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Abstract. In this paper, we obtain new bounds for the maximal eigenvalue and eigenvectors of
positive tensors and compare these bounds with the known bounds. Numerical experiments are
given to validate the efficiency of our new bounds.

1. Introduction

In 2005, Qi [1] and Lim [2] introduced eigenvalues for higher order tensors inde-
pendently. Since then, eigenvalue problems of tensors have become an important topic
of study in numerical multilinear algebra, and they have wide applications in magnetic
resonance imaging [3], multilinear pagerank [4], spectral hypergraph theory [5], higher
order Markov chains [6, 10], algebraic geometry [7], and so on.

Recently, spectral theory of nonnegative tensors developed rapidly. In particular,
the Perron-Frobenius theorem for nonnegative tensor is related to measuring higher
order connectivity in hypergraphs [8]. Some nonnegative tensor versions of the Perron-
Frobenius theorem were given by Chang et al [9], Yang and Yang [12], and Friedland
et al [20], respectively. Subsequently, various algorithms for finding the largest eigen-
value of nonnegative tensors were proposed by [17–18, 23], and some results on the
convergence of these algorithms were given, see [19, 21–22], etc.

The remainder of this paper is organized as follows. In section 2, we first recall
some definitions and theorems. In section 3, we give new bounds on the maximal
eigenvalue and eigenvectors of positive tensors and a numerical example to show the
efficiency of our new bounds.
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2. Preliminaries

Let R be the real field. We consider a tensor A of order m dimensional n con-
sisting of nm entries in R :

A = (ai1i2···im), ai1i2···im ∈ R, 1 � i1, · · · , im � n. (1)

The tensor A is called nonnegative (positive) if ai1i2···im � 0 (ai1i2···im � 0). For an
n dimension vector x = (x1,x2, · · · ,xn)T , real or complex, A xm−1 is an n dimension
vector whose i th component is

(A xm−1)i = ∑
i2···im

aii2···imxi2 · · ·xim . (2)

The unit tensor of order m dimension n is the tensor I = (δi1i2···im) with entries
as follows:

δi1i2···im =
{

1, if i1 = · · · im,
0, otherwise.

In 2005, Qi [1] and Lim [2] independently introduced the notion of eigenvalue
problems for symmetric tensors, and the notion has been generalized in Chang et al [9].
Here we use the definition in [1].

We denote the space of all tensors of order m dimension n by R [m,n] . We de-

note R
[m,n]
+ (R [m,n]

++ ) to be the space of all nonnegative (positive) tensors of order m
dimension n . Rn (Cn ) denotes the n dimensional vector space over the real(complex)
field.

DEFINITION 1. ([1]) A pair (λ ,x) ∈ C× (Cn \ {0}) is called an eigenvalue and
eigenvector of A ∈R [m,n] if they satisfy A xm−1 = λx[m−1] , where x[m−1] = (xm−1

1 ,xm−1
2 ,

· · · ,xm−1
n )T . Furthermore, we say λ is an H -eigenvalue with the corresponding H -

eigenvector x (or (λ ,x) is an H -eigenpair) of A if they are both real.

DEFINITION 2. ([9]) A tensor A ∈ R [m,n] is called reducible if there exists a
nonempty proper index subset I ⊂ 1,2, · · · ,n such that

ai1i2···im = 0, for all i1 ∈ I and for all i2, · · · , im /∈ I .

If A is not reducible, then we call A irreducible.

The following Perron-Frobenius theorem for nonnegative tensors are listed for
reference.

THEOREM 1. ([9]) If A ∈ R
[m,n]
+ , then there exist λ0 � 0 and a nonnegative

vector x0 �= 0 such that

A xm−1
0 = λx[m−1]

0 . (3)
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THEOREM 2. ([9]) If A ∈ R
[m,n]
+ is irreducible, then the pair (λ0,x) in equation

(3) satisfies the following:
(1) The eigenvalue λ0 is positive.
(2) The eigenvector x0 is positive, i.e., all components of x0 are positive.
(3) If λ is an eigenvalue with a nonnegative eigenvector, then λ = λ0 . Moreover,

the nonnegative eigenvector is unique up to a multiplicative constant.
(4) If λ is an eigenvalue of A , then |λ | � λ0 .

In [12], Yang and Yang gave the definition and a simple estimate of the spectral
radius of a tensor A and proved that for any nonnegative tensor, the spectral radius is
the largest eigenvalue of it, the related definitions and theorem are as follows.

