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Abstract. Let 0 < ρ < n and μρ
Ω be the parametric Marcinkiewicz integral. In this paper, by

using the atomic decomposition theory of weighted Hardy and weak Hardy spaces, we will
obtain the boundedness properties of μρ

Ω on these spaces, under the Lipschitz condition imposed
on the kernel Ω .

1. Introduction

Suppose that Sn−1 is the unit sphere in R
n (n � 2) equipped with the normal-

ized Lebesgue measure dσ . Let Ω be a homogeneous function of degree zero on R
n

satisfying Ω ∈ L1(Sn−1) and ∫
Sn−1

Ω(x′)dσ(x′) = 0, (1.1)

where x′ = x/|x| for any x �= 0. For 0 < ρ < n , in 1960, Hörmander [16] defined the
parametric Marcinkiewicz integral operator μρ

Ω of higher dimension as follows.

μρ
Ω( f )(x) =

(∫ ∞

0

∣∣Fρ
Ω,t(x)

∣∣2 dt
t2ρ+1

)1/2

, (1.2)

where

Fρ
Ω,t(x) =

∫
|x−y|�t

Ω(x− y)
|x− y|n−ρ f (y)dy. (1.3)

When ρ = 1, we shall denote μ1
Ω simply by μΩ . This operator μΩ was first introduced

by Stein in [30]. He proved that if Ω ∈ Lipα(Sn−1) (0 < α � 1), then μΩ is the
operator of strong type (p, p) for 1 < p � 2 and of weak type (1,1) . Here, we say that
Ω ∈ Lipα(Sn−1) if ∣∣Ω(x′)−Ω(y′)

∣∣� C|x′ − y′|α , x′,y′ ∈ Sn−1. (1.4)
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In [2], Benedek, Calderón and Panzone showed that if Ω is continuously differentiable
on Sn−1 , then μΩ is of strong type (p, p) for all 1 < p < ∞ . In 1990, Torchinsky and
Wang [34] considered the weighted case and proved that if Ω∈Lipα (Sn−1) , 0 < α � 1,
then for all 1 < p < ∞ and w ∈ Ap (Muckenhoupt weight class), μΩ is bounded on
Lp

w(Rn) . On the other hand, in 1960, Hörmander [16] showed that if Ω ∈ Lipα(Sn−1)
(0 < α � 1), then for 0 < ρ < n , μρ

Ω is of strong type (p, p) for all 1 < p < ∞ . It is
well known that the Littlewood–Paley g -function is a very important tool in harmonic
analysis and the parametric Marcinkiewicz integral is essentially a Littlewood–Paley
g -function. Therefore, many authors have been interested in studying the bounded-
ness properties of μρ

Ω on various function spaces, one can see [1, 9, 11, 27] and the
references therein for further details.

In [28], Sato established the following weighted Lp boundedness of μρ
Ω for all

0 < ρ < n (see also [29]).

THEOREM A. Let 0 < ρ < n and Ω ∈ L∞(Sn−1) . If w ∈ Ap , 1 < p < ∞ , then
there exists a constant C > 0 independent of f such that∥∥μρ

Ω( f )
∥∥

Lp
w

� C‖ f‖Lp
w
.

The main purpose of this paper is to discuss the boundedness properties of para-
metric Marcinkiewicz integrals μρ

Ω (0 < ρ < n ) on the weighted Hardy and weak Hardy
spaces (see Section 2 for the definitions). We now present our main results as follows.

THEOREM 1.1. Let 0 < ρ < n, 0 < α � 1 , Ω∈Lipα(Sn−1) and β = min
{

α,1/2
}

.
If n/(n+ β )< p � 1 and w ∈ A

p(1+ β
n )

, then there exists a constant C > 0 independent

of f such that ∥∥μρ
Ω( f )

∥∥
Lp

w
� C‖ f‖Hp

w
.

THEOREM 1.2. Let 0 < ρ < n, 0 < α � 1 , Ω∈Lipα(Sn−1) and β = min
{

α,1/2
}

.
If p = n/(n+ β ) and w∈ A1 , then there exists a constant C > 0 independent of f such
that ∥∥μρ

Ω( f )
∥∥

WLp
w

� C‖ f‖Hp
w
.

THEOREM 1.3. Let 0 < ρ < n, 0 < α � 1 , Ω∈Lipα(Sn−1) and β = min
{

α,1/2
}

.
If n/(n+ β )< p � 1 and w ∈ A

p(1+ β
n )

, then there exists a constant C > 0 independent

of f such that ∥∥μρ
Ω( f )

∥∥
WLp

w
� C‖ f‖WHp

w
.

2. Notations and preliminaries

Let us first recall some standard definitions and notations of Ap weights. The clas-
sical Ap weight theory was first introduced by Muckenhoupt in the study of weighted
Lp boundedness of Hardy–Littlewood maximal functions in [25]. Let w be a nonneg-
ative, locally integrable function defined on R

n ; all cubes are assumed to have their
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sides parallel to the coordinate axes. For 1 < p < ∞ , a weight function w is said to
belong to Ap , if there is a constant C > 0 such that for every cube Q ⊆ R

n ,(
1
|Q|

∫
Q

w(x)dx

)(
1
|Q|

∫
Q

w(x)−1/(p−1) dx

)p−1

� C, (2.1)

where |Q| denotes the Lebesgue measure of Q . For the case p = 1, w ∈ A1 , if there is
a constant C > 0 such that for every cube Q ⊆ R

n ,

1
|Q|

∫
Q

w(x)dx � C · ess inf
x∈Q

w(x). (2.2)

A weight function w∈ A∞ if it satisfies the Ap condition for some 1 < p < ∞ . It is well
known that if w ∈ Ap with 1 < p < ∞ , then w ∈ Ar for all r > p , and w ∈ Aq for some
1 < q < p . We thus write qw ≡ inf{q > 1 : w ∈ Aq} to denote the critical index of w .
Given a cube Q and λ > 0, λQ stands for the cube with the same center as Q whose
side length is λ times that of Q . Q = Q(x0,r) denotes the cube centered at x0 with
side length r . For a weight function w and a measurable set E , we set the weighted
measure of E by w(E) , where w(E) =

∫
E w(x)dx .

