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ON GENERALIZATIONS OF A TRIGONOMETRIC INEQUALITY

WENTAO CHENG, LINGJU CHEN AND XIAOMING ZENG

(Communicated by J. Pečarić)

Abstract. This paper generalizes a trigonometric inequality to sine integral and double trigono-
metric series satisfying MVBVF(R+ ) condition and MVBVDS condition.

1. Introduction

Let {an}∞
n=1 be a non-negative sequence, and write

∞

∑
n=1

an sinnx, x ∈ [−π ,π) (1)

as a sine series. In [1], Chaundry and Jolliffe proved the following theorem

THEOREM 1. If {an}∞
n=1 ⊂R+ is decreasing, then series (1) converges uniformly

in x if and only if
nan → 0, as n → ∞. (2)

The monotonicity condition in Theorem 1 was relaxed by a number of authors to
QM (quasi-monotone) condition, RBV (rest bounded variation) condition, GBV (group
bounded variation) condition and NBV (non-onesided bounded variation) condition.
Finally, to MVBV (mean value bounded variation, [12]) condition (see [11] for more
details).

DEFINITION 1. A non-negative sequence A= {an}∞
n=1 is said to be a mean value

bounded variation sequence, in symbol: A ∈ MVBVS, if there exist constants K :=
K(A) and λ � 2, depending only upon the sequence A, such that

2n

∑
k=n

|Δak| � K
n

λn

∑
k=[λ−1n]

ak (3)

hold for all n = 1,2, · · · , where [·] means the integer part and Δak := ak − ak+1 , k =
1,2, · · · .

Mathematics subject classification (2010): 42A05.
Keywords and phrases: Trigonometric inequality, MVBVF(R+ ), MVBVDS.
This research is supported by the National Natural Science Foundation of China (Grant No. 61170324 and Grant No.

61100105).

c© � � , Zagreb
Paper JMI-10-28

357

http://dx.doi.org/10.7153/jmi-10-28


358 W. CHENG, L. CHEN AND X. ZENG

Theorem 1 was generlized under MVBV condition in [12]:

THEOREM 2. If {an}∞
n=1 belongs to the class MVBVS , then series (1) converges

uniformly in x ∈ [−π ,π) if and only if condition (2) is satisfied.

Meantime, they proved this condition is the weakest one to generalize monotonic-
ity and cannot be weakened further in uniform convergence for sine series:

THEOREM 3. Let {Mn}∞
n=1 be a given non-negative increasing sequence tending

to infinity. Then there exists a sine series of the form (1) satisfying (2) such that for any
given λ � 2 ,

lim
n→∞

2n
∑

k=n
|Δak|

Mn
n

λn
∑

k=[λ−1n]
ak

= 0, (4)

however, the series is not uniformly convergent.

In [6], F. Móricz simulated and studied the Theorem 1 about sine integral
∫ ∞

0
f (x)sin txdx, (5)

where f : R+ := [0,∞)→C is a measurable functionwith the property x f (x)∈L1
loc(R+)

(If for each a ∈ R+ ,
∫ a
0 | f (x)|dx < ∞ , we say that f (x) ∈ L1

loc(R+)). F. Móricz gave
the definition of MVBVF(R+ ) as follows:

DEFINITION 2. A function: f : R+ → C is said to be of mean value bounded
variation, in symbols: f ∈MVBVF(R+ ), if f is absolutely continuous on every inter-
val [a,b] , where 0 < a < b < ∞ (shortly: f is locally absolutely continuous on R+ );
and if there exist constants K1 and λ � 2, depending only of f , such that for all large
enough a ∈ R+ ∫ 2a

a
| f ′(x)|dx � K1

a

∫ λa

λ−1a
| f (x)|dx. (6)

Meantime, he generalized Theorem 2 about sine integral under MVBVF(R+ ) as fol-
lows:

THEOREM 4. Assume f ∈ MVBVF(R+) with property x f (x) ∈ L1
loc(R+) .

