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INTEGRAL INEQUALITIES OF THE
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(Communicated by J. Pečarić)

Abstract. Invoking the Hermite-Hadamard inequalities for convex functions, we present differ-
ent weighted inequalities of the Heinz means, and any such convex function.

1. Introduction

Convex functions have played a major role in several applications, including opti-
mization, geometry and inequalities. Of the convex functions that have attracted many
researchers is the Heinz-means function

f (ν) = ‖|AνXB1−ν +A1−νXBν‖|, 0 � ν � 1.

In this context, A,B ∈ M
+
n , the class of positive semidefinite n×n complex matrices,

viewed as a subset of Mn of all complex n× n matrices, X ∈ Mn and ‖| ‖| is any
unitarily invariant norm. This function is convex on (0,1), symmetric about ν = 1

2 ,
attains its minimum at ν = 1

2 , and attains its maximum at ν = 0 and ν = 1, see [2]
page 265. That is

f

(
1
2

)
� f (ν) � f (1) = f (0), 0 � ν � 1.

Inequalities of f = f (ν) have been investigated thoroughly in the literature, and
the reader is encouraged to see [3] and [4] and their references for a comprehensive
study of these and related inequalities.

This article is motivated mainly by the work in [4] and [3], where the function
f = f (ν) was studied merely as a convex function and hence, properties of convex
functions were the key behind most of these studies.

Our main goal in this article is to utilize more properties of convex functions to
obtain generalizations of some results obtained in [3] and [4]. However, we shall dis-
cuss most of our results in a general setting, where our treatment of the above function
will be based mainly on the fact that it is a convex function, without referring to the
function itself.

Mathematics subject classification (2010): 47A30, 47B15, 15A15.
Keywords and phrases: Unitarily invariant norm inequalities, Heinz means, convex functions.

c© � � , Zagreb
Paper JMI-10-26

313

http://dx.doi.org/10.7153/jmi-10-26


314 M. SABABHEH

The first part of our work will treat the Heinz means themselves, where we prove
the monotonicity of this function by a simple idea that allows us to interpolate these
means. In particular, we prove that

‖|ApXBq +AqXBp‖| � ‖|Ap+rXBq−r +Aq−rXBp+r‖|
for all p � q � r � 0. This inequality will be used then to prove that the Heinz means
function f = f (ν) is decreasing on (0, 1

2 ) and increasing on ( 1
2 ,1).

The second part of the paper, which will be the main constitution, will treat the
function f = f (ν) as a convex function, where we present the general form governing
the inequalities of the weighted integral

∫
f (ν)g(ν)dν.

In particular, we prove that

∫ b

a
f (x)g(x)dx � f (a)+ f (b)

2

∫ b

a
g(x)dx

for the increasing convex function f , when g is continuous, positive and decreasing on
[a,b], see Theorem 2.18. This result is of special interest as it serves as a counterpart of
the well known Fejer inequality that states the same inequality when f is convex and g
is symmetric about a+b

2 .
Moreover, we present the general refinement governing the refinement

f (ν) � 2r0 f

(
1
2

)
+(1−2r0) f (0), r0 = min{ν,1−ν},

of [4] and its refinement in [3].

2. Main results

2.1. Monotonicity and convexity of the Heinz means

The following inequality interpolates the well known Heinz inequality. The in-
equality has been recently proved in [5], but we present it here for completeness.

THEOREM 2.1. Let A,B ∈ M
+
n and X ∈ Mn . Then, for 0 � r � q � p and any

unitarily invariant norm ‖| ‖| , we have

‖|ApXBq +AqXBp‖| � ‖|Ap+rXBq−r +Aq−rXBp+r‖|. (2.1)

Proof. Observe that

‖|ApXBq +AqXBp‖| = ‖|Ap−q+r(Aq−rXBq−r)Br +Ar(Aq−rXBq−r)Bp−q+r‖|
� ‖|Ap−q+2r(Aq−rXBq−r)+ (Aq−rXBq−r)Bp−q+2r‖|
� ‖|Ap+rXBq−r +Aq−rXBp+r‖|,
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where we have used the Heinz inequality ‖|ApXBq +AqXBp‖| � ‖|Ap+qX +XBp+q‖| ,
with p,X ,q replaced by p−q+ r,Aq−rXBq−r,r respectively. �

In fact these interpolations interpolate increasingly from f (0) to f (r).