We state the following results that will be used later on.

LEMMA 2.1. ([15]) Let w∈ Aq with q � 1 . Then, for any cube Q, there exists an
absolute constant C > 0 such that

w(2Q) � Cw(Q).

In general, for any λ > 1 , we have

w(λQ) � C ·λ nqw(Q),

where C does not depend on Q or λ .

LEMMA 2.2. ([15]) Let w ∈ Aq with q > 1 . Then, for all r > 0 , there exists a
constant C > 0 independent of r such that∫

|x|�r

w(x)
|x|nq dx � C · r−nqw

(
Q(0,2r)

)
.

LEMMA 2.3. ([15]) Let w∈Aq with q� 1 . Then there exists an absolute constant
C > 0 such that

C ·
( |E|
|Q|
)q

� w(E)
w(Q)

for any measurable subset E of a cube Q.

Given a weight function w on R
n , for 0 < p < ∞ , we denote by Lp

w(Rn) the
weighted space of all functions f satisfying

‖ f‖Lp
w

=
(∫

Rn
| f (x)|pw(x)dx

)1/p

< ∞. (2.3)



376 H. WANG

When p = ∞ , L∞
w(Rn) will be taken to mean L∞(Rn) , and we set

‖ f‖L∞
w

= ‖ f‖L∞ = ess sup
x∈Rn

| f (x)| < ∞. (2.4)

We also let WLp
w(Rn) denote the weighted weak Lp space of all those measurable

functions f which satisfy

‖ f‖WLp
w

= sup
λ>0

λ ·w({x ∈ R
n : | f (x)| > λ

})1/p
< ∞. (2.5)

We write S (Rn) to denote the Schwartz space of all rapidly decreasing infinitely
differentiable functions and S ′(Rn) to denote the space of all tempered distributions,
i.e., the topological dual of S (Rn) . As we know, for any 0 < p � 1, the weighted
Hardy spaces Hp

w(Rn) can be defined in terms of maximal functions. Let ϕ be a func-
tion in S (Rn) satisfying

∫
Rn ϕ(x)dx = 1. Set

ϕt(x) = t−nϕ(x/t), t > 0, x ∈ R
n.

We will define the radial maximal function Mϕ f (x) by

Mϕ f (x) = sup
t>0

∣∣(ϕt ∗ f )(x)
∣∣.

Then the weighted Hardy space Hp
w(Rn) consists of those tempered distributions f ∈

S ′(Rn) for which Mϕ f ∈ Lp
w(Rn) with ‖ f‖Hp

w
= ‖Mϕ f‖Lp

w
. The real-variable theory

of weighted Hardy spaces has been extensively investigated by many authors. For ex-
ample, Garcia-Cuerva [14] studied the atomic decomposition and the dual spaces of Hp

w

for 0 < p � 1. The molecular characterization of Hp
w for 0 < p � 1 was given by Lee

and Lin [18]. For more information about the continuity properties of some operators
on weighted Hardy spaces, the reader is referred to [3, 4, 17, 19, 20, 21].

In this article, we will use Garcia-Cuerva’s atomic decomposition theory for weigh-
ted Hardy spaces in [14, 32]. We characterize weighted Hardy spaces in terms of atoms
in the following way.

Let 0 < p � 1 � q � ∞ and p �= q such that w ∈ Aq with critical index qw . Set
[ · ] the greatest integer function. For s ∈ Z+ satisfying s � N = [n(qw/p−1)], a real-
valued function a(x) is called a ( p,q,s)-atom centered at x0 with respect to w (or a
w-( p,q,s)-atom centered at x0 ) if the following conditions are satisfied:

(a) a ∈ Lq
w(Rn) and is supported in a cube Q centered at x0 ;

(b) ‖a‖Lq
w

� w(Q)1/q−1/p ;
(c)

∫
Rn a(x)xα dx = 0 for every multi-index α with |α| � s .

THEOREM 2.4. Let 0 < p � 1 � q � ∞ and p �= q such that w∈ Aq with critical
index qw . For each f ∈ Hp

w(Rn) , there exist a sequence {a j } of w-(p,q,s)-atoms and
a sequence {λ j } of real numbers with ∑ j |λ j|p � C‖ f‖p

Hp
w

such that f = ∑ j λ ja j both

in the sense of distributions and in the Hp
w norm.
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Let us now turn to the weighted weak Hardy spaces, which are good substitutes for
the weighted Hardy spaces in the study of the boundedness of some operators. The (un-
weighted) weak Hp spaces have first appeared in the work of Fefferman, Rivière and
Sagher [12], which are the intermediate spaces between two Hardy spaces through the
real method of interpolation. The atomic decomposition characterization of weak H1

space on R
n was given by Fefferman and Soria in [13]. Later, Liu [22] established the

weak Hp spaces on homogeneous groups for the whole range 0 < p � 1. The corre-
sponding results related to R

n can be found in [24]. For the boundedness properties of
some operators on weak Hardy spaces, we refer the readers to [5, 6, 7, 8, 9, 10, 23, 33].
In 2000, Quek and Yang [26] introduced the weighted weak Hardy spaces WHp

w(Rn)
and established their atomic decompositions. Moreover, by using the atomic decom-
position theory of WHp

w(Rn) , Quek and Yang [26] also obtained the boundedness of
Calderón–Zygmund type operators on these weighted spaces.

