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WEIGHTED POINCARÉ INEQUALITIES

ON HALF SPACES IN CARNOT GROUPS

BAOSHENG LIAN AND YANBING XU

(Communicated by M. Plum)

Abstract. We prove some weighted Poincaré inequalities on half spaces for the sublaplacian in
Carnot groups. Furthermore, the constants we obtain are sharp.

1. Introduction

The Hardy inequality in R
N
+ reads as follows, for all u ∈C∞

0 (RN
+) and N � 3,

∫
R

N
+

|∇u|2dx � N2

4

∫
R

N
+

u2

|x|2 dx, (1)

where R
N
+ = {(x1, · · · ,xn)|x1 > 0} , and the constant N2

4 in (1) is sharp (see [5] or [4]).

This shows that the Hardy constant jumps from (N−2)2
4 to N2

4 when the singularity of
the potential reaches the boundary since the Hardy inequality in R

N is
∫

RN
|∇u|2dx � (N−2)2

4

∫
RN

u2

|x|2 dx. (2)

Inequality (1) has been generalized by Su et al( [7] ) to the cone R
N
k+

:= R
N−k×(R+)k =

{(x1, · · · ,xN)|xN−k+1 > 0, · · · ,xN > 0} .
Recently, F. Ferrari and E. Valdinoci ([3]) proved few Poincaré inequalities through

the stable solutions of suitable PDEs. By the choice of suitable stable solutions, they
obtain some weighted Poincaré inequalities, among other results, for the Kohn’s sub-
laplace operator in the Heisenberg group H

n and the sublaplace operator in the Engel
group. The sharp constants had been shown by Yang and the first author ([9], see also
[8]).

The aim of this note is to prove similar results for the sublaplacian on half space
in Carnot groups G . Recall that a Carnot group G is a stratified, simply connected
nilpotent Lie group with the Lie algebra g =

⊕r
i=1Vi satisfying [V1,Vj] = Vj+1 for

all 1 � j � r− 1. The integer r is called the step of the group G . Set n j = dimVj

(1 � j � r ). Let {X1, · · · ,Xn1} be a basis of V1 and denote by ∇G = (X1, · · · ,Xn1) . Set

ξ (1) = ξ1X1 + · · ·+ ξn1Xn1 and |ξ (1)| =
√

ξ 2
1 + · · ·+ ξ 2

n1
. To this end, we have
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THEOREM 1. Let α � 0 . If G is a Carnot group of step r , then for α � 0 and
φ ∈C∞

0 (G+) , there holds,(
(n1 +2+ α)2

4
−α −2

)∫
G+

|φ |2|ξ (1)|α �
∫

G+
|∇Gφ |2|ξ (1)|α+2, (3)

where G+ = {ξ ∈ G : ξ1 > 0} is the half space of G. Furthermore, the constant
(n1+2+α)2

4 −α −2 in (3) is sharp.

In order to prove Theorem 1.1, we use a new technique which is different from
that in [4, 5, 7]. In fact, it seems that the method used in [4, 5, 7] can not be applied to
the sublaplacian on Carnot groups. Our result also shows that the sharp constant jumps
since the sharp Poincaré inequalities with weights on Carnot groups is (see [8])(

n1 + α
2

)2 ∫
G
|φ |2|ξ (1)|α �

∫
G
|∇Gφ |2|ξ (1)|α+2. (4)

2. The proof

We begin by quoting some preliminary facts which will be needed in the sequel
and refer to [1] and [2] for more precise information about Carnot group. Let G be
a Carnot groups. The Lie algebra g =

⊕r
i=1Vi of G satisfies [V1,Vj] = Vj+1 for all

1 � j � r − 1. As a simply connected nilpotent group, G is differential with R
N ,

N = ∑r
i=1 dimVi = ∑r

i=1 ni , via the exponential map exp : g→G . The Haar measure on
G is induced by the exponential mapping from the Lebesgue measure on g = R

N and
coincides with the Lebesgue measure on R

N .

EXAMPLE 1. The Heisenberg group H
n is the Carnot group of step two whose

group structure is given by

(x, t)◦ (x′,t ′) = (x+ x′,t + t ′+2
n

∑
j=1

(x2 jx
′
2 j−1− x2 j−1x

′
2 j)).