THEOREM 2.2. Let X ∈ Mn,A,B ∈ M
+
n , p � q > 0 . Then, the function

f (r) = ‖|Ap+rXBq−r +Aq−rXBp+r‖|
is increasing on [0,q].

Proof.
Let 0 � r1 < r2 � q , then

f (r1) = ‖|Ap+r1XBq−r1 +Aq−r1XBp+r1‖|
� ‖|Ap+r1+(r2−r1)XBq−r1−(r2−r1) +Aq−r1−(r2−r1)XBp+r1+(r2−r1)‖|
= f (r2),

where we have used Theorem 2.1 replacing p by p+ r1 , q by q− r1 and r by r2 −
r1 . �

Observe that f (0) = ‖|ApXBq +AqXBp‖| and f (q) = ‖|Ap+qX +XBp+q‖|. Since
f is increasing, f (0) � f (q) , which is the well known Heins inequality. However, for
0 < r < q we have f (0) � f (r) � f (q) giving intermediate inequalities that interpolate
the Heinz inequality increasingly.

COROLLARY 2.3. Let A,B ∈ M
+
n ,X ∈ Mn . Then the function

f (ν) = ‖|AνXB1−ν +A1−νXBν‖|
is decreasing on [0, 1

2 ] and increasing on [ 1
2 ,1].

Proof. We treat both cases:
Case I. If 0 � ν � 1

2 , then

f (ν) = ‖|A 1
2 +( 1

2−ν)XB
1
2−( 1

2−ν) +A
1
2−( 1

2−ν)XB
1
2 +( 1

2−ν)‖|,
which can be viewed as ‖|Ap+rXBq−r +Aq−rXBp+r‖| with p = q = 1

2 and r = 1
2 −ν.

But this function is increasing as r increases from 0 to 1
2 , which implies that f de-

creases as ν goes from 0 to 1
2 .

Case II. If 1
2 � ν � 1, then

f (ν) = ‖|A 1
2 +(ν− 1

2 )XB
1
2−(ν− 1

2 ) +A
1
2−(ν− 1

2 )XB
1
2 +(ν− 1

2 )‖|,
which can be viewed as ‖|Ap+rXBq−r + Aq−rXBp+r‖| with p = q = 1

2 and r = ν −
1
2 . But this function is increasing as r increases from 0 to 1

2 , which implies that f
decreases as ν goes from 1

2 to 1. �
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Consequently, f attains its minimum at ν = 1
2 and its maximum at ν = 1, which

means

COROLLARY 2.4. Let A,B ∈ M
+
n ,X ∈ Mn . Then

‖|
√

AX
√

B‖| � 1
2
‖|AνXB1−ν +A1−νXBν‖| � ‖|AX +XB‖|,

for all ν ∈ [0,1].

This is a well known result of the Heinz means; see [1].

PROPOSITION 2.5. Let X ∈ Mn , A,B ∈ M
+
n , p � q > 0 and 0 � r � q. Then,

the function
f (r) = ‖|Ap+rXBq−r +Aq−rXBp+r‖|

is convex on (0,q).

Proof. Let C = Ap+q , D = Bp+q and ν = p+r
p+q . Then, f (r) = g(ν) , where

g(ν) = ‖|CνXD1−ν +C1−νXDν‖|.

Since g is convex on (0,1) , f is convex on (0,q). �

Now we utilize the convexity and monotonicity of the function f (ν) = ‖|AνXB1−ν

+A1−νXBν‖| to obtain new inequalities that refines and generalize related inequalities
in [3] and [4]. However, results will be stated for general convex functions.

We shall state our results for general convex functions that satisfy similar proper-
ties of the Heinz-means function.