Let w ∈ A∞ , 0 < p � 1 and N = [n(qw/p−1)] . Define

AN,w =
{

ϕ ∈ S (Rn) : sup
x∈Rn

sup
|α |�N+1

(1+ |x|)N+n+1
∣∣Dα ϕ(x)

∣∣� 1
}
,

where α = (α1, . . . ,αn) ∈ (N∪{0})n , |α| = α1 + . . .+ αn , and

Dα ϕ =
∂ |α |ϕ

∂xα1
1 · · ·∂xαn

n
.

For any given f ∈ S ′(Rn) , the grand maximal function of f is defined by

Gw f (x) = sup
ϕ∈AN,w

sup
|y−x|<t

∣∣(ϕt ∗ f )(y)
∣∣.

Then we can define the weighted weak Hardy space WHp
w(Rn) by WHp

w(Rn) =
{

f ∈
S ′(Rn) : Gw f ∈WLp

w(Rn)
}

. Moreover, we set ‖ f‖WHp
w

= ‖Gw f‖WLp
w
.

THEOREM 2.5. ([26]) Let 0 < p � 1 and w ∈ A∞ . For every f ∈ WHp
w(Rn) ,

there exists a sequence of bounded measurable functions { fk}∞
k=−∞ such that

(i) f = ∑∞
k=−∞ fk in the sense of distributions.

(ii) Each fk can be further decomposed into fk = ∑i b
k
i , where {bk

i } satisfies
(a) Each bk

i is supported in a cube Qk
i with ∑i w

(
Qk

i

)
� c2−kp , and ∑i χQk

i
(x)�

c. Here χE denotes the characteristic function of the set E and c ∼ ∥∥ f
∥∥p

WHp
w
;

(b)
∥∥bk

i

∥∥
L∞ � C2k , where C > 0 is independent of i and k ;

(c)
∫
Rn bk

i (x)x
α dx = 0 for every multi-index α with |α| � [n(qw/p−1)] .

Conversely, if f ∈ S ′(Rn) has a decomposition satisfying (i) and (ii) , then f ∈
WHp

w(Rn) . Moreover, we have
∥∥ f
∥∥p

WHp
w
∼ c.

Throughout this article C always denotes a positive constant, which is independent
of the main parameters and not necessarily the same at each occurrence. Moreover, we
use A∼B to mean the equivalence of A and B ; that is, there exist two positive constants
C1 and C2 independent of A , B such that C1A � B � C2A .
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3. Proof of Theorem 1.1

Proof of Theorem 1.1. Set q = p(1 + β
n ) with β = min

{
α,1/2

}
. Then by our

assumption, we have [n(qw/p− 1)] = 0 provided that w ∈ Aq . In view of Theorem
2.4 and Theorem A, it suffices to show that for any w-(p,q,0)-atom a , there exists a
constant C > 0 independent of a such that

∥∥μρ
Ω(a)

∥∥
Lp

w
�C . Let a(x) be a w-(p,q,0)-

atom with supp a ⊆ Q = Q(x0,rQ) , and let Q∗ = 2
√

nQ . We write

∥∥μρ
Ω(a)

∥∥p
Lp

w
=
∫

Q∗

∣∣μρ
Ω(a)(x)

∣∣pw(x)dx+
∫

(Q∗)c

∣∣μρ
Ω(a)(x)

∣∣pw(x)dx

= I1 + I2.

For the term I1 , by using Hölder’s inequality with exponent s = q/p > 1, the size
condition of atom a , Lemma 2.1 and Theorem A, we have

I1 �
(∫

Q∗

∣∣μρ
Ω(a)(x)

∣∣qw(x)dx

)p/q(∫
Q∗

w(x)dx

)1−p/q

�
∥∥μρ

Ω(a)
∥∥p

Lq
w

[
w(Q∗)

]1−p/q

� C ·∥∥μρ
Ω(a)

∥∥p
Lq

w

[
w(Q)

]1−p/q

� C · ‖a‖p
Lq

w

[
w(Q)

]1−p/q

� C.

Let us now turn to estimate the other term I2 . For 0 < ρ < n and for any x ∈ (Q∗)c ,
we write

μρ
Ω(a)(x) =

(∫ ∞

0

∣∣∣∣∫|x−y|�t

Ω(x− y)
|x− y|n−ρ a(y)dy

∣∣∣∣2 dt
t2ρ+1

)1/2

=

(∫ |x−x0|+(
√

n)rQ

0

∣∣∣∣∫|x−y|�t

Ω(x− y)
|x− y|n−ρ a(y)dy

∣∣∣∣2 dt
t2ρ+1

)1/2

+

(∫ ∞

|x−x0|+(
√

n)rQ

∣∣∣∣∫|x−y|�t

Ω(x− y)
|x− y|n−ρ a(y)dy

∣∣∣∣2 dt
t2ρ+1

)1/2

= I+II.

Clearly, the condition Ω ∈ Lipα (Sn−1)(0 < α � 1) implies that Ω ∈ L∞(Sn−1) . Notice
also that when y∈Q and x ∈ (Q∗)c , then we get |x−y| ∼ |x−x0| ∼ |x−x0|+(

√
n)rQ .

Thus, for 0 < ρ < n , we apply the mean value theorem to obtain∣∣∣∣ 1
|x− y|2ρ − 1

[|x− x0|+(
√

n)rQ]2ρ

∣∣∣∣� C · rQ

|x− y|2ρ+1 . (3.1)
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The above estimate (3.1) together with Minkowski’s inequality for integrals yields

I �
∫

Q

|Ω(x− y)|
|x− y|n−ρ

∣∣a(y)
∣∣(∫ |x−x0|+(

√
n)rQ

|x−y|
dt

t2ρ+1

)1/2

dy

� C · ‖Ω‖L∞

∫
Q

|a(y)|
|x− y|n−ρ

(
rQ

|x− y|2ρ+1

)1/2

dy

� C · (rQ)1/2

|x− x0|n+ 1
2

∫
Q

∣∣a(y)
∣∣dy.