The vector fields

X2 j−1 =
∂

∂x2 j−1
+2x2 j

∂
∂ t

,

X2 j =
∂

∂x2 j
−2x2 j−1

∂
∂ t

,

( j = 1, · · · ,n ) are left invariant and generate the Lie algebra of H
n . The horizontal

gradient on H
n is the (2n)-dimensional vector given by

∇H = (X1, · · · ,X2n) = ∇x +2Λx
∂
∂ t

,

where ∇x = ( ∂
∂x1

, · · · , ∂
∂x2n

) , Λ is a skew symmetric and orthogonal matrix given by

Λ = diag(J1, · · · ,Jn), J1 = · · · = Jn =
(

0 1
−1 0

)
.
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Consider ξ = (ξ (1), · · · ,ξ (r)) ∈ R
N with ξ (i) = (ξ (i)

1 , · · · ,ξ (i)
ni ) ∈ R

ni . For j =
1, · · · ,n1 , let Xj be the unique vector field in g that coincides with ∂/∂ξ (1)

j at the
origin. The second order differential operator

ΔG = −
n1

∑
j=1

X∗
j Xj =

n1

∑
j=1

X2
j

is called a sub-Laplacian on G . We shall denote by the ∇G = (X1, · · · ,Xn1) the re-
lated subelliptic gradient. By the Campbell-Hausdorff formula (see e.g. [6], page 2-4),
Xj (1 � j � n1 ) can be expressed as the following

Xj =
∂

∂ξ (1)
j

+
r

∑
k=2

nk

∑
s=1

p j
k,s(ξ

(1), · · · ,ξ (k−1))
∂

∂ξ (k)
s

, (5)

where p j
k,s(ξ

(1), · · · ,ξ (k−1)) is a polynomial of ξ (1), · · · ,ξ (k−1) . Therefore, for |ξ (1)| �=
0, we have

ΔG(ξ1|ξ (1)|α) =
n1

∑
j=1

⎛
⎝ ∂

∂ξ (1)
j

⎞
⎠

2

(ξ1|ξ (1)|α)

=ξ1

n1

∑
j=1

⎛
⎝ ∂

∂ξ (1)
j

⎞
⎠

2

|ξ (1)|α +2
∂ |ξ (1)|α

∂ξ (1)
1

=α(n1 + α −2)ξ1|ξ (1)|α−2 +2αξ1|ξ (1)|α−2

=α(n1 + α)ξ1|ξ (1)|α−2.

(6)

Before the proof of main results, we need the following Lemma.

LEMMA 1. Let f ∈C∞(RN
+) and α � 0 . There holds

(
(N +2+ α)2

4
−α −2

)∫
R

N
+

|x|α f 2dx �
∫

R
N
+

|∇ f |2|x|α+2dx. (7)

Furthermore, the constant (N+2+α)2
4 −α −2 is sharp.

Proof. Replacing u by |x| α+2
2 f in (1), we have

∫
R

N
+

|∇(|x| α+2
2 f )|2dx � N2

4

∫
R

N
+

f 2|x|αdx. (8)
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We compute∫
R

N
+

|∇(|x| α+2
2 f )|2dx =

∫
R

N
+

(
|∇ f |2|x|α+2 + f 2|∇|x| α+2

2 |2 +
1
2
〈∇|x|α+2,∇ f 2〉

)
dx

=
∫

R
N
+

(
|∇ f |2|x|α+2 +

(α +2)2

4
f 2|x|α

)
dx

− 1
2

∫
R

N
+

f 2Δ|x|α+2dx

=
∫

R
N
+

|∇ f |2|x|α+2dx− (α +2)(2N + α +2)
4

∫
R

N
+

f 2|x|αdx.

(9)

Combing (8) and (9) yields (7). the constant (N+2+α)2
4 −α −2 is sharp since the con-

stant N2

4 in (1) is sharp. �
Now we can prove Theorem 1. Using the substitution u = |ξ (1)| α+2

2 φ , we get∫
G+

|∇Gφ |2|ξ (1)|α+2 =
∫

G

∣∣∣∇G(|ξ (1)|− α+2
2 u)

∣∣∣2 |ξ (1)|α+2

=
∫

G+

(
|∇Gu|2|ξ (1)|−α−2 +u2|∇G|ξ (1)|− α+2

2 |2 +
1
2

〈
∇G|ξ (1)|−α−2,∇Gu2

〉)
|ξ (1)|α+2

=
∫

G+

(
|∇Gu|2 +

(α +2)2

4
u2

|ξ (1)|2
)
− α +2

2

∫
G+

〈∇G ln |ξ (1)|,∇Gu2〉

=
∫

G+

(
|∇Gu|2 +

(α +2)2

4
u2

|ξ (1)|2
)

+
α +2

2

∫
G+

u2ΔG ln |ξ (1)|

=
∫

G+

(
|∇Gu|2 +

(α +2)2

4
u2

|ξ (1)|2 +
(α +2)(n1−2)

2
u2

|ξ (1)|2
)

.

