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SNEAK–OUT PRINCIPLE ON TIME SCALES

MARTIN J. BOHNER AND SAMIR H. SAKER

(Communicated by A. Peterson)

Abstract. In this paper, we show that the so-called “sneak-out principle” for discrete inequalities
is valid also on a general time scale. In particular, we prove some new dynamic inequalities on
time scales which as special cases contain discrete inequalities obtained by Bennett and Grosse-
Erdmann. The main results also are used to formulate the corresponding continuous integral
inequalities, and these are essentially new. The techniques employed in this paper are elementary
and rely mainly on the time scales integration by parts rule, the time scales chain rule, the time
scales Hölder inequality, and the time scales Minkowski inequality.

1. Introduction

In [4], Bennett and Grosse-Erdmann studied the problem of deducing the con-
vergence of one series from that of another during the course of their investigations
on Hardy type inequalities. In particular, they have considered general types of series
which cannot be treated by any of the usual convergence tests (ratio test, comparison
test, Raabe’s test, etc.). After they had several successes, they noticed something quite
remarkable in a subject as old as this: The emergence of new techniques. They called
these the “five series theorem”, the “sneak-out principle” and the “heads/tails option”
(see [3]). All three are valid in considerable generality and all have significant applica-
tions beyond Hardy’s inequality.

Now the following question arises: Is it possible to extend these techniques to
time scales? In other words, is it possible to extend these techniques to contain corre-
sponding integral inequalities and summation inequalities as special cases? Our aim in
this paper is to give an affirmative answer for the second one which is the sneak-out
principle. The obtained results will support the advice of Hardy, Littlewood and Pólya
[12, page 11] by giving a unification of the continuous and the discrete inequalities and
showing that what goes for sums goes for integrals and vise versa.

The sneak-out principle that has been considered by Bennett and Grosse-Erdmann
[3] was concerned with the equivalence of the two series
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In other words, when is it possible to sneak the term Aα
k out of the inner sum in (1.1).

Bennett and Grosse-Erdmann, using this principle, proved several inequalities of the
form
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and their inverses for different values of p and α . Our aim in this paper is concerned
with the equivalence of the two time scales integrals

∫ ∞

t0
a(t)

(∫ ∞

t
Aα(σ(s))x(s)Δs

)p

Δt (1.2)

and ∫ ∞

t0
a(t)Aα p(σ(s))

(∫ ∞

t
x(s)Δs

)p

Δt,

where the domain of the unknown function is a so-called time scale T (which is an
arbitrary nonempty closed subset of the real numbers R). In other words, we want to
determine precisely when it is possible to sneak Aα(σ(s)) outside of the inner integral
in (1.2). More precisely, we are concerned with new dynamic inequalities of the form

∫ ∞

t0
a(t)

(∫ ∞

t
Aα(σ(s))x(s)Δs

)p

Δt � K
∫ ∞

t0
a(t)Aα p(σ(s))

(∫ ∞

t
x(s)Δs

)p

Δt (1.3)

and their converses on time scales for different values of p and α , which as special
cases with T = N contain the discrete inequalities obtained by Bennett and Grosse-
Erdmann [3, Section 6] and can be applied also with T = R to formulate the corre-
sponding integral inequalities. The results also can be applied to other time scales such
as T = hZ for h > 0 and T = qN0 with q > 1. We include the details of the proofs
since they provide a strategy which can be used in other situations. For related dynamic
inequalities on time scales, we refer the reader to [1, 2, 5, 8, 13–17].