Denote the conjugate exponent of q > 1 by q′ = q/(q−1). Then it follows from
Hölder’s inequality, the Aq condition and the size condition of atom a that

∫
Q

∣∣a(y)
∣∣dy �

(∫
Q

∣∣a(y)
∣∣qw(y)dy

)1/q(∫
Q

w(y)−q′/q dy

)1/q′

� C · ‖a‖Lq
w

( |Q|q
w(Q)

)1/q

� C · |Q|
[w(Q)]1/p

. (3.2)

Hence, we have

I � C · (rQ)n+ 1
2

|x− x0|n+ 1
2
· 1

[w(Q)]1/p
.

On the other hand, if t � |x−x0|+(
√

n)rQ , then we can easily see that Q⊂{y : |x−y|�
t} , and Q∩{y : |x− y|� t} = Q . Thus, by the vanishing moment condition of atom a ,
we can see that

II =

(∫ ∞

|x−x0|+(
√

n)rQ

∣∣∣∣∫
Q

Ω(x− y)
|x− y|n−ρ a(y)dy

∣∣∣∣2 dt
t2ρ+1

)1/2

=

(∫ ∞

|x−x0|+(
√

n)rQ

∣∣∣∣∫
Q

[
Ω(x− y)
|x− y|n−ρ − Ω(x− x0)

|x− x0|n−ρ

]
a(y)dy

∣∣∣∣2 dt
t2ρ+1

)1/2

� C

(∫ ∞

|x−x0|+(
√

n)rQ

[∫
Q

∣∣∣∣ 1
|x− y|n−ρ − 1

|x− x0|n−ρ

∣∣∣∣∣∣a(y)
∣∣dy

]2 dt
t2ρ+1

)1/2

+

(∫ ∞

|x−x0|+(
√

n)rQ

[∫
Q

|Ω(x− y)−Ω(x− x0)|
|x− x0|n−ρ

∣∣a(y)
∣∣dy

]2 dt
t2ρ+1

)1/2

= III+IV.

When x ∈ (Q∗)c and y ∈ Q , then |x− y| ∼ |x− x0| . Using the mean value theorem and



380 H. WANG

(3.2), we obtain

III � C

(∫ ∞

|x−x0|+(
√

n)rQ

[∫
Q

|y− x0|
|x− x0|n−ρ+1

∣∣a(y)
∣∣dy

]2 dt
t2ρ+1

)1/2

� C · rQ

|x− x0|n−ρ+1

∫
Q

∣∣a(y)
∣∣dy×

(∫ ∞

|x−x0|+(
√

n)rQ

dt
t2ρ+1

)1/2

� C · rQ

|x− x0|n+1

∫
Q

∣∣a(y)
∣∣dy

� C · (rQ)n+1

|x− x0|n+1 ·
1

[w(Q)]1/p
.

In addition, from the definition of Ω ∈ Lipα(Sn−1) (0 < α � 1) , we can easily check
that ∣∣Ω(x− y)−Ω(x− x0)

∣∣= ∣∣∣∣Ω( x− y
|x− y|

)
−Ω

( x− x0

|x− x0|
)∣∣∣∣

� C

∣∣∣∣ x− y
|x− y| −

x− x0

|x− x0|
∣∣∣∣α

� C

( |y− x0|
|x− x0|

)α
. (3.3)

Substituting the above inequality (3.3) into the term IV and then using (3.2), we can
deduce that

IV � C

(∫ ∞

|x−x0|+(
√

n)rQ

[∫
Q

|y− x0|α
|x− x0|n−ρ+α

∣∣a(y)
∣∣dy

]2 dt
t2ρ+1

)1/2

� C · (rQ)α

|x− x0|n−ρ+α

∫
Q

∣∣a(y)
∣∣dy×

(∫ ∞

|x−x0|+(
√

n)rQ

dt
t2ρ+1

)1/2

� C · (rQ)n+α

|x− x0|n+α · 1

[w(Q)]1/p
.

Therefore, combining the above estimates for I, III and IV, we have for any fixed x ∈
(Q∗)c ,

∣∣μρ
Ω(a)(x)

∣∣� C · 1

[w(Q)]1/p

[
(rQ)n+ 1

2

|x− x0|n+ 1
2

+
(rQ)n+1

|x− x0|n+1 +
(rQ)n+α

|x− x0|n+α

]
. (3.4)

Hence,

I2 � C · (rQ)(n+ 1
2 )p

w(Q)

∫
(Q∗)c

w(x)

|x− x0|(n+ 1
2 )p

dx+C · (rQ)(n+1)p

w(Q)

∫
(Q∗)c

w(x)
|x− x0|(n+1)p dx

+C · (rQ)(n+α)p

w(Q)

∫
(Q∗)c

w(x)
|x− x0|(n+α)p dx

= I3 + I4 + I5.
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Observe that β = min
{

α,1/2
}

and n/(n+ β ) < p � 1, then n/(n+ α) < p � 1 and
n/(n+ 1

2 ) < p � 1. Since w ∈ A
p(1+ β

n )
and β = min

{
α,1/2

}
, then we have w ∈

Ap(1+ α
n ) and w ∈ Ap(1+ 1

2n ) . By using Lemma 2.1 and Lemma 2.2, we thus obtain

I3 = C · (rQ)(n+ 1
2 )p

w(Q)

∫
|y|�(

√
n)rQ

w1(y)

|y|n·p(1+ 1
2n )

dy

� C · (rQ)(n+ 1
2 )p

w(Q)
· (rQ)−n·p(1+ 1

2n )w1
(
Q(0,rQ)

)
= C · (rQ)(n+ 1

2 )p

w(Q)
· (rQ)−n·p(1+ 1

2n )w(Q) � C

and

I5 = C · (rQ)(n+α)p

w(Q)

∫
|y|�(

√
n)rQ

w1(y)

|y|n·p(1+ α
n )

dy

� C · (rQ)(n+α)p

w(Q)
· (rQ)−n·p(1+ α

n )w1
(
Q(0,rQ)

)
� C,

where w1(x) = w(x + x0) is the translation of w(x) . It is obvious that w1 ∈ As for
w ∈ As , s > 1 (s = p(1+ 1

2n) or s = p(1 + α
n )), and qw1 = qw . By using the same

arguments as above, we can also prove that I4 � C . Summing up the above estimates
for I1 and I2 , we then complete the proof of Theorem 1.1. �

4. Proof of Theorem 1.2

In order to prove our main result of this section, we shall need the following su-
perposition principle on the weighted weak type estimates.