(i) If f : R+ → C and condition

x f (x) → 0 as x → ∞ (7)

is satisfied, then integral (5) converges uniformly in t .
(ii) Conversely, if f : R+ → R+ and integral (5) converges uniformly in t , then

condition (7) is satisfied.
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Let {ckl}∞
k,l=1 be a double sequence of complex numbers (in symbols: ckl ⊂ C),

consider the double sine series
∞

∑
k=1

∞

∑
l=1

ckl sinkxsin ly. (8)

We use the standard notations for the difference operators:

Δ10ckl : = ckl − ck+1,l, Δ01ckl := ckl − ck,l+1,

Δ11ckl : = Δ01(Δ10ckl) = Δ10(Δ01ckl)
= ckl − ck+1,l − ck,l+1 + ck+1,l+1, k, l = 1,2, · · · .

Recalling that a double sequence ckl ⊂ C is said to be monotonically decreasing
if

ckl � 0, Δ10ckl � 0, Δ01ckl � 0, Δ11ckl � 0

for all k, l = 1,2, · · · . It is clear that if

ckl → 0 as k+ l → ∞, (9)

then we have

Δ10cnm =
∞

∑
l=m

Δ11cnl, Δ01cnm =
∞

∑
k=n

Δ11ckm,

cnm =
∞

∑
k=n

∞

∑
l=m

Δ11ckl , n,m = 1,2, · · · .
(10)

The two-dimensional extension of the Theorem (1) was proved in [9] as follows:

THEOREM 5. If {ckl}∞
k,l=1 ⊂ R+ is a monotonically decreasing double sequence,

then regular convergence of double sine series (8) is uniform in (x,y) if and only if

klckl → 0 as k+ l → ∞. (11)

In [3], P. Kórus and F. Móricz relaxed the monotonicity condition in Theorem 5
and introduced the class MVBVDS as follows:

DEFINITION 3. A double sequence {ckl}⊂C is said to belong to the class MVB-
VDS (mean value bounded variation double sequences) if there exist constants K2 and
λ � 2 both depending only on {ckl} such that

2n−1

∑
k=n

|Δ10ckm| � K2

n

[λn]

∑
k=[λ−1n]

|ckm| , n � λ , m = 1,2, · · · , (12)

2m−1

∑
l=m

|Δ01cnl| � K2

m

[λm]

∑
l=[λ−1m]

|cnl| , m � λ , n = 1,2, · · · , (13)

2n−1

∑
k=n

2m−1

∑
l=m

|Δ11ckl| � K2

nm

[λn]

∑
k=[λ−1n]

[λm]

∑
l=[λ−1m]

|ckm| , n � λ , m � λ . (14)
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They proved

THEOREM 6. {ckl} ⊂ C belongs to the class MVBVDS and satisfies condition
(11), then the regular convergence of the double sine series (8) is uniform in (x,y) .

Conversely, if {ckl} ⊂R+ belongs to the class MVBVDS and the regular conver-
gence of (8) is uniform in (x,y) , then condition (11) is satisfied.

Throughout the paper, K1 is used to denote a positive constant that may not be
necessarily the same at each occurrence. Sometimes, to avoid confusion, we also use
C1,K2,K3, · · · to denote different constants.

In consideration of Theorem 1 was generalized from trigonometric series to sine
integral and double trigonometric series, we generalize an important trigonometric in-
equality to integral inequality and double inequality. In section 2, we introduce the
trigonometric inequality and some related work and give our main result. In section 3,
we give the proof of our main result.

2. The trigonometric inequality

As known, one important tool in Fourier analysis is the following well-known
trigonometric inequality (see, e.g., [11])

sup
n�1

∣∣∣∣∣
n

∑
k=1

sinkx
k

∣∣∣∣∣� 3
√

π.

we apply the inequality to prove the L1 convergence and Bernstein inequality etc.
In [7], Telyakovskii generalized the inequality and proved the following theorem:

THEOREM 7. Let {nm} be a subsequence of natural numbers satisfying 1 = n1 <
n2 < n3 < · · · and

∞

∑
j=m

1
n j

� A
nm

, (15)

where m = 1,2, · · · , A > 1 is a positive constant, then for any x we have

∞

∑
j=1

∣∣∣∣∣
n j+1−1

∑
k=n j

sinkx
k

∣∣∣∣∣� K3A.

