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SNEAK–OUT PRINCIPLE ON TIME SCALES

MARTIN J. BOHNER AND SAMIR H. SAKER

Abstract. In this paper, we show that the so-called “sneak-out principle” for discrete inequalities
is valid also on a general time scale. In particular, we prove some new dynamic inequalities on
time scales which as special cases contain discrete inequalities obtained by Bennett and Grosse-
Erdmann. The main results also are used to formulate the corresponding continuous integral
inequalities, and these are essentially new. The techniques employed in this paper are elementary
and rely mainly on the time scales integration by parts rule, the time scales chain rule, the time
scales Hölder inequality, and the time scales Minkowski inequality.
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