LEMMA 4.1. Let w ∈ A1 and 0 < p < 1 . If a sequence of measurable functions
{ f j} satisfy

w
({

x ∈ R
n : | f j(x)| > α

})
� α−p for all j ∈ Z

and

∑
j∈Z

|λ j|p � 1,

then we obtain that ∑ j λ j f j(x) is absolutely convergent almost everywhere and

w
({

x ∈ R
n :
∣∣∣∑

j
λ j f j(x)

∣∣∣> α
})

� 2− p
1− p

·α−p.

Proof. The proof of this lemma is similar to the corresponding result for the un-
weighted case which can be found in [31]. See also [24, p. 123]. �
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We are now ready to give the proof of Theorem 1.2.

Proof of Theorem 1.2. We first observe that for w ∈ A1 and p = n/(n+ β ), then
[n(qw/p−1)] = [β ] = 0. According to Theorem 2.4 and Lemma 4.1, it is enough for us
to show that for any w-(p,q,0)-atom a(x) , there exists a constant C > 0 independent
of a such that

∥∥μρ
Ω(a)

∥∥
WLp

w
� C . Let a(x) be a w-(p,q,0)-atom centered at x0 with

supp a ⊆ Q = Q(x0,rQ) , and let Q∗ = 2
√

nQ . Then for any fixed λ > 0, we write

λ p ·w({x ∈ R
n :
∣∣μρ

Ω(a)(x)
∣∣> λ

})
�λ p ·w({x ∈ Q∗ :

∣∣μρ
Ω(a)(x)

∣∣> λ
})

+ λ p ·w({x ∈ (Q∗)c :
∣∣μρ

Ω(a)(x)
∣∣> λ

})
=J1 + J2.

Since w ∈ A1 , then w ∈ Aq for any 1 < q < ∞ . Applying Chebyshev’s inequality,
Hölder’s inequality, Lemma 2.1, Theorem A and the size condition of atom a , we have

J1 �
∫

Q∗

∣∣μρ
Ω(a)(x)

∣∣pw(x)dx

�
(∫

Q∗

∣∣μρ
Ω(a)(x)

∣∣qw(x)dx

)p/q(∫
Q∗

w(x)dx

)1−p/q

� C ·∥∥μρ
Ω(a)

∥∥p
Lq

w

[
w(Q)

]1−p/q

� C · ‖a‖p
Lq

w

[
w(Q)

]1−p/q

� C.

For any x∈ (Q∗)c , in the proof of Theorem 1.1, we have already obtained the following
pointwise inequality (see (3.4))

∣∣μρ
Ω(a)(x)

∣∣� C · 1

[w(Q)]1/p

[
(rQ)n+α

|x− x0|n+α +
(rQ)n+1

|x− x0|n+1 +
(rQ)n+ 1

2

|x− x0|n+ 1
2

]
.

Setting

F(x) =
(rQ)n+α

|x− x0|n+α [w(Q)]1/p
,

G(x) =
(rQ)n+1

|x− x0|n+1[w(Q)]1/p
,

H(x) =
(rQ)n+ 1

2

|x− x0|n+ 1
2 [w(Q)]1/p

.

Thus, in order to complete the proof of Theorem 1.2, we only need to prove that the
following three inequalities hold.

λ p ·w({x ∈ (Q∗)c :
∣∣F(x)

∣∣> λ
})

� C, (4.1)

λ p ·w({x ∈ (Q∗)c :
∣∣G(x)

∣∣> λ
})

� C, (4.2)
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and
λ p ·w({x ∈ (Q∗)c :

∣∣H(x)
∣∣> λ

})
� C. (4.3)

Let us start with the inequality (4.1). For any given λ > 0, we are going to consider
two cases. If

λ � (rQ)n+α

(
√

nrQ)n+α [w(Q)]1/p
,

then for any x ∈ (Q∗)c , we have |x− x0| � √
nrQ . Hence, we can easily verify that{

x ∈ (Q∗)c :
∣∣F(x)

∣∣> λ
}

= Ø.

Therefore, in this case, the inequality

λ p ·w({x ∈ (Q∗)c :
∣∣F(x)

∣∣> λ
})

� C

holds trivially. Now suppose that

λ <
(rQ)n+α

(
√

nrQ)n+α [w(Q)]1/p
.

If we take R =
rQ

λ
1

n+α [w(Q)]
1

p(n+α)
, then it is not difficult to check that R � √

nrQ � rQ

and {
x ∈ (Q∗)c :

∣∣F(x)
∣∣> λ

}⊆ {x ∈ R
n : |x− x0| < R

}⊆ Q(x0,2R). (4.4)

Since w ∈ A1 , then by Lemma 2.3, we can get (below, C̃ is an absolute constant)

C̃ · |Q(x0,rQ)|
|Q(x0,2R)| � w(Q(x0,rQ))

w(Q(x0,2R))
,

which implies

w
(
Q(x0,2R)

)
� (2R)n ·w(Q)

C̃ · (rQ)n
� 2n ·w(Q)

C̃ ·λ n
n+α [w(Q)]

n
p(n+α)

. (4.5)

Noting that λ <
1

(
√

n)n+α [w(Q)]1/p
and p− n

n+ α
> 0. Hence, it follows directly

from (4.4) and (4.5) that

λ p ·w({x ∈ (Q∗)c :
∣∣F(x)

∣∣> λ
})

� λ p ·w(Q(x0,2R)
)

� C ·λ p · w(Q)

λ
n

n+α [w(Q)]
n

p(n+α)

� C.