In [5], Leindler gave a generalized result and established the following theorem:

THEOREM 8. Let a positive sequence C = {cn}∞
n=1 ∈ RBVS satisfy

ncn � K4,n = 1,2, · · · , (16)

where K4 is a positive constant, suppose {nm} satisfies (15), then for any x , we have

∞

∑
j=1

∣∣∣∣∣
n j+1−1

∑
k=n j

ck sinkx

∣∣∣∣∣� K(C)A.
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In [4], Le and Zhou established the above theorem under GBV condition. Finally, in [8],
Wang and Zhao derived the theorem under MVBV condition and proved the condition
cannot be weakened further.

THEOREM 9. Let C = {cn}∞
n=1 ∈ MVBVS be a positive sequence satisfying (3)

and (16). If {nm} satisfies (15), then for any x we have

∞

∑
j=1

∣∣∣∣∣
n j+1−1

∑
k=n j

ck sinkx

∣∣∣∣∣� K(C)A.

THEOREM 10. Let Mn be an any given non-negative increasing sequence tending
to infinity. Then for any given λ � 2 , there exists a positive sequence C = {cn}∞

n=1
satisfying

lim
n→

2n
∑

k=n
|Δak|

Mn
n

λn
∑

k=[λ−1n]
ak

= 0,

however, the trigonometric inequality in Theorem 9 does not hold for some sequence
nm satisfying (15).

Now, we simulate the trigonometric inequality and give the following integral in-
equality.

LEMMA 1. sup
a>0

∣∣∣∫ a
0

sinxy
x dx

∣∣∣� 4 , for all y ∈ [0,∞) .

Proof: We need only prove for y ∈ (0,∞) .
Case i: 0 < y � 1

a .∣∣∣∣
∫ a

0

sinxy
x

dx

∣∣∣∣=
∣∣∣∣
∫ ay

0

sinx
x

dx

∣∣∣∣�
∫ ay

0

∣∣∣∣sinx
x

∣∣∣∣dx �
∫ 1

0

∣∣∣∣ sinx
x

∣∣∣∣dx < 1.

Case ii: y > 1
a .∣∣∣∣

∫ a

0

sinxy
x

dx

∣∣∣∣=
∣∣∣∣
∫ ay

0

sinx
x

dx

∣∣∣∣�
∣∣∣∣
∫ 1

0

sinx
x

dx

∣∣∣∣+
∣∣∣∣
∫ ay

1

sinx
x

dx

∣∣∣∣
� 1+

∣∣∣∣
∫ ay

1

1
x
dcosx

∣∣∣∣� 1+
|cosay|

ay
+ |cos1|+

∣∣∣∣
∫ ay

1

1
x2 dx

∣∣∣∣� 4. �

Our first result generalizes Lemma 1. Namely, we obtain that the following theo-
rem is true.

THEOREM 11. Assume a non-negative function f (x) ∈ MVBVF(R+) , if

x f (x) � C1, (17)
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holds for all x ∈ (0,∞) , where C1 is a positive constant depending on f . Meanwhile,
{ai}∞

i=1 is a sequence satisfying a0 = 0,a1 = 1 < a2 < a3 < · · · and there exists a
positive constant A depending on the sequence such that

∞

∑
j=i

1
a j

� A
ai

, i = 1,2, · · · , (18)

then for any y ∈ [0,∞)
∞

∑
i=0

∣∣∣∣
∫ ai+1

ai

f (x)sinxydx

∣∣∣∣� C2A, (19)

where C2 is a positive constant depending on f only.

Our second result simulates Theorem 9 and proves the MVBVF(R+ ) condition
cannot be weakened further under f being a function of local bounded variation.

THEOREM 12. Let M(x) be a given non-negative increasing function tending to
infinity. Then for any given λ � 2 , there exists a positive local bounded variation
function f (x) satisfying

lim
x→∞

∫ 2x
x | f ′(t)|dt

M(x)
x

∫ λ x
λ−1x f (t)dt

= 0, (20)

however, (19) in Theorem 11 does not hold for some sequence {ai} satisfying (18).