This paper is organized as follows: In Section 2, we provide some auxiliary results
such as the time scales integration by parts rule, the time scales chain rule, the time
scales Hölder inequality, and the time scales Minkowski inequality. Section 3 features
two new dynamic inequalities of Copson type that are needed in the proofs of our main
results. In Section 4, we present our main results, which are three dynamic inequalities
of the type (1.3) for different values of p � 1 and α . First the case α � 1 is treated (see
Theorem 4.1 below), then the case 0 � α � 1 (see Theorem 4.4 below), and finally the
case −1/p< α � 0 (see Theorem 4.6 below). The corresponding cases when 0 < p < 1
are still open problems and will be considered in the future.
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2. Auxiliary results

For completeness, we recall the following concepts related to the notion of time
scales. For more details of time scale analysis, we refer the reader to the two books by
Bohner and Peterson [6, 7]. A time scale T is an arbitrary nonempty closed subset of
the real numbers R . The cases when T = R and T = Z represent the classical theories
of differential and difference calculus. In this paper, we assume that supT = ∞ and
define the forward jump operator by

σ(t) := inf{s ∈ T : s > t}.
For any function f : T → R , we write f σ for f ◦σ . For t ∈ T , we define f Δ(t) to be
the number (if it exists) with the property that given any ε > 0, there is a neighborhood
U of t with∣∣∣ f (σ(t))− f (s)− f Δ(t)(σ(t)− s)

∣∣∣� ε|σ(t)− s| for all s ∈U.

In this case, we say f Δ(t) is the (delta) derivative of f at t . If f is (delta) differentiable
at any t ∈ T , then f Δ : T → R is called the delta derivative of f . Next, if F : T → R is
an antiderivative of f , i.e., FΔ = f , then the Cauchy delta integral of f is defined by∫ t

a
f (s)Δs := F(t)−F(a),

where a ∈ T is fixed. It is known [6, Theorem 1.74] that so-called rd-continuous func-
tions always possess antiderivatives.

EXAMPLE 2.1. Note that if T = R , then

σ(t) = t, f Δ = f ′, and
∫ b

a
f (t)Δt =

∫ b

a
f (t)dt

for a,b ∈ R with a < b . If T = Z , then

σ(t) = t +1, f Δ = Δ f , and
∫ b

a
f (t)Δt =

b−1

∑
t=a

f (t)

for a,b ∈ Z with a < b . If T = hZ with h > 0, then

σ(t) = t +h and
∫ b

a
f (t)Δt = h

b−a−h
h

∑
k=0

f (a+ kh)

for a,b ∈ hZ . If T = qN0 with q > 1, then

σ(t) = qt and
∫ b

a
f (t)Δt = (q−1)

logq(b)−1

∑
k=logq(a)

qk f (qk)

for a,b ∈ qN0 .
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Now we collect those known time scales results that will be used frequently through-
out this paper. The product and quotient rules [6, Theorem 1.20] for the derivative of
the product f g and the quotient f/g (with g(t) �= 0 for all t ∈ T) of two differentiable
functions f ,g : T → R state

( f g)Δ = f Δg+ f σgΔ = f gΔ + f Δgσ and

(
f
g

)Δ
=

f Δg− f gΔ

ggσ . (2.1)

The chain rule [6, Theorem 1.90] for the γ -th power (γ ∈R) of a differentiable function
f : T → R says (see [6, Theorem 1.90])

( f γ )Δ = γ f Δ
∫ 1

0
(h f σ +(1−h) f )γ−1 dh. (2.2)

The integration by parts formula [6, Theorem 1.77] for two differentiable functions
f ,g : T → R is given (a,b ∈ T) by

∫ b

a
f (t)gΔ(t)Δt = f (t)g(t)

∣∣∣b
a
−
∫ b

a
f Δ(t)gσ (t)Δt. (2.3)

Hölder’s inequality [6, Theorem 6.13] states that two rd-continuous functions f ,g :
T → R satisfy

∫ b

a
| f (t)g(t)|Δt �

{∫ b

a
| f (t)|pΔt

} 1
p
{∫ b

a
|g(t)|qΔt

} 1
q

, (2.4)

where p > 1, q = p/(p−1) , and a,b ∈ T . Minkowski’s inequality [6, Theorem 6.16]
asserts that three rd-continuous functions f ,g,h : T → R satisfy

{∫ b

a
|h(t)|| f (t)+g(t)|pΔt

} 1
p

�
{∫ b

a
|h(t)|| f (t)|pΔt

} 1
p

+
{∫ b

a
|h(t)||g(t)|pΔt

} 1
p

,

(2.5)
where p > 1 and a,b ∈ T .

