear retarded
inequality

up(t) � np(t)+
∫ t

0
g(s)up(s)ds+

∫ α(t)

0
h(s)uq(s)ds, ∀t ∈ J. (1.2)

Also, Abdeldaim and El-Deeb in [3] studied the following nonlinear retarded inequality

u(t) � n(t)+
∫ α(t)

0
f (s)

[
u(s)+

∫ s

0
g(λ )u(λ )dλ

]p

ds, ∀ t ∈ J. (1.3)
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However, sometimes we need to study such inequalities with differentiable func-
tion in place of nondecreasing continuous function n(t) term outside the integrals. In
this paper, our results concern with integral inequalities with such a differentiable func-
tion n(t) term outside the integrals, which gives us another analysis techniques in the
proof and different form in the solution of the integral inequality as we will see in the
Theorem 2.3 and the Theorem 2.4 in Section 2.

2. Main results

In this section, we state and prove some new nonlinear retarded integral inequal-
ities of Gronwall-Bellman type, which are further generalizations for some known re-
sults and can be used as ready and powerful tools in developing the theory of nonlinear
retarded differential and integral equations.

THEOREM 2.1. Let u(t) , g(t) , f (t) ∈ C (I, I) , α(t)∈C 1(I, I) be nondecreasing
with α(t) � t on I . If the inequality

u(t) � u0 +
∫ α(t)

0
f (s)

[
u(2−p)(s)+

∫ s

0
g(λ )uq(λ )dλ

]p

ds, ∀t ∈ I, (2.1)

where q,u0 > 0 and 0 < p � 1 are constants.
A: If 0 � q < 1 , then

u(t) � u0 +
∫ α(t)

0
f (s)k1(α−1(s))exp

(
p(2− p)

∫ s

0
f (λ )dλ

)
ds, ∀t ∈ I, (2.2)

where for all t ∈ I

k1(t) =
[
u(1−q)(2−p)

0 +(1−q)
∫ α(t)

0
g(s)exp

(
−(1−q)(2− p)

∫ s

0
f (λ )dλ

)
ds

][ p
(1−q) ]

.

(2.3)
B: If q > 1 , then

u(t) � u0 +up(2−p)
0

∫ α(t)

0
f (s)k2(α−1(s))exp

(
p(2− p)

∫ s

0
f (λ )dλ

)
ds, ∀t ∈ I, (2.4)

where

k2(t) =
[
1− (q−1)u(2−p)(q−1)

0

∫ α(t)

0
g(s)exp

(
(2− p)(q−1)

∫ s

0
f (λ )dλ

)
ds

][ −p
(q−1) ]

,

(2.5)
for all t ∈ I , and

1− (q−1)u(2−p)(q−1)
0

∫ α(t)

0
g(s)exp

(
(2− p)(q−1)

∫ s

0
f (λ )dλ

)
ds > 0, ∀t ∈ I.
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Proof. A: Let J(t) equal the right hand side in (2.1), we have J(0) = u0 and

u(t) � J(t), ∀t ∈ I. (2.6)

Differentiating J(t) , with respect to t and using (2.6) leads to

dJ(t)
dt

� α ′(t) f (α(t))Y p(t), ∀t ∈ I, (2.7)

where Y (t) = J(2−p)(t)+
∫ α(t)
0 g(s)Jq(s)ds , thus we have Y (0) = u(2−p)

0 , but p � 1 →
1− p � 0 → 2− p � 1 and J(2−p)(t) � Y (t) thus we have

J(t) � Y (t), ∀t ∈ I. (2.8)

Differentiating Y (t) with respect to t and using (2.7) and (2.8), leads to

dY (t)
dt

� (2− p)α ′(t) f (α(t))Y (t)+ α ′(t)g(α(t))Yq(t), ∀t ∈ I, (2.9)

but Y (t) > 0 then we can write the inequality (2.9) in the following form

Y−q(t)
dY (t)

dt
− (2− p)α ′(t) f (α(t))Y (1−q)(t) � α ′(t)g(α(t)), ∀t ∈ I. (2.10)

If we let Y (1−q)(t) = Z(t) , we have Z(0) = u(1−q)(2−p)
0 and Y−q(t) dY (t)

dt = 1
(1−q)

dZ(t)
dt ,

then we can write the inequality (2.10) as follows

dZ(t)
dt

− (1−q)(2− p)α ′(t) f (α(t))Z(t) � (1−q)α ′(t)g(α(t)), ∀t ∈ I. (2.11)

The inequality (2.11) implies an estimation for Z(t) as in the following

Z(t) �
[
u(1−q)(2−p)

0 +(1−q)
∫ α(t)

0
g(s)exp

(
−(1−q)(2− p)

∫ s

0
f (λ )dλ

)
ds

]

× exp

(
(1−q)(2− p)

∫ α(t)

0
f (s)ds

)
,∀t ∈ I.