Our third result generalizes Theorem 9 to two-dimensional as follows:

THEOREM 13. Let C = {cnm}∞
n,m=1 ∈ MVBVDS be a non-negative double posi-

tive with

nmcnm � K, n = 1,2, · · · ; m = 1,2 · · · , (21)

where K is a positive constant, suppose {ni} , {mj} with the conditions

∞

∑
i=k

1
ni

� A
nk

, k = 1,2, · · · , A > 1,

∞

∑
j=l

1
mj

� B
ml

, l = 1,2, · · · , B > 1,

(22)

where {ni} and {mj} are subsequences of natural numbers satisfying 1 = n1 < n2 <
n3 < · · · , 1 = m1 < m2 < m3 < · · · , then for any x and y, we have

∞

∑
i=1

∞

∑
j=1

∣∣∣∣∣
ni+1−1

∑
k=ni

mj+1−1

∑
l=mj

ckl sinkxsin ly

∣∣∣∣∣� K1(C)AB. (23)
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3. The proof of the main result

3.1. The proof of the Theorem 11

We need only prove for y ∈ (0,∞) . Select integer k such that Y := 1
y ∈ (ak,ak+1] .

∞

∑
i=0

∣∣∣∣
∫ ai+1

ai

f (x)sinxydx

∣∣∣∣�
∫ Y

0
| f (x)sinxy|dx+

∣∣∣∣
∫ ak+1

Y
f (x)sinxydx

∣∣∣∣
+

∞

∑
i=k+1

∣∣∣∣
∫ ai+1

ai

f (x)sinxydx

∣∣∣∣
: = I1 + I2 + I3.

By (17), we have

I1 �
∫ Y

0
f (x)xydx � C1yY � C1.

Applying (6) and (17), we obtain

I2 = Y

∣∣∣∣
∫ ak+1

Y
f (x)dcosxy

∣∣∣∣
� Y f (ak+1)+Y f (Y )+Y

∣∣∣∣
∫ ak+1

Y
f ′(x)cosxydx

∣∣∣∣
� ak+1 f (ak+1)+Y f (Y )+Y

∫ ∞

Y

∣∣ f ′(x)∣∣dx

� 2C1 +Y
∞

∑
j=0

∫ 2 j+1Y

2 jY

∣∣ f ′(x)∣∣dx

� 2C1 +Y
∞

∑
j=0

K1

2 jY

∫ λ2 jY

λ−12 jY
f (x)dx

� 2C1 +K1C1

∞

∑
j=0

∫ λ2 jY

λ−12 jY

1
x
dx

� (2+4K1 lnλ )C1.

When i � k+1,

∣∣∣∣
∫ ai+1

ai

f (x)sinxydx

∣∣∣∣= Y

∣∣∣∣
∫ ai+1

ai

f (x)dcosxy

∣∣∣∣
� Y

(
f (ai)+ f (ai+1)+

∫ ai+1

ai

| f ′(x)|dx

)

� Y

(
C1

ai
+

C1

ai+1
+
∫ ∞

ai

| f ′(x)|dx

)
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� Y

(
2C1

ai
+

∞

∑
j=0

∫ 2 j+1ai

2 jai

| f ′(x)|dx

)

� Y

(
2C1

ai
+

∞

∑
j=0

K1

2 jai

∫ λ2 jai

λ−12 jai

f (x)dx

)

� Y
ai

(2+4K1 lnλ )C1.

Then, by (18)

I3 =
∞

∑
i=k+1

Y
ai

(2+4K1 lnλ )C1 � AY
ak+1

(2+4K1 lnλ )C1 � (2+4K1 lnλ )C1A.

Combining the above estimates, we have proved the required inequality. �

3.2. The proof of the Theorem 12

Without loss of generality, we can assume that M(x) � 10 when x ∈ (0,1) , there-
fore, M(x) � 10 when x∈ [1,∞) . Set a1 = 1, a2 = 10, and a j+1 = 2[

√
M(4a j)]a j , j =

2,3, · · · . Let f (x) = 1, when x ∈ (0,40) . For j � 2 and k = 1,2, · · · ,2[
√

M(4a j)]−1,

f (x) =

⎧⎪⎨
⎪⎩

1√
logM(

√
4a j)x

, x ∈ [4ka j,(4k+2)a j),

1

8
√

logM(
√

4a j)x
, x ∈ [(4k+2)a j,4(k+1)a j).