We now prove the inequality (4.2). Similarly, for any given λ > 0, we will consider
the following two cases. If

λ � (rQ)n+1

(
√

nrQ)n+1[w(Q)]1/p
,
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then as before, we can also show that{
x ∈ (Q∗)c :

∣∣G(x)
∣∣> λ

}
= Ø,

and so the following estimate holds trivially.

λ p ·w({x ∈ (Q∗)c :
∣∣G(x)

∣∣> λ
})

� C.

Now if instead we assume that

λ <
(rQ)n+1

(
√

nrQ)n+1[w(Q)]1/p
.

In this case, if we take R′ =
rQ

λ
1

n+1 [w(Q)]
1

p(n+1)
, then it is not difficult to verify that

R′ � √
nrQ � rQ and{

x ∈ (Q∗)c :
∣∣G(x)

∣∣> λ
}⊆ {x ∈ R

n : |x− x0| < R′}⊆ Q(x0,2R′). (4.6)

Recall that p = n/(n+ β ) and β = min
{

α,1/2
}

< 1, then 1 < p(1+ 1
n ) . Since w ∈

A1 , then w ∈ Ap(1+ 1
n ) . Furthermore, by using Lemma 2.3 again, we can get (below, ˜̃C

is an absolute constant)

˜̃C ·
( |Q(x0,rQ)|
|Q(x0,2R′)|

)p(1+ 1
n )

� w(Q(x0,rQ))
w(Q(x0,2R′))

,

which in turn gives

w
(
Q(x0,2R′)

)
� (2R′)p(n+1) ·w(Q)˜̃C · (rQ)p(n+1)

� 2p(n+1)˜̃C ·λ p
. (4.7)

Therefore, by (4.6) and (4.7), we obtain

λ p ·w({x ∈ (Q∗)c :
∣∣G(x)

∣∣> λ
})

� λ p ·w(Q(x0,2R′)
)

� C.

By using the same arguments as above, we can also prove the inequality (4.3). Collect-
ing all these estimates and then taking the supremum over all λ > 0, we conclude the
proof of Theorem 1.2. �

5. Proof of Theorem 1.3

Proof of Theorem 1.3. The basic idea of the proof is taken from [26]. For any given
λ > 0, we may choose k0 ∈ Z such that 2k0 � λ < 2k0+1 . For every f ∈WHp

w(Rn) ,
then by Theorem 2.5, we can write

f =
∞

∑
k=−∞

fk =
k0

∑
k=−∞

fk +
∞

∑
k=k0+1

fk := F1 +F2,
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where F1 = ∑k0
k=−∞ fk = ∑k0

k=−∞ ∑i b
k
i , F2 = ∑∞

k=k0+1 fk = ∑∞
k=k0+1 ∑i b

k
i and {bk

i } sat-
isfies (a)–(c) in Theorem 2.5. Then we have

λ p ·w({x ∈ R
n :
∣∣μρ

Ω( f )(x)
∣∣ > λ

})
�λ p ·w({x ∈ R

n :
∣∣μρ

Ω(F1)(x)
∣∣> λ/2

})
+ λ p ·w({x ∈ R

n :
∣∣μρ

Ω(F2)(x)
∣∣> λ/2

})
=K1 +K2.

First we claim that the following inequality holds:∥∥F1
∥∥

L2
w

� C ·λ 1−p/2
∥∥ f
∥∥p/2

WHp
w
. (5.1)

In fact, since supp bk
i ⊆ Qk

i = Q
(
xk
i ,r

k
i

)
and

∥∥bk
i

∥∥
L∞ � C2k by Theorem 2.5, then it

follows from Minkowski’s integral inequality that

∥∥F1
∥∥

L2
w

�
k0

∑
k=−∞

∑
i

∥∥bk
i

∥∥
L2

w

�
k0

∑
k=−∞

∑
i

∥∥bk
i

∥∥
L∞w

(
Qk

i

)1/2
.

For each k ∈ Z , by using the bounded overlapping property of the cubes {Qk
i } and the

fact that 1− p/2 > 0, we thus obtain

∥∥F1
∥∥

L2
w

� C
k0

∑
k=−∞

2k
(
∑
i

w
(
Qk

i

))1/2

� C
k0

∑
k=−∞

2k(1−p/2)∥∥ f
∥∥p/2

WHp
w

� C
k0

∑
k=−∞

2(k−k0)(1−p/2) ·λ 1−p/2
∥∥ f
∥∥p/2

WHp
w

� C ·λ 1−p/2
∥∥ f
∥∥p/2

WHp
w
.

By the hypothesis w ∈ A
p(1+ β

n )
and β = min

{
α,1/2

}
, then we have 1 < p(1+ β

n ) �

1+ β
n � 2 and w∈A2 . Applying Chebyshev’s inequality, Theorem A and the inequality

(5.1), we can deduce that

K1 � λ p · 4
λ 2

∥∥μρ
Ω(F1)

∥∥2
L2

w

� C ·λ p−2
∥∥F1
∥∥2

L2
w

� C
∥∥ f
∥∥p

WHp
w
.

Now we turn our attention to the estimate of K2 . We set

Ak0 =
∞⋃

k=k0+1

⋃
i

Q̃k
i ,
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where Q̃k
i = Q

(
xk
i ,τ(k−k0)/(n+β )(2

√
n)rk

i

)
and τ is a fixed positive number such that

1 < τ < 2. Thus, we can further decompose K2 as

K2 � λ p ·w({x ∈ Ak0 :
∣∣μρ

Ω(F2)(x)
∣∣> λ/2

})
+ λ p ·w({x ∈ (Ak0)

c :
∣∣μρ

Ω(F2)(x)
∣∣> λ/2

})
= K′

2 +K′′
2 .