(2.12)

But Y (1−q)(t) = Z(t) , then from (2.12), we have

Y p(t) � k1(t)exp

(
p(2− p)

∫ α(t)

0
f (s)ds

)
, ∀t ∈ I, (2.13)

where k1(t) as defined in (2.3), and from (2.13) in (2.7), we obtain

dJ(t)
dt

� α ′(t) f (α(t))k1(t)exp

(
p(2− p)

∫ α(t)

0
f (s)ds

)
, ∀t ∈ I.
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The above inequality implies an estimation for J(t) as in the following

J(t) � u0 +
∫ α(t)

0
f (s)k1(α−1(s))exp

(
p(2− p)

∫ s

0
f (λ )dλ

)
ds, ∀t ∈ I. (2.14)

Using (2.14) in (2.6), we get the required inequality in (2.2).
B: Let J1(t) equal the right hand side in (2.1), we have J1(0) = u0 and

u(t) � J1(t), ∀t ∈ I. (2.15)

Differentiating J1(t) , with respect to t and using (2.15) leads to

dJ1(t)
dt

� α ′(t) f (α(t))Y p
1 (t), ∀t ∈ I, (2.16)

where Y1(t) = J(2−p)
1 (t) +

∫ α(t)
0 g(s)Jq

1 (s)ds , thus we have Y1(0) = u(2−p)
0 , but p �

1 −→ 1− p � 0 −→ 2− p � 1 and J(2−p)
1 (t) � Y1(t) thus we have

J1(t) � Y1(t), ∀t ∈ I. (2.17)

Differentiating Y1(t) with respect to t and using (2.16) and (2.17), leads to

dY1(t)
dt

� (2− p)α ′(t) f (α(t))Y1(t)+ α ′(t)g(α(t))Yq
1 (t), ∀t ∈ I, (2.18)

but Y1(t) > 0 then we can write the inequality (2.18) in the following form

Y−q
1 (t)

dY1(t)
dt

− (2− p)α ′(t) f (α(t))Y−(q−1)
1 (t) � α ′(t)g(α(t)), ∀t ∈ I. (2.19)

If we let, Y−(q−1)
1 (t) = Z1(t) , we have Z1(0) = u−(2−p)(q−1)

0 , and Y−q
1 (t) dY1(t)

dt =
−1

(q−1)
dZ1(t)

dt , then we can write the inequality (2.19) as follows

dZ1(t)
dt

+(2− p)(q−1)α ′(t) f (α(t))Z1(t) � −(q−1)α ′(t)g(α(t)), ∀t ∈ I. (2.20)

The inequality (2.20) implies an estimation for Z1(t) as in the following

Z1(t) �

[
1− (q−1)u(2−p)(q−1)

0

∫ α(t)
0 g(s)exp

(
(2− p)(q−1)

∫ s
0 f (λ )dλ

)
ds

]

u(2−p)(q−1)
0 exp

(
(2− p)(q−1)

∫ α(t)
0 f (s)ds

) ,

(2.21)

for all t ∈ I . But Y1(t) =
[

1
Z1(t)

](q−1)

, then from (2.21), we have

Y p
1 (t) � up(2−p)

0 k2(t)exp

(
p(2− p)

∫ α(t)

0
f (s)ds

)
, ∀t ∈ I, (2.22)
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where k2(t) as defined in (2.5), and from (2.22) in (2.16), we obtain

dJ1(t)
dt

� up(2−p)
0 α ′(t) f (α(t))k2(t)exp

(
p(2− p)

∫ α(t)

0
f (s)ds

)
, ∀t ∈ I.

The above inequality implies an estimation for J1(t) as in the following

J1(t) � u0 +up(2−p)
0

∫ α(t)

0
f (s)k2(α−1(s))exp

(
p(2− p)

∫ s

0
f (λ )dλ

)
ds, ∀t ∈ I.

(2.23)
Using (2.23) in (2.15), we get the required inequality in (2.4). This completes the
proof. �

REMARK 2.1. If we put α(t) = t , then the part A in Theorem 2.1 reduces to the
Theorem 1.3.