Inequalities (2.6) and (2.7) below are simple consequences of the chain rule (2.2),
but for convenience of further reference, we now state these four important inequalities
(which are “substitutes” for the power rule from differential calculus) in the follow-
ing lemma, supplemented by two new inequalities which are, however, merely simple
consequences of the product rule (2.1).

LEMMA 2.2. Suppose f : T → R is differentiable and positive. Let γ ∈ R . If f Δ

is either always positive or always negative, then

γ f Δ ( f γ−1)σ � ( f γ )Δ � γ f Δ f γ−1 if 0 � γ � 1 (2.6)

and
γ f Δ f γ−1 � ( f γ )Δ � γ f Δ ( f γ−1)σ

if γ � 1. (2.7)
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If f Δ is always positive, then

( f γ )Δ � f Δ ( f γ−1)σ
if 0 � γ � 1 (2.8)

and
( f γ )Δ � f Δ ( f γ−1)σ

if γ � 1. (2.9)

Proof. Inequalities (2.6) and (2.7) follow directly from (2.2). Next, if f is increas-

ing and if 0 � γ � 1, then f γ−1 is decreasing and thus
(
f γ−1

)Δ
< 0 so that

( f γ )Δ =
(
f f γ−1)Δ (2.1)= f Δ ( f γ−1)σ

+ f
(
f γ−1)Δ

.

This shows (2.8), and (2.9) follows similarly. �

3. Dynamic inequalities of Copson type

In this section, we prove two new dynamic inequalities of Copson type (see [9, 10]
for the original Copson inequalities). These will be used in the proofs of our main
results in the next section. Throughout, we are using the following assumptions:⎧⎪⎨

⎪⎩
supT = ∞, t0 ∈ T,

a : T → (0,∞) is rd-continuous,

A(t) :=
∫ t
t0

a(s)Δs, t ∈ T.

(3.1)

THEOREM 3.1. Assume (3.1). Suppose ϕ : T → R is such that

Φ(t) :=
∫ ∞

t

a(s)
A(σ(s))

ϕ(s)Δs, t ∈ T

is well defined. Let k � 1 . Then∫ ∞

t0
a(t)Φk(t)Δt � kk

∫ ∞

t0
a(t)ϕk(t)Δt. (3.2)

Proof. We use integration by parts (2.3), the left part of the inequality (2.7) with
f = Φ and γ = k , and Hölder’s inequality (2.4) with p = k and q = k/(k−1) (unless
k = 1 in which case (2.4) is not needed) to obtain∫ ∞

t0
a(t)Φk(t)Δt =

∫ ∞

t0
AΔ(t)Φk(t)Δt

(2.3)= A(t)Φk(t)
∣∣∣∞
t0
−
∫ ∞

t0
A(σ(t))

(
Φk
)Δ

(t)Δt

= −
∫ ∞

t0
A(σ(t))

(
Φk
)Δ

(t)Δt

(2.7)
� −

∫ ∞

t0
A(σ(t))kΦΔ(t)Φk−1(t)Δt
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= k
∫ ∞

t0
a(t)ϕ(t)Φk−1(t)Δt

= k
∫ ∞

t0

[
a

1
k (t)ϕ(t)

][
a

k−1
k (t)Φk−1(t)

]
Δt

(2.4)
� k

{∫ ∞

t0

[
a

1
k (t)ϕ(t)

]k
Δt

} 1
k
{∫ ∞

t0

[
a

k−1
k (t)Φk−1(t)

] k
k−1 Δt

} k−1
k

= k

{∫ ∞

t0
a(t)ϕk(t)Δt

} 1
k
{∫ ∞

t0
a(t)Φk(t)Δt

}1− 1
k

.

Dividing the entire inequality by the right-hand factor of the last expression and then
raising the resulting inequality to the k -th power confirms the validity of (3.2). �

REMARK 3.2. It is worth to mention here that our technique of the proof of The-
orem 3.1 is different from the technique due to Copson to prove the discrete form of
(3.2). In particular, he followed the technique due to Elliott [11] that has been used to
prove the Hardy inequality.