Let us first deal with the term K′
2 . Since w ∈ A

p(1+ β
n )

, then by Lemma 2.1, we can get

K′
2 � λ p

∞

∑
k=k0+1

∑
i

w
(
Q̃k

i

)
� C ·λ p

∞

∑
k=k0+1

τ(k−k0)p∑
i

w
(
Qk

i

)
� C

∥∥ f
∥∥p

WHp
w

∞

∑
k=k0+1

( τ
2

)(k−k0)p � C
∥∥ f
∥∥p

WHp
w
.

On the other hand, an application of Chebyshev’s inequality leads to that

K′′
2 � 2p

∫
(Ak0

)c

∣∣μρ
Ω(F2)(x)

∣∣pw(x)dx

� 2p
∞

∑
k=k0+1

∑
i

∫(
Q̃k

i

)c

∣∣μρ
Ω
(
bk

i

)
(x)
∣∣pw(x)dx.

As before, for 0 < ρ < n and for any x ∈ (Q̃k
i

)c
, we write

μρ
Ω
(
bk

i

)
(x) =

(∫ ∞

0

∣∣∣∣∫|x−y|�t

Ω(x− y)
|x− y|n−ρ bk

i (y)dy

∣∣∣∣2 dt
t2ρ+1

)1/2

=

(∫ |x−xk
i |+(

√
n)rki

0

∣∣∣∣∫|x−y|�t

Ω(x− y)
|x− y|n−ρ bk

i (y)dy

∣∣∣∣2 dt
t2ρ+1

)1/2

+

(∫ ∞

|x−xk
i |+(

√
n)rki

∣∣∣∣∫|x−y|�t

Ω(x− y)
|x− y|n−ρ bk

i (y)dy

∣∣∣∣2 dt
t2ρ+1

)1/2

= I+II.

If y ∈ Qk
i and x ∈ (Q̃k

i

)c
, then we have |x− y| ∼ |x− xk

i | ∼ |x− xk
i |+(

√
n)rk

i for all i
and k . Thus, for 0 < ρ < n ,∣∣∣∣ 1

|x− y|2ρ − 1

[|x− xk
i |+(

√
n)rk

i ]2ρ

∣∣∣∣� C · rk
i

|x− y|2ρ+1 . (5.2)
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The above estimate (5.2) together with Minkowski’s inequality for integrals implies

I �
∫

Qk
i

|Ω(x− y)|
|x− y|n−ρ

∣∣bk
i (y)

∣∣(∫ |x−xk
i |+(

√
n)rki

|x−y|
dt

t2ρ+1

)1/2

dy

� C
∫

Qk
i

|bk
i (y)|

|x− y|n−ρ

(
rk
i

|x− y|2ρ+1

)1/2

dy

� C · (rk
i )

1/2

|x− xk
i |n+ 1

2

∫
Qk

i

∣∣bk
i (y)

∣∣dy

� C ·∥∥bk
i

∥∥
L∞ · (rk

i )
n+ 1

2

|x− xk
i |n+ 1

2

.

Moreover, if t � |x− xk
i |+ (

√
n)rk

i , then we can easily see that Qk
i ⊂ {y : |x− y| �

t} , and Qk
i ∩{y : |x− y| � t} = Qk

i . Let q = p(1 + β
n ) for simplicity. Then for any

n/(n+ β ) < p � 1 and w ∈ Aq with q > 1, we can see that [n(qw/p−1)] = 0. Hence,

for any x ∈ (Q̃k
i

)c
, by the vanishing moment condition of bk

i ∈ L∞(Rn) , we have

II =

(∫ ∞

|x−xk
i |+(

√
n)rki

∣∣∣∣∫
Qk

i

Ω(x− y)
|x− y|n−ρ bk

i (y)dy

∣∣∣∣2 dt
t2ρ+1

)1/2

=

(∫ ∞

|x−xk
i |+(

√
n)rki

∣∣∣∣∫
Qk

i

[
Ω(x− y)
|x− y|n−ρ − Ω(x− xk

i )
|x− xk

i |n−ρ

]
bk

i (y)dy

∣∣∣∣2 dt
t2ρ+1

)1/2

� C

(∫ ∞

|x−xk
i |+(

√
n)rki

[∫
Qk

i

∣∣∣∣ 1
|x− y|n−ρ − 1

|x− xk
i |n−ρ

∣∣∣∣∣∣bk
i (y)

∣∣dy

]2 dt
t2ρ+1

)1/2

+

(∫ ∞

|x−xk
i |+(

√
n)rki

[∫
Qk

i

|Ω(x− y)−Ω(x− xk
i )|

|x− xk
i |n−ρ

∣∣bk
i (y)

∣∣dy

]2 dt
t2ρ+1

)1/2

= III+IV.

Note that for any y ∈ Qk
i and x ∈ (Q̃k

i

)c
, then |x− y| ∼ |x− xk

i | for all i and k . This
fact together with the mean value theorem yields

III � C

(∫ ∞

|x−xk
i |+(

√
n)rki

[∫
Qk

i

|y− xk
i |

|x− xk
i |n−ρ+1

∣∣bk
i (y)

∣∣dy

]2 dt
t2ρ+1

)1/2

� C · rk
i

|x− xk
i |n−ρ+1

∫
Qk

i

∣∣bk
i (y)

∣∣dy×
(∫ ∞

|x−xk
i |+(

√
n)rki

dt
t2ρ+1

)1/2

� C · rk
i

|x− xk
i |n+1

·
∫

Qk
i

∣∣bk
i (y)

∣∣dy

� C ·∥∥bk
i

∥∥
L∞ · (rk

i )
n+1

|x− xk
i |n+1

.
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In addition, from the definition of Ω ∈ Lipα(Sn−1) , we can easily see that