THEOREM 2.2. Let u(t) , g(t) , h(t) ∈ C (I, I) , be nonnegative functions. We
suppose that ϕ1(t) , ϕ2(t) , α(t)∈C 1(I, I) are increasing functions with ϕ ′

1(t) = ϕ2(t) ,
α(t) � t , α(0) = 0 , ϕi > 0 ; i = 1,2 , for all t ∈ I and u0 be a positive constant. If the
inequality

ϕ1(u(t)) � u0 +
∫ t

0
g(s)ϕ1(u(s))ds+

∫ α(t)

0
h(s)ϕ2(u(s))ds, (2.24)

holds for all t ∈ I . Then

u(t) � Φ−1
(

Φ
(

ϕ−1
1 (u0)+

∫ α(t)

0
h(s)ds

)
+

∫ t

0
g(s)ds,

)
,∀t � T1, (2.25)

where

Φ(r) =
∫ r

r0

ϕ2(s)
ϕ1(s)

ds, r > 0, (2.26)

where Φ−1,ϕ−1
1 are the inverse functions of Φ,ϕ1 respectively, and T1 ∈ I is the largest

number such that

Φ
(

ϕ−1
1 (u0)+

∫ α(t)

0
h(s)ds

)
+

∫ t

0
g(s)ds ∈ Dom(Φ−1), (2.27)

for all t ∈ I lying in the interval 0 � t � T1 .

Proof. Let ϕ1(J2(t)) denotes the function on the right-hand side of (2.24), which
is a nonnegative and nondecreasing function on I with J2(0) = ϕ−1

1 (u0) . Then (2.24)
is equivalent to

u(t) � J2(t), u(α(t)) � J2(α(t)) � J2(t), ∀t ∈ I. (2.28)
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Differentiating ϕ1(J2(t)) , with respect to t , we get

ϕ ′
1(J2(t))

dJ2

dt
= g(t)ϕ1(u(t))+ α ′(t)h(α(t))ϕ2(u(α(t))), ∀t ∈ I. (2.29)

Using (2.28) and the relation ϕ ′
1(t) = ϕ2(t) , from (2.29) we have

dJ2

dt
� g(t)

ϕ1(J2(t))
ϕ2(J2(t))

+ α ′(t)h(α(t)), ∀t ∈ I, (2.30)

by taking t = s in the inequality (2.30), and integrating it from 0 to t , we obtain

J2(t) � ϕ−1
1 (u0)+

∫ t

0
g(s)

ϕ1(J2(s))
ϕ2(J2(s))

ds+
∫ α(t)

0
h(s)ds, ∀t ∈ I, (2.31)

from (2.31) we have

J2(t) � ϕ−1
1 (u0)+

∫ α(T)

0
h(s)ds+

∫ t

0
g(s)

ϕ1(J2(s))
ϕ2(J2(s))

ds, (2.32)

for all t � T , where 0 � T < T1 is chosen arbitrarily, T1 is defined by (2.27). Let J3(t)
denote the function on the right hand side of (2.32), which is a positive and nondecreas-

ing function on I with J3(0) = ϕ−1
1 (u0)+

∫ α(T )
0 h(s)ds and

J2(t) � J3(t), ∀t � T. (2.33)

Differentiating J3(t) with respect to t and using (2.33), we get

dJ3(t)
dt

= g(t)
ϕ1(J2(t))
ϕ2(J2(t))

� g(t)
ϕ1(J3(t))
ϕ2(J3(t))

⇒ ϕ2(J3(t))dJ3(t)
ϕ1(J3(t))

� g(t)dt, ∀t < T, (2.34)

by the definition of Φ in (2.26), from (2.34) we obtain

Φ(J3(t)) � Φ(J3(0))+
∫ t

0
g(s)ds,

� Φ
(

ϕ−1
1 (u0)+

∫ α(T )

0
h(s)ds

)
+

∫ t

0
g(s)ds, (2.35)

for all t � T , Since 0 < T � T1 is chosen arbitrary,thous if we let t = T , from (2.35)
we have

Φ(J3(T )) � Φ
(

ϕ−1
1 (u0)+

∫ α(t)

0
h(s)ds

)
+

∫ t

0
g(s)ds, ∀t � T1. (2.36)

From (2.28), (2.33) and (2.36), we get the required inequality in (2.25). This completes
the proof. �

REMARK 2.2. It is interesting to note that in the special case when ϕ1(t) = t ,
ϕ2(t) = 1, h(t) = 0 and g(t) = b (constant), then inequality given in Theorem 2.2
reduces to well known Gronwall inequality (see Theorem 1.1 ).
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REMARK 2.3. It is interesting to note that in the special case when ϕ1(t) = t ,
ϕ2(t) = 1 and h(t) = 0, then inequality given in Theorem 2.2 reduces to well known
Gronwall-Bellman inequality (see Theorem 1.2).