DEFINITION 2.6. A function f defined on [0,1] will be called a Heinz function
if f is convex on [0,1] , continuous on [0,1], decreasing on [0, 1

2 ], increasing on [ 1
2 ,1],

and symmetric about 1
2 .

2.2. Inequalities of the function f = f (ν)

The following result has been proved in [4] using the Hermite-Hadamard inequal-
ities

f

(
a+b

2

)
� 1

b−a

∫ b

a
f (x)dx � f (a)+ f (b)

2
(2.2)

when f is convex on [a,b].

THEOREM 2.7. Let 0 < μ � 1
2 , then for any Heinz function f , we have

f (μ) � f (μ/2) � 1
μ

∫ μ

0
f (ν)dν � f (0)+ f (μ)

2
� f (0), (2.3)
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and for 1
2 � μ � 1, we have

f (μ) � f

(
1+ μ

2

)
� 1

1− μ

∫ 1

μ
f (ν)dν � f (1)+ f (μ)

2
� f (1). (2.4)

Our goal now is to present some inequalities of Heinz functions similar to those in
Theorem 2.7, but in a more general form.

THEOREM 2.8. Let f be a Heinz function and let ϕ : [a,b] → [ 1
2 ,1] be strictly

monotone, differentiable and convex. If ϕ ′(t) �= 0 for all t ∈ (a,b) then

f

(
ϕ

(
ϕ−1(μ)+b

2

))
� 1

b−ϕ−1(μ)

∫ ϕ(b)

μ

f (ν)
ϕ ′(ϕ−1(ν))

dν � f (μ)+ f (ϕ(b))
2

,

(2.5)
and

f

(
ϕ

(
ϕ−1(μ)+a

2

))
� 1

a−ϕ−1(μ)

∫ ϕ(a)

μ

f (ν)
ϕ ′(ϕ−1(ν))

dν � f (μ)+ f (ϕ(a))
2

,

(2.6)
for all μ ∈ [ 1

2 ,1].

Proof. Let f and ϕ as stated. Without loss of generality, assume that ϕ is in-
creasing, and let μ ∈ [ 1

2 ,1) . Since f is increasing on [ 1
2 ,1] and ϕ is convex, we infer

that g = f ◦ϕ is convex on [a,b]. Consequently, the Hermite-Hadamard inequalities
(2.2) applied on the interval [ϕ−1(μ),b] imply

g

(
ϕ−1(μ)+b

2

)
� 1

b−ϕ−1(μ)

∫ b

ϕ−1(μ)
f (ϕ(t))dt � g(ϕ−1(μ))+g(b)

2
.

By making the substitution ν = ϕ(t) in the integral, we get (2.5). A similar argument
works if ϕ is decreasing except that μ ∈ ( 1

2 ,1] instead of μ ∈ [ 1
2 ,1) . Then similar

arguments yield (2.6). �

By selecting different functions ϕ we obtain some interesting inequalities. For
example, by letting ϕ(t) = t , we get (2.4).

COROLLARY 2.9. Let f be a Heinz function. Then, for 1
2 � μ � 1 we have

f

(
2μ

2μ +1

)
� μ

2μ −1

∫ μ

1/2

f (ν)
ν2 dν � f (μ)+ f (1/2)

2
,

and

f

(
2μ

μ +1

)
� μ

1− μ

∫ 1

μ

f (ν)
ν2 dν � f (μ)+ f (1)

2
.
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Proof. Let ϕ : [1,2] → [ 1
2 ,1] be defined by ϕ(t) = 1

t . Then the result follows by
direct application of Theorem 2.8. �

Observe that when μ ∈ [0, 1
2 ], then 1− μ ∈ [ 1

2 ,1]. Hence, by applying the above
theorem, with μ replaced by 1− μ , and be recalling the symmetry of f , we get the
following inequality.

COROLLARY 2.10. Let f be a Heinz function. Then, for 0 � μ � 1
2 we have

f

(
2−2μ
3−2μ

)
� 1− μ

1−2μ

∫ 1−μ

1/2

f (ν)
ν2 dν � f (μ)+ f (1/2)

2
,

and

f

(
2−2μ
2− μ

)
� 1− μ

μ

∫ 1

1−μ

f (ν)
ν2 dν � f (μ)+ f (1)

2
.