∣∣Ω(x− y)−Ω(x− xk
i )
∣∣= ∣∣∣∣Ω( x− y

|x− y|
)
−Ω

( x− xk
i

|x− xk
i |
)∣∣∣∣

� C

∣∣∣∣ x− y
|x− y| −

x− xk
i

|x− xk
i |

∣∣∣∣α
� C

( |y− xk
i |

|x− xk
i |
)α

. (5.3)

Substituting the above inequality (5.3) into the term IV, then we can get

IV � C

(∫ ∞

|x−xk
i |+(

√
n)rki

[∫
Qk

i

|y− xk
i |α

|x− xk
i |n−ρ+α

∣∣bk
i (y)

∣∣dy

]2 dt
t2ρ+1

)1/2

� C · (rk
i )

α

|x− xk
i |n−ρ+α

∫
Qk

i

∣∣bk
i (y)

∣∣dy×
(∫ ∞

|x−xk
i |+(

√
n)rki

dt
t2ρ+1

)1/2

� C ·∥∥bk
i

∥∥
L∞ · (rk

i )
n+α

|x− xk
i |n+α .

Summarizing the above estimates for I, III and IV, for any x ∈ (Q̃k
i

)c
, we have

∣∣μρ
Ω
(
bk

i

)
(x)
∣∣� C ·∥∥bk

i

∥∥
L∞

[
(rk

i )
n+ 1

2

|x− xk
i |n+ 1

2
+

(rk
i )

n+1

|x− xk
i |n+1

+
(rk

i )
n+α

|x− xk
i |n+α

]
.

Note that
∥∥bk

i

∥∥
L∞ � C2k . Therefore, from the above pointwise estimate, it follows that

K′′
2 �C

∞

∑
k=k0+1

∑
i

2kp(rk
i

)(n+α)p
∫
|x−xk

i |�τ(k−k0)/(n+β)√nrki

w(x)
|x− xk

i |(n+α)p
dx

+C
∞

∑
k=k0+1

∑
i

2kp(rk
i

)(n+1)p
∫
|x−xk

i |�τ(k−k0)/(n+β)√nrki

w(x)
|x− xk

i |(n+1)p
dx

+C
∞

∑
k=k0+1

∑
i

2kp(rk
i

)(n+ 1
2 )p
∫
|x−xk

i |�τ(k−k0)/(n+β)√nrki

w(x)

|x− xk
i |(n+ 1

2 )p
dx

=K3 +K4 +K5.

Let us consider the term K3 . Recall that β = min
{

α,1/2
}

and n/(n+ β ) < p � 1,
then n/(n+ α)< p � 1. Since w∈ A

p(1+ β
n )

and β = min
{

α,1/2
}

� α , then we have
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w ∈ Ap(1+ α
n ) . By using Lemma 2.1 and Lemma 2.2, then we can deduce

K3 = C
∞

∑
k=k0+1

∑
i

2kp(rk
i

)(n+α)p
∫
|y|�τ(k−k0)/(n+β)√nrki

wk
i (y)

|y|(n+α)p dy

� C
∞

∑
k=k0+1

∑
i

2kp
(

τ(k−k0)/(n+β )
)−(n+α)p

wk
i

(
Q
(
0,τ(k−k0)/(n+β ) · rk

i

))
= C

∞

∑
k=k0+1

∑
i

2kp
(

τ(k−k0)/(n+β )
)−(n+α)p

w
(
Q
(
xk
i ,τ

(k−k0)/(n+β ) · rk
i

))
,

where wk
i (x) = w(x + xk

i ) is the translation of w(x) . It is obvious that wk
i ∈ Ap(1+ α

n )
whenever w∈Ap(1+ α

n ) , and qwk
i
= qw . In addition, for w∈Ap(1+ α

n ) with p(1+ α
n ) > 1,

then we can take a sufficiently small number ε > 0 such that p(1 + α
n )− ε � 1 and

w ∈ Ap(1+ α
n )−ε . Therefore, by using Lemma 2.1 again, we eventually obtain

K3 � C
∞

∑
k=k0+1

∑
i

2kp
(

τ(k−k0)/(n+β )
)−nε

w
(
Qk

i

)
� C

∥∥ f
∥∥p

WHp
w

∞

∑
k=k0+1

(
τ(k−k0)/(n+β )

)−nε

� C
∥∥ f
∥∥p

WHp
w
.

For the last two terms K4 and K5 , since w ∈ A
p(1+ β

n )
with β = min

{
α,1/2

}
and

0 < α � 1, then we have w ∈ Ap(1+ 1
n ) and w ∈ Ap(1+ 1

2n ) . Thus, by using the same ar-

guments as above, we can also show that K4 � C
∥∥ f
∥∥p

WHp
w

and K5 � C
∥∥ f
∥∥p

WHp
w
. Com-

bining the above estimates for K1 and K2 , and then taking the supremum over all
λ > 0, we conclude the proof of Theorem 1.3. �

We finally remark that for any function f , a straightforward computation shows
that the grand maximal function of f is pointwise dominated by M( f ) , where M de-
notes the standard Hardy–Littlewood maximal operator. Hence, by the weighted weak
(1,1) estimate of M , it is easy to see that the space L1

w is continuously embedded as
a subspace of WH1

w whenever w ∈ A1 , and we have ‖ f‖WH1
w

� C‖ f‖L1
w

provided that
w ∈ A1 . As a direct consequence of Theorem 1.3, we immediately obtain the following
result.

COROLLARY 5.1. Let 0 < ρ < n, 0 < α � 1 and Ω ∈ Lipα (Sn−1) . If p = 1 and
w ∈ A1 , then there exists a constant C > 0 independent of f such that∥∥μρ

Ω( f )
∥∥

WL1
w

� C‖ f‖L1
w
.
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