THEOREM 2.3. Let u(t) , f (t) , h(t) ∈ C (I, I) , and n(t) , α(t) ∈ C 1(I, I) with
n(t) � 1 , α(0) = 0 , and α(t) � t , ∀t ∈ I . If the inequality

up(t) � n(t)+
∫ t

0
f (s)up(s)ds+

∫ α(t)

0
h(s)uq(s)ds, ∀ t ∈ I, (2.37)

holds, where p > q � 0 , are constants. Then

u(t) � k3(t)exp

(
1
p

∫ t

0
f (s)ds

)
, ∀t ∈ I, (2.38)

where

k3(t) =
[
np1(0)+p1

∫ t

0

(
n′(s)+α ′(s)h(α(s))

)
exp

(
−p1

∫ s

0
f (λ )dλ

)
ds

] 1
(p−q)

,

(2.39)
for all t ∈ I , and p1 = (p−q)

p .

Proof. Let Jp
4 (t) equal the right hand side in (2.37), we have J4(0) = n

1
p (0) and

u(t) � J4(t), u(α(t)) � J4(α(t)) � J4(t), ∀t ∈ I. (2.40)

Differentiating Jp
4 (t) , with respect to t , and using (2.40) gives

pJ(p−1)
4 (t)J′4(t) � n′(t)+ f (t)Jp

4 (s)+ α ′(t)h(α(t))Jq
4 (s), (2.41)

since J4(t) > 0, we get

pJ(p−q−1)
4 J′4(t) � n′(t)

Jq
4 (t)

+ f (t)J(p−q)
4 (t)+ α ′(t)h(α(t)), (2.42)

but n(t) � 1 ⇒ Jq
4(t) � 1 ⇒ n′(t)

Jq
4 (t) � n′(t) , thus from the above inequality we get

pJ(p−q−1)
4 J′4(t)− f (t)J(p−q)

4 (t)) �
(

n′(t)+ α ′(t)h(α(t))
)

, (2.43)

if we let
J(p−q)
4 (t) = z3(t),∀t ∈ I, (2.44)

then we have z3(0) = np1(0) , and pJ(p−q−1)
4 (t) dJ4(t)

dt = [ 1
p1

] dz3(t)
dt , thus from (2.43) we

obtain
dz3(t)

dt
− p1 f (t)z3(t) � p1

(
n′(t)+ α ′(t)h(α(t))

)
, ∀t ∈ I. (2.45)
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The inequality (2.45) implies the estimation for z3(t) , as

z3(t) �
[
np1(0)+ p1

∫ t

0

(
n′(s)+ α ′(s)h(α(s))

)
exp

(
−p1

∫ s

0
f (λ )dλ

)
ds

]

× exp

(
p1

∫ t

0
f (s)ds

)
, ∀t ∈ I.

(2.46)

Then from (2.46) in (2.44), we have

J4(t) � k3(t)exp

(
1
p

∫ t

0
f (s)ds

)
,∀t ∈ I, (2.47)

where k3(t) as defined in (2.39). Using (2.47) in (2.40), we get the required inequality
in (2.38). This completes the proof. �

REMARK 2.4. It is interesting to note that in the special case when n(t) = u0

(positive constant), h(t) = 0, q = 0 and p = 1 then inequality given in Theorem 2.3
reduces to well known Gronwall-Bellman inequality (see Theorem 1.2).

REMARK 2.5. It is interesting to note that in the special case when n(t) = u2
0

(positive constant), f (t) = 0, α(t) = t , p = 2 and q = 1 then inequality given in
Theorem 2.3 reduces to well known Ou-Iang inequality [16].

REMARK 2.6. If we put n(t) = u0 (positive constant) and α(t) = t then inequal-
ity given in Theorem 2.3 reduces to the Abdeldaim and Yakout result in the Theorem
3.1 in [2].

REMARK 2.7. If we put n(t) = u0 (positive constant), α(t) = t , f (t) = 0 and
q = 1 then inequality given in Theorem 2.3 reduces to the El-Owaidy, Ragab and Ab-
deldaim result in the Theorem 1 in [11].