Defining accordingly a sine integral
∫ ∞
0 f (x)sinxydx , we will show this integral is

exactly what required to prove Theorem 12. This construction implies that inequal-
ity (17) is satisfied for such a function f (x) and inequality (18) is also satisfied for
such a sequence {a j} . For any given x � 40, there exist a j � 2 and a k , k =
1,2, · · · ,2[

√
M(4a j)]− 1, such that 4ka j � x < 4(k + 1)a j , then 8ka j � 2x < 8(k +

1)a j . Divide the argument into two cases.

Case 1: 1 � k � [
√

M(4a j)]− 1, then 2x � 8[
√

M(4a j)]a j = 4a j+1 . We check
that

∫ 2x

x
| f ′(t)|dt �

∫ 8(k+1)a j

4ka j

| f ′(t)|dt =
2k+1

∑
i=k

∫ 4(i+1)a j

4ia j

| f ′(t)|dt

�
2k+1

∑
i=k

1√
logM(4a j)

1
4ia j

� K

aj
√

logM(4a j)
.
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At the same time,

∫ 2x

x
f (t)dt �

∫ 8ka j

4(k+1)a j

f (t)dt =
2k−1

∑
i=k+1

∫ 4(i+1)a j

4ia j

f (t)dt

� 1

8
√

logM(4a j)

2k−1

∑
i=k+1

∫ 4(i+1)a j

4ia j

1
t
dt

=
1

8
√

logM(4a j)

∫ 8ka j

4(k+1)a j

1
t
dt � 1

8
√

logM(4a j)
(4k−4)a j

8ka j

� 1

32
√

logM(4a j)
.

Thus, by noting that 4a j � 4ka j � x � 4(k+1)a j , k � [
√

M(4a j)]−1, for any λ � 2,
combining with the two above inequalities, we have

∫ 2x
x | f ′(t)|dt

M(x)
x

∫ λ x
λ−1x f (t)dt

�
∫ 2x
x | f ′(t)|dt

M(x)
x

∫ 2x
x f (t)dt

� Kx
a jM(x)

� Kaj
√

M(4a j)
a jM(x)

� K√
M(x)

.

and the last quantity in the above inequalities obviously tends to zero as x → ∞ .

Case (2): [
√

M(4a j)] � k < 2[
√

M(4a j)]− 1. Then 2x � 16[
√

M(4a j)]a j <
8a j+1 . Similarly, we check for this case that

∫ 2x

x
| f ′(t)|dt �

∫ 8a j+1

4ka j

| f ′(t)|dt =
∫ 4a j+1

4ka j

| f ′(t)|dt +
∫ 8a j+1

4a j+1

| f ′(t)|dt

=
2[
√

M(4a j)]−1

∑
i=k

∫ 4(i+1)a j

4ia j

| f ′(t)|dt +
∫ 8a j+1

4a j+1

| f ′(t)|dt

�
2[
√

M(4a j)]−1

∑
i=k

1√
logM(4a j)

1
4ia j

+
1

a j+1
√

logM(4a j+1)

� K

aj
√

logM(4a j)

2[
√

M(4a j)]−1

∑
i=[
√

M(4a j)]

1
i
+

1

a j
√

logM(4a j)

� K

aj
√

logM(4a j)
.
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On the other hand, by noting that x
2 < 2(k+1)a j � 4[

√
M(4a j)]a j , we achieve that

∫ 2x

x
2

f (t)dt �
∫ 8ka j

4[
√

M(4a j)]a j

f (t)dt =
2k−1

∑
i=[
√

M(4a j)]

∫ 4(i+1)a j

4ia j

f (t)dt

� 1

8
√

logM(4a j)

2k−1

∑
i=[
√

M(4a j)]

∫ 4(i+1)a j

4ia j

1
t
dt

� 1

8
√

logM(4a j)

2[
√

M(4a j)]

∑
i=[
√

M(4a j)]

1
i+1

� K√
logM(4a j)

.

Therefore, for any λ � 2, it follows that

∫ 2x
x | f ′(t)|dt

M(x)
x

∫ λ x
λ−1x f (t)dt

�
∫ 2x
x | f ′(t)|dt

M(x)
x

∫ 2x
x
2

f (t)dt
� Kx

a jM(x)
� Kaj

√
M(4a j)

a jM(x)
� K√

M(x)
.