DEFINITION 3. ([12]) Let A ∈ R [m,n] . We call ρ(A ) the spectral radius of A
if it equals the largest absolute eigenvalue of A , i.e.,

ρ(A ) = max{|λ | : λ is an eigenvalue of A }.

DEFINITION 4. ([12]) A ∈ R
[m,n]
+ is irreducible, a positive eigenvector corre-

sponding to ρ(A ) is called a maximal eigenvector of A .

THEOREM 3. ([12]) If A ∈ R
[m,n]
+ , then ρ(A ) is an eigenvalue with a nonneg-

ative eigenvector y corresponding to it.

THEOREM 4. ([12]) Let A ∈ R
[m,n]
+ . Then

r = min
1�i�n

n

∑
i2,···,im=1

aii2···im � ρ(A ) � max
1�i�n

n

∑
i2,···,im=1

aii2···im = R. (4)

Recently, Wang and Wu [15] gave new bounds for the spectral radius and maximal
eigenvectors of a positive tensor, that is

THEOREM 5. ([15]) Let A ∈ R
[m,n]
++ with maximal eigenvalue ρ(A ) . If R > r ,

then

r+m(
1√
δ
−1) � ρ(A ) � R−m(1−

√
δ ), (5)

where δ = max
ri<r j

ri
r j

.

REMARK 1. From inequality (5), it is easy to see that δ = max
ri<r j

ri
r j

< 1 and m > 0,

then
√

δ < 1. Thus, r+m( 1√
δ
−1) > r and R−m(1−√

δ ) < R . Namely, the bounds
in (5) are sharper than those in Theorem 4.
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THEOREM 6. ([15]) Let A ∈ R
[m,n]
++ with maximal eigenvalue ρ(A ) . Let σ =√

r−m
R−m . Then

r+m
( 1

σ
−1

)
� ρ(A ) � R−m(1−σ). (6)

REMARK 2. Note that the bounds in (6) are shaper than those in Theorem 5,

σ2 =
r−m
R−m

� r
R

� max
ri<r j

ri

r j
= δ .

THEOREM 7. ([15]) Let A ∈R
[m,n]
++ with maximal eigenvector x = (x1,x2, · · · ,xn)

and γ = max
i, j

xi
x j

. Then

√
R
r

� γm−1 � max
s,t,i2,···,im

asi2···im
ati2···im

. (7)

The left inequality in (7) is an equality if and only if r = R. Equality holds on the right-
hand side of (7) if and only if rp = krq , for some pair of indices p and q satisfying
api2···im
aqi2···im

= max
s,t,i2,···,im

asi2···im
ati2···im

= M
m .

3. Main results

Let A ∈ R
[m,n]
+ . If we put

ri =
n

∑
i2,···,im=1

aii2···im , R = max
i

ri, r = min
i

ri,

and denote by κ1,κ2,m,τ1,τ2,M respectively the smallest ai,···,i , the smallest ai,i2,···,im
((i2, · · · , im) �= (i, · · · , i)) , the smallest ai,i2,···,im (i, i2 · · · , im = 1, · · · ,n) , the greatest ai,···,i ,
the greatest ai,i2,···,im ((i2, · · · , im) �= (i, · · · , i)) and the greatest ai,i2,···,im (i, i2 · · · , im =
1, · · · ,n) , i.e.

κ1 = min
i

ai,···,i, κ2 = min
(i2,···,im) �=(i,···,i)

ai,i2,···,im , m = min
i,i2,···,im

ai,i2,···,im

τ1 = max
i

ai,···,i, τ2 = max
(i2,···,im) �=(i,···,i)

ai,i2,···,im , M = max
i,i2,···,im

ai,i2,···,im .

It is easy to know that m = min(κ1,κ2).
We first introduce a lemma and give new bounds for maximal eigenvectors of

positive tensors. These bounds is derived using a technique due to Ostrowski [13] and
Schneider [14].