REMARK 2.8. If we replaced the function n(t) by the function n(t) be a positive
monotonic nondecreasing continuous function defined in I , α(t) = t , and p = 1 then
inequality given in Theorem 2.3 reduces to the El-Owaidy, Ragab and Abdeldaim result
in the Theorem 7 in [11].

REMARK 2.9. If we replaced n(t) by np(t) such that n(t) ∈ C (I, I) be a mono-
tonic nondecreasing function in the Theorem 2.3 then we get the El-Owaidy et al result
in the Inequality (1.2).

THEOREM 2.4. Let u(t),g(t), f (t)∈C (I, I) , and n(t),α(t)∈C 1(I, I) with n(t)�
1 , α(0) = 0 , and α(t) � t on I . If the inequality

u(t) � n(t)+
∫ α(t)

0
f (s)

[
u(s)+

∫ s

0
g(λ )u(λ )dλ

]p

ds, ∀t ∈ I, (2.48)
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where p ∈ [0,1) . Then

u(t) � n(t)+
∫ α(t)

0
k4(α−1(s)) f (s)exp

(
p

∫ s

0
g(λ )dλ

)
ds, ∀t ∈ I, (2.49)

where

k4(t)=
[
n(1−p)(0)+(1−p)

∫ t

0
[n′(s)+α ′(s) f (α(s))]exp

(
−(1−p)

∫ s

0
g(λ )dλ

)
ds

] p
(1−p)

,

(2.50)
for all t ∈ I .

Proof. Let J5(t) equal the right hand side of (2.48), we have J5(0) = n(0) and

u(t) � J5(t), u(α(t)) � J5(α(t)) � J5(t), ∀t ∈ I. (2.51)

Differentiating J5(t) , with respect to t , and using (2.51) gives

J′5(t) � n′(t)+ α ′(t) f (α(t))Y p
4 (t) (2.52)

for all t ∈ I , where Y4(t) = J5(α(t)) +
∫ α(t)
0 g(s)J5(s)ds , thus we have Y4(0) = n(0)

and
J5(t) � Y4(t), ∀t ∈ I. (2.53)

Differentiating Y4(t) , with respect to t , and using (2.52) gives

Y ′
4(t) � n′(t)+ α ′(t) f (α(t))Y p

4 (t)+ α ′(t)g(α(t))Y4(s), ∀t ∈ I, (2.54)

since Y4(s) > 0, then

Y−p(t)Y ′
4(t)−α ′(t)g(α(t))Y (1−p)

4 (s) �
( n′(t)

Y p
4 (t)

+ α ′(t) f (α(t))
)
, ∀t ∈ I, (2.55)

but n(t) � 1 ⇒ Y4(t) � 1 ⇒ Y p
4 (t) � 1 ⇒ n′(t)

Y p
4 (t) � n′(t) , thus from the above inequality

we get

Y−p(t)Y ′
4(t)−α ′(t)g(α(t))Y (1−p)

4 (s) � n′(t)+ α ′(t) f (α(t))), ∀t ∈ I, (2.56)

if we let
Y (1−p)

4 (t) = z4(t), ∀t ∈ I, (2.57)

then we have z4(0) = Y (1−p)
4 (0) = n(1−p)(0) , and Y−p

4 (t) dY4(t)
dt = [ 1

(1−p) ]
dz4(t)

dt , thus
from (2.56) we obtain

dz4(t)
dt

− (1− p)α ′(t)g(α(t))z4(t) � (1− p)(n′(t)+ α ′(t) f (α(t))), ∀t ∈ I. (2.58)
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The inequality (2.58) implies the estimation for z4(t) , as

z4(t) �
[
k4(t)exp

(
p

∫ α(t)

0
g(s)ds

)] (1−p)
p

, ∀t ∈ I, (2.59)

where k4(t) as defined in (2.50). Then from (2.59) in (2.57), we have

Y p
4 (t) � k4(t)exp

(
p

∫ α(t)

0
g(s)ds

)
, ∀t ∈ I. (2.60)

From (2.60) in (2.52), we obtain

J′5(t) � n′(t)+ α ′(t) f (α(t))k4(t)exp

(
p

∫ α(t)

0
g(s)ds

)
, ∀t ∈ I.

The above inequality implies an estimation for J5(t) as in the following

J5(t) � n(t)+
∫ α(t)

0
k4(α−1(s)) f (s)exp

(
p

∫ s

0
g(λ )dλ

)
ds, ∀t ∈ I. (2.61)

Using (2.61) in (2.51)we get the required inequality in (2.49). This completes the
proof. �

REMARK 2.10. If we replaced the function n(t) by the function n(t) be a positive
monotonic nondecreasing continuous function then inequality given in the Theorem 2.4
reduces to the Abdeldaim and El-Deeb result in the Inequality (1.3).