Combining these two cases, in any circumstance, for any λ � 2, we have proved

lim
x→∞

∫ 2x
x | f ′(t)|dt

M(x)
x

∫ λ x
λ−1x f (t)dt

= 0.

Choose y0 = π
2a j

, we have for k = 1,2, · · · ,2[
√

M(4a j)]−1 that

∫ (4k+2)a j

4ka j

f (x)sinxy0dx =
∫ (4k+2)a j

4ka j

f (x)sin
πx
2a j

dx �
∫ (4k+ 3

2 )a j

(4k+ 1
2 )a j

f (x)sin
πx
2a j

dx

�
√

2
2

∫ (4k+ 3
2 )a j

(4k+ 1
2 )a j

f (x)dx �
√

2

2
√

logM(4a j)

∫ (4k+ 3
2 )a j

(4k+ 1
2 )a j

1
x
dx

�
√

2√
logM(4a j)

1
8k+3

.

On the other hand, for all y ∈ (0,∞) ,

∣∣∣∣
∫ 4(k+1)a j

(4k+2)a j

f (x)sin xydx

∣∣∣∣�
∫ 4(k+1)a j

(4k+2)a j

f (x)dx � 1

8
√

logM(4a j)

∫ 4(k+1)a j

(4k+2)a j

1
x
dx

� 1

8
√

logM(4a j)
2a j

(4k+2)a j
� 1

2
√

logM(4a j)
1

8k+3
.
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Therefore,∣∣∣∣
∫ 4a j+1

4a j

f (x) sinxy0dx

∣∣∣∣
=

∣∣∣∣∣∣
2[
√

M(4a j)]−1

∑
k=1

(∫ (4k+2)a j

4ka j

f (x)sin xy0dx+
∫ 4(k+1)a j

(4k+2)a j

f (x)sin xydx

)∣∣∣∣∣∣
�

2[
√

M(4a j)]−1

∑
k=1

(∫ (4k+2)a j

4ka j

f (x)sin xy0dx−
∣∣∣∣
∫ 4(k+1)a j

(4k+2)a j

f (x)sin xydx

∣∣∣∣
)

� 1

2
√

logM(4a j)

2[
√

M(4a j)]−1

∑
k=1

1
8k+3

� K logM(4a j)√
logM(4a j)

� K
√

logM(4a j) → ∞.

At the same time,∣∣∣∣
∫ 4a j+1

a j+1

f (x)sin xy0dx

∣∣∣∣�
∫ 4a j+1

a j+1

f (x)dx � 1√
logM(4a j)

∫ 4a j+1

a j+1

1
x
dx � K√

logM(4a j)
→ 0.

Similarly, ∣∣∣∣
∫ 4a j

a j

f (x)sinxy0dx

∣∣∣∣→ 0.

That is to say ∣∣∣∣
∫ a j+1

a j

f (x)sinxy0dx

∣∣∣∣→ ∞(as j → ∞).

Thus

sup
y∈(0,∞)

∞

∑
j=0

∣∣∣∣
∫ a j+1

a j

f (x)sin xydx

∣∣∣∣�
∣∣∣∣
∫ a j+1

a j

f (x)sin xy0dx

∣∣∣∣→ ∞(as j → ∞).

The conclusion of Theorem 11 cannot hold in this case. �

3.3. The proof of the Theorem 13

To prove the Theorem 13, we establish the following Lemma:

LEMMA 2. If {cnm} satisfies the conditions of Theorem 13, then for all n < N ,
m < M, (x,y) ∈ (0,π ]2 , we have∣∣∣∣∣

N

∑
k=n

ckm sinkx

∣∣∣∣∣� 6KK2π [1+ ln(2λ 2)]
nmx

:=
K4

nmx
; (24)

∣∣∣∣∣
M

∑
l=m

cnl sin ly

∣∣∣∣∣� 6KK2π [1+ ln(2λ 2)]
nmy

:=
K4

nmy
; (25)
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N

∑
k=n

M

∑
l=m

ckl sinkxsin ly

∣∣∣∣∣� 36KK2π2(1+ ln(2λ 2))2

xynm
:=

K5

xynm
. (26)