LEMMA 1. ([11]) If q1,q2, · · · ,qn are positive numbers, then

min
i

pi

qi
� p1 + p2 + · · ·+ pn

q1 +q2 + · · ·+qn
� max

i

pi

qi
, (8)

for any real numbers p1, p2, · · · , pn . Equality holds on either side of (8) if and only if
all the ratios pi

qi
are equal.
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THEOREM 8. Let A ∈R
[m,n]
++ with maximal eigenvector x = (x1,x2, · · · ,xn)T and

γ = max
i, j

xi
x j

. Then

√
R−κ1

r−κ1
� γm−1 � max(τ1 + κ2−κ1,τ2)

κ2
. (9)

Proof. Let ρ be the spectral radius of A and x = (x1,x2, · · · ,xn)T be a positive
eigenvector corresponding to ρ . Without loss of generality, we can assume that 0 <
xn � · · · � x2 � x1 = 1. We have obviously γ = 1

xn
. From Theorem 1, we have

ρxm−1
i =

n

∑
i2,···,im

aii2···imxi2 · · ·xim , (10)

for i = 1,2, · · · ,n .
We now choose i in (10) such that R = ri . Then we have

(ρ −ai···i)xm−1
i =

n

∑
(i2,···,im) �=(i,···,i)

aii2···imxi2 · · ·xim

= ai1···1xm−1
1 +

n

∑
(i2,···,im) �=(i,···,i)
(i2,···,im) �=(1,···,1)

aii2···imxi2 · · ·xim

� ai1···1 +(R−aii···i −ai1···1)xm−1
n

= (R−aii···i)xm−1
n +(1− xm−1

n )ai1···1,

where for i = 1 we write 0 for a11···1 . As xn � 1 and ai1···1 > 0, it follows that

(ρ −ai···i) � (ρ −ai···i)xm−1
i � (R−aii···i)xm−1

n ,

and therefore

xm−1
n � ρ −ai···i

R−aii···i
.

From Theorem 4, we know that ρ
R � 1, and do not decrease the right-hand bound by

replacing aii···i by κ1 and so

xm−1
n � ρ −κ1

R−κ1
,

that is

γm−1 =
1

xm−1
n

� R−κ1

ρ −κ1
. (11)
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Similarly, taking i in (10) such that r = ri , we have

(ρ −ai···i)xm−1
i =

n

∑
(i2,···,im) �=(i,···,i)

aii2···imxi2 · · ·xim

= ain···nxm−1
n +

n

∑
(i2,···,im) �=(i,···,i)
(i2,···,im) �=(n,···,n)

aii2···imxi2 · · ·xim

� ain···nxm−1
n +(r−aii···i −ain···n)

= (r−aii···i)− (1− xm−1
n )ain···n,

where for i = n we write 0 for ann···n . In any case it follows

(ρ −ai···i)xm−1
n � (ρ −ai···i)xm−1

i � r−ai···i, xm−1
n � r−ai···i

ρ −aii···i
.

As r
ρ � 1, we do not decrease the right-hand bound replacing ai···i by κ1 and therefore

xm−1
n � r−κ1

ρ −κ1
, γm−1 =

1

xm−1
n

� ρ −κ1

r−κ1
. (12)

From (11) and (12), it follows that

γ2(m−1) � R−κ1

r−κ1
, γm−1 �

√
R−κ1

r−κ1
. (13)

To prove that the upper bound of equation (9), we define a new positive tensor
B = (κ2−κ1)I +A , for which ρ is replaced by ρ +κ2−κ1 , but for which all xi in
(10) remain unchanged, hence γ is unchanged too. On the other hand, for the positive
tensor B , κ1 and τ1 become κ2 and τ1 +κ2−κ1 , respectively, while κ2 and τ2 remain
unchanged. Further, m becomes κ2 , and M becomes max(τ1 +κ2−κ1,τ2) . Applying
the upper bound of Theorem 7 for the tensor B , we obtain inequality (9). �

REMARK 3. We next give a simple comparison between the bounds in (8) and the
bounds in (7). If κ1 � κ2 , then m = min(κ1,κ2) = κ1 . Thus, we have τ1 + κ2 −κ1 �
M + κ2−κ1 and τ2 � M � M + κ2−κ1 . Further, we have

max(τ1 + κ2−κ1,τ2) � M + κ2−κ1.

Hence, we have
max(τ1 + κ2−κ1,τ2)

κ2
� M + κ2−κ1

κ2
.

While
M + κ2−κ1

κ2
− M

m
=

(κ1−κ2)(M−κ1)
κ1κ2

� 0.

Thus, we have
max(τ1 + κ2−κ1,τ2)

κ2
� M + κ2−κ1

κ2
� M

m
.
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If κ1 > κ2 , then m = min(κ1,κ2) = κ2 , and M
m = M

κ2
. But κ2 < κ1 implies that

τ1 + κ2−κ1 � M + κ2−κ1 � M.