Then, integrating these inequalities again yields another type of integral inequali-
ties.

COROLLARY 2.11. Let f be a Heinz function. Then

∫ β

0
f (ν)dν �

∫ β

0
ν f (ν)dν +(1−β )2

∫ 1

1−β

f (ν)
ν2 dν +

f (1)
2

β 2, 0 � β � 1
2
,

and

∫ 1

β
f (ν)dν �

∫ 1−β

0
ν f (ν)dν + β 2

∫ 1

β

f (ν)
ν2 dν +

f (1)
2

(1−β )2,
1
2

� β � 1.

Proof. By Corollary 2.9, we have

(1− μ)
∫ 1

1−μ

f (ν)
ν2 dν � 1

2
μ f (μ)+

f (1)
2

μ , 0 � μ � 1
2
.

By integrating both sides on the interval μ ∈ [0,β ] we get

∫ β

0

{
(1− μ)

∫ 1

1−μ

f (ν)
ν2 dν

}
dμ �

∫ β

0

{
1
2

μ f (μ)+
f (1)
2

μ
}

dμ , 0 � β � 1
2
.

For the integral on the left, change the order of integration to get

∫ 1

1−β

{
f (ν)
ν2

∫ β

1−ν
(1− μ)dμ

}
dν �

∫ β

0

{
1
2

μ f (μ)+
f (1)
2

μ
}

dμ , 0 � β � 1
2
.

Then direct computations give the first inequality. The second inequality is obtained
from the first by replacing β with 1−β . �
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It should be noted that the right side of these inequalities is not so big. In fact,

∫ β

0
ν f (ν)dν + (1−β )2

∫ 1

1−β

f (ν)
ν2 dν +

f (1)
2

β 2

� f (1)
∫ β

0
νdν +(1−β )2 f (1)

∫ 1

1−β

1
ν2 dν +

f (1)
2

β 2

= β f (1).

That is, when 0 � β � 1
2 we have

1
β

∫ β

0
f (ν)dν � f (1),

and this is one implication of the inequalities of Theorem 2.7. However, neither the
inequalities of Theorem 2.7 nor those of Corollary 2.11 are uniformly better than each
other.

On the other hand, by letting ϕ : [− ln2,0]→ [ 1
2 ,1] be the function ϕ(t) = et , we

obtain the following inequalities.

COROLLARY 2.12. Let f be a Heinz function. Then, for 1
2 � μ � 1 we have

f (
√

μ) � −1
lnμ

∫ 1

μ

f (ν)
ν

dν � f (μ)+ f (1)
2

,

and

f
(√

μ/2
)

� 1
ln2+ lnμ

∫ μ

1/2

f (ν)
ν

dν � f (μ)+ f (1/2)
2

.

As a consequence, we get the following estimate.

COROLLARY 2.13. Let f be a Heinz function. Then for each 1
2 � μ � 1 , we

have

(ln2) f
(√

μ/2
)

�
∫ 1

1/2

f (ν)
ν

dν

� f (1)− f (1/2)
2

ln
1
μ

+
f (μ)+ f (1/2)

2
ln2.

Proof. Observe that the inequalities of Corollary 2.12 can be written as

(
ln

1
μ

)
f (
√

μ) �
∫ 1

μ

f (ν)
ν

dν � f (μ)+ f (1)
2

ln
1
μ(

ln2− ln
1
μ

)
f (

√
μ/2) �

∫ μ

1/2

f (ν)
ν

dν � f (μ)+ f (1/2)
2

(
ln2− ln

1
μ

)
.

By adding these inequalities, and recalling that f (
√

μ/2) � f (
√μ), f being increas-

ing, we get the result. �
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Note that f (
√

μ/2) increases with μ , hence we infer that

f (1/
√

2) ln2 �
∫ 1

1/2

f (ν)
ν

dν.