THEOREM 3.3. Assume (3.1). Suppose ϕ : T → R is such that

Φ(t) :=
∫ ∞

t
a(s)ϕ(s)Δs, t ∈ T

is well defined. Let k � 1 and 0 � c < 1 . Then

∫ ∞

t0

a(t)
Ac(σ(t))

Φk(t)Δt �
(

k
1− c

)k ∫ ∞

t0
a(t)Ak−c(σ(t))ϕk(t)Δt. (3.3)

Proof. First we define an auxiliary function Ã : T → R by

Ã(t) :=
∫ t

t0

a(s)
Ac(σ(s))

Δs, t ∈ T.

Note that the left part of the inequality (2.6) with f = A and γ = 1− c implies

Ã(σ(t)) =
∫ σ(t)

t0

a(s)
Ac(σ(s))

Δs �
∫ σ(t)

t0

(
A1−c

)Δ (s)
1− c

Δs =
A1−c(σ(t))

1− c
. (3.4)

Now we use integration by parts (2.3), the left part of the inequality (2.7) with f = Φ
and γ = k , (3.4), and Hölder’s inequality (2.4) with p = k and q = k/(k− 1) (unless
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k = 1 in which case (2.4) is not needed) to obtain∫ ∞

t0

a(t)
Ac(σ(t))

Φk(t)Δt =
∫ ∞

t0
ÃΔ(t)Φk(t)Δt

(2.3)
= Ã(t)Φk(t)

∣∣∣∞
t0
−
∫ ∞

t0
Ã(σ(t))

(
Φk
)Δ

(t)Δt

= −
∫ ∞

t0
Ã(σ(t))

(
Φk
)Δ

(t)Δt

(3.4)
(2.7)
� −

∫ ∞

t0

A1−c(σ(t))
1− c

kΦΔ(t)Φk−1(t)Δt

=
k

1− c

∫ ∞

t0
a(t)A1−c(σ(t))ϕ(t)Φk−1(t)Δt

=
k

1− c

∫ ∞

t0

[
a

1
k (t)A1− c

k (σ(t))ϕ(t)
][ a

k−1
k (t)

A
c(k−1)

k (σ(t))
Φk−1(t)

]
Δt

(2.4)
� k

1− c

{∫ ∞

t0

[
a

1
k (t)A1− c

k (σ(t))ϕ(t)
]k

Δt

} 1
k

×
⎧⎨
⎩
∫ ∞

t0

[
a

k−1
k (t)

A
c(k−1)

k (σ(t))
Φk−1(t)

] k
k−1

Δt

⎫⎬
⎭

k−1
k

=
k

1− c

{∫ ∞

t0
a(t)Ak−c(σ(t))ϕk(t)Δt

} 1
k
{∫ ∞

t0

a(t)
Ac(σ(t))

Φk(t)Δt

}1− 1
k

.

Dividing the entire inequality by the right-hand factor of the last expression and then
raising the resulting inequality to the k -th power confirms the validity of (3.3). �

4. Dynamic sneak-out inequalities

In this section, we prove the main results of this paper. We also apply these results
to the special time scales T = R and T = Z . The results for T = Z are known (see [3])
while the results for T = R are new. Throughout this section, we let p � 1. For the
cases α � 1, 0 � α � 1, and −1/p < α � 0, we present three distinct inequalities. In
addition to (3.1), for a given value of α , we require the assumptions⎧⎪⎨

⎪⎩
x : T → (0,∞) is rd-continuous,

y(t) :=
∫ ∞
t x(s)Δs and Ψ(t) :=

∫ ∞
t Aα(σ(s))x(s)Δs, t ∈ T

are well defined.