Proof: Let Dn(x) :=
n
∑

k=1
sinkx , we know |Dn(x)| � π

x , x ∈ (0,π) . Noticing that

nmcnm � K implies that cnm → 0, n → ∞ , we get

cnm =
∞

∑
k=n

Δ10ckm �
∞

∑
k=n

|Δ10ckm| . (27)

Similarly,

cnm �
∞

∑
l=m

|Δ10cnl| . (28)

By using Abel’s transformation, we see that

∣∣∣∣∣
N

∑
k=n

ckm sinkx

∣∣∣∣∣=
∣∣∣∣∣
N−1

∑
k=n

Dk(x)Δ10ckm + cNmDN(x)− cnmDn−1(x)

∣∣∣∣∣
� π

x

(
N−1

∑
k=n

|Δ10ckm|+ cNm + cnm

)
� 3π

x

∞

∑
k=n

|Δ10ckm|

� 3π
x

∞

∑
i=0

2i+1n−1

∑
k=2in

|Δ10ckm| � 3K2π
x

∞

∑
i=0

1
2in

[λ2in]

∑
k=[λ−12in]

ckm

� 3KK2π
nmx

∞

∑
i=0

1
2i

[λ2in]

∑
k=[λ−12in]

1
k

� 6KK2(1+ ln(2λ 2))
nmx

.

Similarly, ∣∣∣∣∣
M

∑
l=m

cnl sin ly

∣∣∣∣∣� 2KK2π [1+ ln(2λ 2)]
nmy

.

Applying double Abel’s transformation, (10), (27) and (28), we can obtain that

∣∣∣∣∣
N

∑
k=n

M

∑
l=m

ckl sinkxsin ly

∣∣∣∣∣=
∣∣∣∣∣
N−1

∑
k=n

M−1

∑
l=m

Dk(x)Dl(y)Δ11ckl +
N−1

∑
k=n

Dk(x)DM(y)Δ10ckM

−
N−1

∑
k=n

Dk(x)Dm−1(y)Δ10ckm +
M−1

∑
l=m

DN(x)Dl(y)Δ01cNl
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−
M−1

∑
l=m

Dn−1(x)Dl(y)Δ01cnl +CNMDN(x)DM(y)− cnMDn−1(x)DM(y)

−CNmDN(x)Dm−1(y)+ cnmDn−1(x)Dm−1(y)

∣∣∣∣∣
� 9π2

xy

∞

∑
k=n

∞

∑
l=m

|Δ11ckl| � 9π2

xy

∞

∑
i=0

∞

∑
j=0

2i+1n−1

∑
k=2in

2 j+1m−1

∑
l=2 jm

|Δ11ckl|

� 9π2

xy

∞

∑
i=0

∞

∑
j=0

1
2in2 jm

[λ2in]

∑
k=[λ−12in]

[λ2 jm]

∑
l=[λ−12 jm]

ckl

� 36KK2π2(1+ ln(2λ 2))2

xynm
. �

Now, we start to prove Theorem 13. The case x = 0 or y = 0 or x = π or y = π
are trivial. Let (x,y)∈ (0,π)2 . Select n and m , p and q in turn such that π