Since τ2 � M . Hence, we have

max(τ1 + κ2−κ1,τ2)
κ2

� M
m

.

Furthermore, as r−κ1
R−κ1

� r
R , then

√
R−κ1
r−κ1

�
√

R
r . Therefore, the bounds of (9) is

shaper than those in Theorem 7.

Based on Theorem 8, we establish new bounds for the spectral radius of positive
tensors.

THEOREM 9. Let A ∈ R
[m,n]
++ with maximal eigenvalue ρ . Let θ =

√
r−κ1
R−κ1

.

Then

r+m
( 1

θ
−1

)
� ρ � R−m(1−θ ). (14)

Proof. Let x = (x1,x2, · · · ,xn)T be a positive maximal eigenvector of A corre-
sponding to ρ . Without loss of generality, we can assume that 0 < xn � · · · � x2 �
x1 = 1. We have obviously γ = 1

xn
. Similar to the proof of Theorem 5, we have

ρxm−1
n =

n

∑
i2,···,im

ani2···imxi2 · · ·xim

= an1···1xm−1
1 +

n

∑
(i2,···,im) �=(1,···,1)

ani2···imxi2 · · ·xim

� an1···1 + xm−1
n

n

∑
(i2,···,im) �=(1,···,1)

ani2···im

= an1···1 + xm−1
n (rn −an1···1)

= (1− xm−1
n )an1···1 + rnx

m−1
n .

Therefore,

ρ � rn +an1···1
( 1

xm−1
n

−1
)

� r+m
( 1

xm−1
n

−1
)
. (15)

From Theorem 8, we know that

1

xm−1
n

= γm−1 �
√

R−κ1

r−κ1
=

1
θ

.

Hence, we have

ρ � r+m
( 1

θ
−1

)
. (16)
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Similarly,

ρ = ρxm−1
1 =

n

∑
i2,···,im

a1i2···imxi2 · · ·xim

= a1n···nxm−1
n +

n

∑
(i2,···,im) �=(n,···,n)

a1i2···imxi2 · · ·xim

� a1n···nxm−1
n +

n

∑
(i2,···,im) �=(n,···,n)

ani2···im

= a1n···nxm−1
n +(r1−a1n···n)

= r1−a1n···n(1− xm−1
n ) � r1 −m(1− xm−1

n ).

As xm−1
n � θ , we have

ρ � r1 −m(1−θ ) � R−m(1−θ ). (17)

This completes the proof. �

REMARK 4. It is well known that the function r−x
R−x is decreasing. As m � κ1 ,

then it follows that σ =
√

r−m
R−m �

√
r−κ1
R−κ1

= θ . Further, we have that R−m(1−θ ) �
R−m(1−σ) and r+m( 1

θ −1) � r+m( 1
σ −1) . That is, the bound in (14) are sharper

than that in Theorem 6.

EXAMPLE 1. We now show the efficiency of the new bounds in Theorem 8 and

Theorem 9 by the following example which is considered in [16]. Let A ∈ R
[4,2]
++ with

entries defined as follows:

a1111 =
1
2
, a2222 = 3, and ai jkl =

1
3

elsewhere.

We compute the bounds of the maximal eigenvalue ρ of A given by Theorem 4-
Theorem 6, Theorem 9.

Theorem 4: 2.8333 � ρ � 5.3333.

Theorem 5: 2.9573 � ρ � 5.2429.

Theorem 6: 2.9713 � ρ � 5.2357.

Theorem 9: 2.9797 � ρ � 5.2316.

And the bounds of the maximal eigenvector of A given by Theorem 7 and Theo-
rem 8.

Theorem 7: 1.3720 � γ3 � 9.

Theorem 8: 1.4392 � γ3 � 8.4999.



INEQUALITIES ON THE PERRON EIGENVALUE AND EIGENVECTORS FOR TENSORS 413

4. Conclusions

In this paper, we obtain new bounds for the maximal eigenvalue and eigenvector of
positive tensors using a technique due to Ostrowski [13] and Schneider [14], and prove
that new bounds are shaper than that in [15]. From the proof of Theorem 9, we see that
the bound for the spectral radius of positive tensors A is closely related to the lower
bound for the maximal eigenvector. Hence, Future work should be aimed at improving
the lower bound of the maximal eigenvector.
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