(4.1)

THEOREM 4.1. Let p � 1 and α � 1 . Assume (3.1) and (4.1). Then∫ ∞

t0
a(t)Ψp(t)Δt � (1+ α p)p

∫ ∞

t0
a(t)Aα p(σ(t))yp(t)Δt. (4.2)
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Proof. We use integration by parts (2.3) and the right part of the inequality (2.7)
with f = A and γ = α to obtain

Ψ(t) = −
∫ ∞

t
Aα(σ(s))yΔ(s)Δs

(2.3)
= −

{
Aα(s)y(s)

∣∣∣∞
t
−
∫ ∞

t
(Aα)Δ (s)y(s)Δs

}

= Aα(t)y(t)+
∫ ∞

t
(Aα)Δ (s)y(s)Δs

(2.7)
� Aα(t)y(t)+

∫ ∞

t
αAΔ(s)Aα−1(σ(s))y(s)Δs

� Aα(σ(t))y(t)+ α
∫ ∞

t
a(s)Aα−1(σ(s))y(s)Δs,

where we have utilized A � Aσ in the last inequality. Now we use Minkowski’s in-
equality (2.5) and Theorem 3.1 with k = p and ϕ = (Aα)σ y to find the estimate{∫ ∞

t0
a(t)Ψp(t)Δt

} 1
p

�
{∫ ∞

t0
a(t)

[
Aα(σ(t))y(t)+ α

∫ ∞

t
a(s)Aα−1(σ(s))y(s)Δs

]p

Δt

} 1
p

(2.5)
�
{∫ ∞

t0
a(t) [Aα(σ(t))y(t)]p Δt

} 1
p

+
{∫ ∞

t0
a(t)

[
α
∫ ∞

t
a(s)Aα−1(σ(s))y(s)Δs

]p

Δt

} 1
p

=
{∫ ∞

t0
a(t)Aα p(σ(t))yp(t)Δt

} 1
p

+α
{∫ ∞

t0
a(t)

[∫ ∞

t

a(s)
A(σ(s))

Aα(σ(s))y(s)Δs

]p

Δt

} 1
p

(3.2)
�
{∫ ∞

t0
a(t)Aα p(σ(t))yp(t)Δt

} 1
p

+ α
{

pp
∫ ∞

t0
a(t)Aα p(σ(t))yp(t)Δt

} 1
p

= (1+ α p)
{∫ ∞

t0
a(t)Aα p(σ(t))yp(t)Δt

} 1
p

.

Raising this inequality to the p -th power confirms the validity of (4.2). �

EXAMPLE 4.2. Let T = Z and t0 = 1. As a special case of Theorem 4.1, we have
from (4.2) the inequality

∞

∑
n=1

a(n)

(
∞

∑
k=n

Aα(k+1)x(k)

)p

� (1+ α p)p
∞

∑
n=1

a(n)Aα p(n+1)

(
∞

∑
k=n

x(n)

)p

, (4.3)

where

A(n) =
n−1

∑
k=1

a(k), n ∈ N.

Note that (4.3) is the discrete inequality [3, Theorem 8] due to Bennett and Grosse-
Erdmann.
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EXAMPLE 4.3. Let T = R . As a special case of Theorem 4.1, we have from (4.2)
the inequality

∫ ∞

t0
a(t)

(∫ ∞

t
Aα(s)x(s)ds

)p

dt � (1+ α p)p
∫ ∞

t0
a(t)Aα p(t)

(∫ ∞

t
x(s)ds

)p

dt, (4.4)

where

A(t) =
∫ t

t0
a(s)ds, t ∈ R.

Note that (4.4) is a new inequality.

THEOREM 4.4. Let p � 1 and 0 � α � 1 . Assume (3.1) and (4.1). Then∫ ∞

t0
a(t)Ψp(t)Δt � (1+ p)p

∫ ∞

t0
a(t)Aα p(σ(t))yp(t)Δt. (4.5)

Proof. In this case, we cannot use the right part of the inequality (2.7) with f = A
and γ = α as we did in the proof of Theorem 4.1. However, we can use inequality (2.8)
with f = A and γ = α and follow the exact same steps as in the proof of Theorem 4.1
to obtain (4.5). �

REMARK 4.5. For T = Z , Theorem 4.4 reduces to the corresponding discrete
inequality by Bennett and Grosse-Erdmann [3, Theorem 9]. For T = R , (4.5) is new.