n+1 � x < π
n ,

np � n < np+1 , π
m+1 � y < π

m , mq � m < mq+1 . Thus ,we can write

∞

∑
i=1

∞

∑
j=1

∣∣∣∣∣
ni+1−1

∑
k=ni

mj+1−1

∑
l=mj

ckl sinkxsin ly

∣∣∣∣∣
�

n

∑
k=1

m

∑
l=1

|ckl sinkxsin ly|+
n

∑
k=1

|sinkx|
∣∣∣∣∣
mq+1−1

∑
l=m+1

ckl sin ly

∣∣∣∣∣+
n

∑
k=1

|sinkx|
∞

∑
j=q+1

∣∣∣∣∣
mj+1−1

∑
l=mj

ckl sin ly

∣∣∣∣∣
+

m

∑
l=1

|sin ly|
∣∣∣∣∣
np+1−1

∑
k=n+1

ckl sinkx

∣∣∣∣∣+
∣∣∣∣∣
np+1−1

∑
k=n+1

mq+1−1

∑
l=m+1

ckl sinkxsin ly

∣∣∣∣∣
+

∞

∑
j=q+1

∣∣∣∣∣
np+1−1

∑
k=n+1

mj+1−1

∑
l=mj

ckl sinkxsin ly

∣∣∣∣∣+
m

∑
l=1

|sin ly|
∞

∑
i=p+1

∣∣∣∣∣
ni+1−1

∑
k=ni

ckl sinkx

∣∣∣∣∣
+

∞

∑
i=p+1

∣∣∣∣∣
ni+1−1

∑
k=ni

mq+1−1

∑
l=m+1

ckl sinkxsin ly

∣∣∣∣∣+
∞

∑
i=p+1

∞

∑
j=q+1

∣∣∣∣∣
ni+1−1

∑
k=ni

mj+1−1

∑
l=mj

ckl sinkxsin ly

∣∣∣∣∣
: = I1 + I2 + I3 + I4 + I5 + I6 + I7 + I8 + I9.

Since nmcnm � K , we easily obtain

I1 �
n

∑
k=1

m

∑
l=1

klcklxy � Knxmy � Kπ2.

By (25), we get

I2 �
n

∑
k=1

kx
K4

k(m+1)y
=

nxK4

(m+1)y
� K4.
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By (25) and (22), we get

I3 �
n

∑
k=1

kx ∑
j=q+1

K4

kmjy
� nxK4B

ymq+1
� nxK4B

y(m+1)
� K4B.

I4 is the symmetric counterpart of I2 . Thus,

I4 � K4.

By (26), we get

I5 � K5

x(n+1)y(m+1)
� K5

π2 .

By (26) and (22), we get

I6 �
∞

∑
j=q+1

K5

xy(n+1)mj
� K5B

x(n+1)ymq+1
� K5B

x(n+1)y(m+1)
� K5B

π2 .

I7 is the symmetric counterpart of I3 . Thus

I7 � K4A.

I8 is the symmetric counterpart of I6 . Thus

I8 � K5A
π2 .

By (26) and (22), we get

Iq �
∞

∑
i=p+1

∞

∑
j=q+1

K5

xynimj
� K5AB

xnp+1ymq+1
� K5AB

x(n+1)y(m+1)
� K5AB

π2 .

Combining the above estimates I1 —I9 , we have proved the required inequality. �

REMARK 1. Recently, Feng and Zhou proved the following Theorem in [2]:

THEOREM 14. Let a real sequence {an} ∈ MVBVS . Then, for all n and x ∈
[0,π ] ,

n

∑
k=1

ak sinkx = O(1)

holds if and only if

nan = O(1).

In [10], Zhao generalized Theorem 14 and established the following theorem:
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THEOREM 15. Assume a non-negative function f ∈ MVBVF(R+) , then for any
a > A, t ∈ [0,∞) , ∣∣∣∣

∫ ∞

a
f (x)sin xtdx

∣∣∣∣= O(1) (29)

holds if and only if
x| f (x)| = O(1). (30)

That is to say, Theorem 15 emphasizes (29) and (30) is an equivalence relation
under f (x) ∈MVBVF(R+) . However, our result emphasizes MVBV condition cannot
be weakened further to ensure (19) holds. Moreover, our result is different from The-
orem 15 on two aspects: First, x f (x) = O(1) is a condition in our paper rather than
a condition in Theorem 15. Second, our inequality (19) is different from (29), which
means our object is different. Thus, on the basis of two papers’ conclusions, we give an
open question:

THEOREM 16. Assume a non-negative f (x)∈MVBVF(R+) the sequence {ai}∞
i=1

satisfies a0 = 0,a1 = 1 < a2 < a3 < · · · and there exists a positive constant A depending
on the sequence such that

∞

∑
j=i

1
a j

� A
ai

, i = 1,2, · · · ,

then for all y ∈ [0,∞) ,
∞

∑
i=0

∣∣∣∣
∫ ai+1

ai

f (x)sin xydx

∣∣∣∣= O(1)

holds if and only if
x f (x) = O(1).
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