Moreover, an easy estimate would be obtained for the integral in the following way
∫ 1

1/2

f (ν)
ν

dν � f (1/2)
∫ 1

1/2

1
ν

dν = f (1/2) ln2.

However, the estimate we obtain from Corollary 2.13 is better because f (1/
√

2) ln2 �
f (1/2) ln2.

COROLLARY 2.14. Let f be a Heinz function. Then, for each 1
2 � μ � 1, we

have ∫ 1

0
f (ν)dν � ( f (1)− f (1/2)) ln

1
μ

+( f (μ)+ f (1/2)) ln2.

Proof. Since f is symmetric about 1
2 , we have

∫ 1

0
f (ν)dν = 2

∫ 1

1/2
f (ν)dν

� 2
∫ 1

1/2

f (ν)
ν

dν

� 2

{
f (1)− f (1/2)

2
ln

1
μ

+
f (μ)+ f (1/2)

2
ln2

}
,

which completes the proof. �
These ideas enable us to present the following Hermite-Hadamard type inequality.

THEOREM 2.15. Let f be continuous, convex and increasing on [a,b]. Then

1
b−a

∫ b

a
f (t)dt � ( f (b)− f (a)) ln

1
μ

+( f (2(b−a)μ +2a−b)+ f (a))ln2,

for each μ ∈ [ 1
2 ,1].

Proof. Let f be as stated, and define

g(x) = f (2(b−a)x+2a−b),
1
2

� x � 1.

Then, g is convex and increasing on [ 1
2 ,1]. Hence, using Corollary 2.14 we have

∫ 1

1/2
f (2(b−a)x+2a−b)dx� 1

2

{
( f (1)− f (1/2)) ln

1
μ

+( f (μ)+ f (1/2)) ln2

}
.

The change of variable ν = 2(b−a)x+2a−b implies the result. �
The function ϕ(t) = tan t , tan−1 1

2 � t � π
4 gives the inequality
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COROLLARY 2.16. Let f be a Heinz function. Then for each 1
2 � μ � 1 , we

have
1

π
4 − tan−1 μ

∫ 1

μ

f (ν)
ν2 +1

dν � f (μ)+ f (1)
2

.

We conclude this idea by presenting the general weighted form of these inequali-
ties.

THEOREM 2.17. Let f be a Heinz function and let g be continuous, decreasing
and positive on [ 1

2 ,1]. Then for each 1
2 � μ � 1 , we have

∫ 1

μ
f (ν)g(ν)dν � f (μ)+ f (1)

2

∫ 1

μ
g(ν)dν.

Proof. Let f and g be as stated. Define the functions

h(ν) =
∫ ν

1/2
g(τ)dτ,

1
2

� ν � 1,

and ϕ(t) = h−1(t) , 0 � t � h(1) := b. Since g > 0, h is increasing, hence so is ϕ .
Moreover, since g is decreasing, h−1 is increasing and

ϕ ′(t) =
1

g(h−1(t))
,

it follows that ϕ ′ is increasing, hence ϕ is convex. Observe also that g(ν) = 1
ϕ ′(ϕ−1(ν)) ,

consequently, by virtue of Theorem 2.8,

∫ 1

μ
f (ν)g(ν)dν =

∫ 1

μ

f (ν)
ϕ ′(ϕ−1(ν))

dν

� (b−ϕ−1(μ))
f (μ)+ f (ϕ(b))

2

= (h(1)−h(μ))
f (μ)+ f (1)

2
.

This completes the proof. �

Now we present a counterpart of the Fejer inequality, where the symmetry condi-
tion is released, provided some monotonicity is available.

THEOREM 2.18. Let f be convex and increasing on [a,b] and let g be continu-
ous, positive and decreasing on [a,b] . Then

∫ b

a
f (x)g(x)dx � f (a)+ f (b)

2

∫ b

a
g(x)dx.
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Proof. Let f and g be as stated, and define

f1(t) = f (2(b−a)(t−1)+b) and g1(t) = g(2(b−a)(t−1)+b).