REMARK 2.11. If we put α(t) = t and replaced the function n(t) by the function
n(t) be a positive monotonic nondecreasing continuous function then inequality given
in Theorem 2.4 reduces to the inequality given in the Theorem 1.4.

3. Application

In this section, we present an application for some of our results such as the in-
equality given in Theorem 2.1, to study the boundedness of the solutions of the follow-
ing nonlinear retarded differential equation with the initial condition.⎧⎨

⎩
du(t)
dt = M(t,u(α(t)),H(t,u(α(t)))), ∀t ∈ I,

u(0) = u0,

(3.1)

where u0 is a positive constant, M ∈ C (I3,R) , H ∈ C (I× I,R) , satisfy the following
conditions:

|M(t,u,H)| � f (α(t))
[
|u(2−p)(α(t))|+

∫ t

0
|K(s,u(α(s)))|ds

]p

(3.2)

|K(t,u(α(t)))| � g(α(t))uq(α(t)). (3.3)

where f (t) , g(t) , α(t) , p and q as defined in Theorem 2.1.
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COROLLARY 3.1. Consider nonlinear system (3.1) and suppose that M,H satisfy
the conditions (3.2) and (3.3), then all solutions of Equation (3.1) exist on I and satisfy
the following estimation:

A: If 0 � q < 1 , then

u(t)� u0+
∫ α(t)

0

f (s)
α ′(α−1(s))

k5(α−1(s))exp

(
p(2− p)

∫ s

0

f (λ )
α ′(α−1(λ ))

dλ
)

ds, ∀t ∈ I,

(3.4)
where for all t ∈ I

k5(t) =
[
u(1−q)(2−p)

0 +(1−q)
∫ α(t)

0

g(s)
α ′(α−1(s))

×exp

(
(1−q)(2− p)

∫ s

0

f (λ )
α ′(α−1(λ ))

dλ
)

ds

][ p
(1−q) ]

.

B: If q > 1and
[
1−(q−1)u(2−p)(q−1)

0

∫ α(t)

0

g(s)
α ′(α−1(s))

exp

(
(2−p)(q−1)

∫ s

0

f (λ )
α ′(α−1(λ ))

dλ
)

ds

]
> 0,

for all t ∈ I then

u(t) � u0 +up(2−p)
0

∫ α(t)

0

f (s)
α ′(α−1(s))

k6(α−1(s)) (3.5)

×exp

(
p(2− p)

∫ s

0

f (λ )
α ′(α−1(λ ))

dλ
)

ds,∀t ∈ I,

where for all t ∈ I

k6(t) =
[
1− (q−1)u(2−p)(q−1)

0

∫ α(t)

0

g(s)
α ′(α−1(s))

×exp

(
(2− p)(q−1)

∫ s

0

f (λ )
α ′(α−1(λ ))

dλ
)

ds

][ −p
(q−1) ]

.

Proof. Integrating both sides of the Equation (3.1) from 0 to t , we get

u(t) = u0 +
∫ t

0
M(s,u(α(s)),H(s,u(α(s))))ds, ∀t ∈ I.

from (3.2), (3.3) and the above inequality we obtain

|u(t)| � |u0|+
∫ t

0
f (α(s))

[
|u(2−p)(α(s))|+

∫ s

0
g(λ )|uq(α(λ ))|dλ

]p

ds,

thus

|u(t)| � |u0|+
∫ α(t)

0

f (s)
α ′(α−1(s))

[
|u(2−p)(s)|+

∫ s

0

g(λ )|uq(λ )|
α ′(α−1(λ ))

dλ
]p

ds,
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holds for all t ∈ I . Applying Theorem 2.1 part A and part B to the above inequality we
obtain the estimations (3.4) and (3.5) respectively. The right-hand side of (3.4) and (3.5)
gives us the bound on the solution u(t) of (3.1) in terms of the known functions. Thus,
if the right-hand side of (3.4) and (3.5) are bounded, then we assert that the solution of
(3.1) is buonded for all t ∈ I . This completes the proof. �

REMARK 3.1. Our results also can be used to prove the global existence, unique-
ness, stability, and other properties of the solutions of various nonlinear retarded dif-
ferential and integral equations. The importance of these inequalities stem from the
fact that it is applicable in certain situations in which other available inequalities do not
apply directly.
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