THEOREM 4.6. Let p � 1 and −1/p < α � 0 . Assume (3.1) and (4.1). Then

∫ ∞

t0
a(t)Ψp(t)Δt �

(
1+ α p

1+ α p+ p

)p ∫ ∞

t0
a(t)Aα p(σ(t))yp(t)Δt. (4.6)

Proof. We use integration by parts (2.3) and the inequality (2.8) with f = A and
γ = −α to obtain

y(t) = −
∫ ∞

t
A−α(σ(s))ΨΔ(s)Δs

(2.3)
= −

{
A−α(s)Ψ(s)

∣∣∣∞
t
−
∫ ∞

t

(
A−α)Δ (s)Ψ(s)Δs

}

= A−α(t)Ψ(t)+
∫ ∞

t

(
A−α)Δ (s)Ψ(s)Δs

(2.8)
� A−α(t)Ψ(t)+

∫ ∞

t
AΔ(s)A−α−1(σ(s))Ψ(s)Δs

� A−α(σ(t))Ψ(t)+
∫ ∞

t
a(s)A−α−1(σ(s))Ψ(s)Δs,

where we have utilized A � Aσ in the last inequality. Now we use Minkowski’s in-
equality (2.5) and Theorem 3.3 with k = p , c = −α p , and ϕ =

(
A−α−1

)σ Ψ to find
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the estimate{∫ ∞

t0
a(t)Aα p(σ(t))yp(t)Δt

} 1
p

�
{∫ ∞

t0
a(t)Aα p(σ(t))

[
A−α(σ(t))Ψ(t)+

∫ ∞

t
a(s)A−α−1(σ(s))Ψ(s)Δs

]p

Δt

} 1
p

(2.5)
�
{∫ ∞

t0
a(t)Aα p(σ(t))

[
A−α(σ(t))Ψ(t)

]p Δt

} 1
p

+
{∫ ∞

t0
a(t)Aα p(σ(t))

[∫ ∞

t
a(s)A−α−1(σ(s))Ψ(s)Δs

]p

Δt

} 1
p

=
{∫ ∞

t0
a(t)Ψp(t)Δt

} 1
p

+
{∫ ∞

t0

a(t)
A−α p(σ(t))

[∫ ∞

t
a(s)A−α−1(σ(s))Ψ(s)Δs

]p

Δt

} 1
p

(3.3)
�
{∫ ∞

t0
a(t)Ψp(t)Δt

} 1
p

+
{(

p
1+ α p

)p ∫ ∞

t0
a(t)Ψp(t)Δt

} 1
p

=
(

1+ α p+ p
1+ α p

){∫ ∞

t0
a(t)Ψp(t)Δt

} 1
p

.

Raising this inequality to the p -th power confirms the validity of (4.6). �

EXAMPLE 4.7. Let T = Z and t0 = 1. As a special case of Theorem 4.6, we have
from (4.6) the inequality

∞

∑
n=1

a(n)

(
∞

∑
k=n

Aα(k+1)x(k)

)p

�
(

1+ α p
1+ α p+ p

)p ∞

∑
n=1

a(n)Aα p(n+1)

(
∞

∑
k=n

x(n)

)p

,

(4.7)
where

A(n) =
n−1

∑
k=1

a(k), n ∈ N.

Note that (4.7) is the discrete inequality [3, Theorem 10] due to Bennett and Grosse-
Erdmann.

EXAMPLE 4.8. Let T = R . As a special case of Theorem 4.6, we have from (4.6)
the inequality

∫ ∞

t0
a(t)

(∫ ∞

t
Aα(s)x(s)ds

)p

dt �
(

1+ α p
1+ α p+ p

)p ∫ ∞

t0
a(t)Aα p(t)

(∫ ∞

t
x(s)ds

)p

dt,

(4.8)
where

A(t) =
∫ t

t0
a(s)ds, t ∈ R.

Note that (4.8) is a new inequality.
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