Then, using the substitution t = x−b
2(b−a) +1, we have

∫ b

a
f (x)g(x)dx = 2(b−a)

∫ 1

1/2
f1(t)g1(t)dt

� 2(b−a)
f1(1/2)+ f1(1)

2

∫ 1

1/2
g1(t)dt (using Theorem 2.17)

= 2(b−a)
f (a)+ f (b)

2

∫ b

a
g(x)

dx
2(b−a)

=
f (a)+ f (b)

2

∫ b

a
g(x)dx.

This completes the proof. �

REMARK.

1. It should be noted that the above results can be stated for 0 � μ � 1 using the
symmetry of f .

2. By an appropriate transformation, the above results can be generalized to any
interval [a,b]. However, we stick to the interval [0,1] being the Heinz-means
interval.

We conclude this article by shedding some light on recent refinements of the Heinz
inequality. In particular, utilizing the convexity of the function f (ν) = ‖|AνXB1−ν +
A1−νXBν‖|, it was proved that [4]

f (ν) � 2r0 f

(
1
2

)
+(1−2r0) f (0), ν ∈ (0,1), r0 = min{ν,1−ν}, (2.7)

as a refinement of the Heinz inequality. In the following result, we present the general
refinement that governs these refinements. It should be noted that our choice of the
dyadic partition is just for convenience, but any partition will follow a similar behavior.

THEOREM 2.19. Let n ∈ N, let {0, 1
2n , · · · , 2n−1

2n } be a partition of [0, 1
2 ] and let

ν ∈ [0,1]. Then, if ν ∈ [
k−1
2n , k

2n

]
or 1−ν ∈ [

k−1
2n , k

2n

]
, we have

f (ν) � (k−2nν) f

(
k−1
2n

)
+(2nν − k+1) f

(
k
2n

)
, (2.8)

for any convex function f on (0,1), that is symmetric about 1
2 .
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Proof. For each k = 1, · · · ,2n−1, let

ϕk(x) =
f (x)− f

(
k−1
2n

)
x− k−1

2n

.

Since f is convex, it follows that ϕk is increasing on
[

k−1
2n , k

2n

]
. Consequently, if

v ∈ [
k−1
2n , k

2n

]
, we get ϕk(ν) � ϕk

(
k
2n

)
, which implies

f (ν)− f
(

k−1
2n

)
ν − k−1

2n

�
f
(

k
2n

)− f
(

k−1
2n

)
k
2n − k−1

2n

.

The inequality of the theorem follows by simplifying this inequality. This completes
the proof for v ∈ [

k−1
2n , k

2n

]
. Now, if ν ∈ [ 1

2 ,1], then 1− v∈ [
k−1
2n , k

2n

]
for some k , and

since f is symmetric about 1
2 , the result follows. �

It can be seen now that (2.7) follows from (2.8) when n = 1.
It should be remarked that the above proof is inspired from [3], where the result

was proved for n = 2, as a refinement of (2.7).
In the following result we prove how these refinements become better when n gets

bigger.

THEOREM 2.20. Let f be convex on (0,1) and symmetric about 1
2 . For n ∈ N

let

Ik,n =
[
k−1
2n ,

k
2n

]
, k = 1, · · · ,2n−1.

For each such n,k define

gn(ν) = (k−2nν) f

(
k−1
2n

)
+(2nν − k+1) f

(
k
2n

)
, ν ∈ In,k,

and

g(ν) = g(1−ν) for ν ∈ [
1
2
,1].

Then gn+1(ν) � gn(ν) for all ν ∈ [0,1].

Proof. We prove this for ν ∈ [0, 1
2 ], then by symmetry the result follows. So, let

ν ∈ [0, 1
2 ] and let n ∈ N. Then, for some k , we have ν ∈ Ik,n . Since Ik,n = I2k−1,n+1∪

I2k,n+1, we have ν ∈ I2k−1,n+1 or ν ∈ I2k,n+1.
If ν ∈ I2k−1,n+1 , then

gn+1(ν)−gn(ν) = (2k−1−2n+1ν) f

(
2k−2
2n+1

)
+(2n+1ν −2k+2) f

(
2k−1
2n+1

)

−(k−2nν) f

(
k−1
2n

)
− (2nν − k+1) f

(
k
2n

)

= (k−1−2nν)
{

f

(
k−1
2n

)
+ f

(
k
2n

)
−2 f

(
2k−1
2n+1

)}
.
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Now using the increasing function ϕk , of Theorem 2.19, we infer that ϕk

(
2k−1
2n+1

)
�

ϕk
(

k
2n

)
. Upon simplification we get

f

(
k−1
2n

)
+ f

(
k
2n

)
−2 f

(
2k−1
2n+1

)
� 0.

Moreover, since ν ∈ Ik,n , it follows that k− 1− 2nν � 0. Consequently, gn+1(ν)−
gn(ν) � 0. This completes the proof when ν ∈ I2k−1,n+1 . Now, if ν ∈ I2k,n+1 , similar
computations lead to the same conclusion. This completes the proof. �

The following is a matrix version of these convex inequalities.

COROLLARY 2.21. Let A,B ∈ M
+
n , X ∈ Mn , and let Ik,m be the above partition

for some m ∈ N. If ν ∈ Ik,m or 1−ν ∈ Ik,m, let α = k−1
2m . Then

∥∥∣∣AνXB1−ν +A1−νXBν∥∥∣∣r � (k−2mν)
∥∥∣∣AαXB1−α +A1−αXBα∥∥∣∣r

+(2mν − k+1)
∥∥∥∣∣∣Ak/2m

XB1−k/2m
+A1−k/2m

XBk/2m
∥∥∥∣∣∣r ,

for all r � 1, and any unitarily invariant norm ‖| ‖|.

Proof. Let f (ν) = ‖|AνXB1−ν +AνXB1−ν‖|, and ϕ(t) = tr , r � 1. Then, f is
convex on (0,1) and ϕ is increasing and convex on (0,∞). Consequently, ϕ ◦ f is con-
vex on (0,1). By applying Theorem 2.19 on the function ϕ ◦ f , we get the result. �

In particular, if m = 1 we get

∥∥∣∣AνXB1−ν +A1−νXBν∥∥∣∣r � (1−2r0)‖|AX +XB‖|r +2r0‖|2A1/2XB1/2‖|r,

or equivalently,

∥∥∥∥
∣∣∣∣A

νXB1−ν +A1−νXBν

2

∥∥∥∥
∣∣∣∣
r

� (1−2r0)
∥∥∥∥
∣∣∣∣AX +XB

2

∣∣∣∣
∥∥∥∥

r

+2r0‖|A1/2XB1/2‖|r, (2.9)

for 0 � ν � 1.

Acknowledgement. The author started this work in Princess Sumaya University for
Technology in Jordan and finished the work while he was in leave to Sharjah University
in UAE. The author is grateful for both institutions.



INTEGRAL INEQUALITIES OF THE HEINZ MEANS AS CONVEX FUNCTIONS 325

RE F ER EN C ES

[1] R. BHATIA, C. DAVIS, More matrix forms of the arithmetic-geometric mean inequality, SIAM J.
Matrix Anal. 14 (1993) 132–136.

[2] R. BHATIA, Matrix analysis, Springer-Verlag, New York, 1997.
[3] C. CONDE, Young type inequalities for positive operators, Ann. Funct. Anal. 4 (2013) no. 2, 144–152.
[4] F. KITTANEH, On the convexity of the Heinz mean, Integr. Equ. Oper. Theory 68 (2010) 519–527.
[5] M. SABABHEH, Interpolated inequalities for unitarily invariant norms, Linear Algebra Appl., 475

(2015) 240–250. doi:10.1016/j.laa.2015.02.026.

(Received July 14, 2014) Mohammad Sababheh
Department of Mathematics, University of Sharjah

United Arab Emirates
e-mail: sababheh@yahoo.com, sababheh@psut.edu.jo,

msababheh@sharjah.ac.ae

Journal of Mathematical Inequalities
www.ele-math.com
jmi@ele-math.com