(10)

To get the last equation, we use the fact

ΔG ln |ξ (1)| =
n1

∑
j=1

⎛
⎝ ∂

∂ξ (1)
j

⎞
⎠

2

ln |ξ (1)| = n1−2
2

1

|ξ (1)|2 .

On the other hand, using the substitution u = ξ1|ξ (1)|− n1
2 v , we have∫

G+
|∇Gu|2 =

∫
G+

(
|∇Gv|2ξ 2

1 |ξ (1)|−n1 + v2
∣∣∣∇G

(
ξ1|ξ (1)|− n1

2

)∣∣∣2

+
1
2

〈
∇Gv2,∇G

(
ξ 2

1 |ξ (1)|−n1

)〉)

�
∫

G+

(
v2

∣∣∣∇G

(
ξ1|ξ (1)|− n1

2

)∣∣∣2 − 1
2
v2ΔG

(
ξ 2

1 |ξ (1)|−n1

))

=
∫

G+
v2

(∣∣∣∇G

(
ξ1|ξ (1)|− n1

2

)∣∣∣2 − 1
2

ΔG

(
ξ 2

1 |ξ (1)|−n1

))
.

(11)
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Notice that, for g ∈C2(G) ,

ΔGg2 =
n1

∑
j=1

X2
j g

2 = 2g
n1

∑
j=1

X2
j g+2

n1

∑
j=1

|Xjg|2 = 2gΔGg+2|∇Gg|2.

We have, by (6), ∣∣∣∇G

(
ξ1|ξ (1)|− n1

2

)∣∣∣2 − 1
2

ΔG

(
ξ 2

1 |ξ (1)|−n1

)

=− ξ1|ξ (1)|− n1
2 ΔG(ξ1|ξ (1)|− n1

2 )

=
n2

1

4
ξ 2

1 |ξ (1)|−n1−2.

(12)

Combining (11) and (12) yields
∫

G+
|∇Gu|2 � n2

1

4

∫
G+

ξ 2
1 |ξ (1)|−n1−2v2 =

n2
1

4

∫
G+

u2

|ξ (1)|2 . (13)

Therefore, we have, by (10) and (13),
∫

G+
|∇Gφ |2|ξ (1)|α+2 �

∫
G+

(
n2

1

4
u2

|ξ (1)|2 +
(α +2)2

4
u2

|ξ (1)|2 +
(α +2)(n1−2)

2
u2

|ξ (1)|2
)

.

=
(

(n1 +2+ α)2

4
−α −2

)∫
G+

u2

|ξ (1)|2

=
(

(n1 +2+ α)2

4
−α −2

)∫
G+

|φ |2|ξ (1)|α .

(14)

To finish the proof, we need to show that the constant (n1+2+α)2
4 −α − 2 in (3)

is sharp. Following [8], we choose the test function f (ξ ) = u(ξ (1))g(ξ (2), · · · ,ξ (r)) ,
where u(·) ∈C∞

0 (Rn1) and g = ∏r
k=2 ∏nk

s=1 wk,s(ξ
(k)
s ) with wk,s(·) ∈C∞

0 (R) for all 2 �
k � r and 1 � s � nl . For convenience, we set wk,s ≡ 1 for all 1 � s � nk if k = 1. By
(5),

∫
G+

|∇G f |2|ξ (1)|α+2dξ =
n1

∑
j=1

⎧⎪⎨
⎪⎩

∫
G+

⎛
⎝ ∂u

∂ξ (1)
j

⎞
⎠

2

g2|ξ (1)|α+2dξ+

∫
G+

u2

∣∣∣∣∣
r

∑
k=2

nk

∑
s=1

p j
k,s

∂g

∂ξ (k)
s

∣∣∣∣∣
2

|ξ (1)|α+2dξ +(∗)
⎫⎬
⎭ ,

where

(∗) =
∫

G+

∂u2

∂ξ (1)
j

g
r

∑
k=2

nk

∑
s=1

p j
k,s

∂g

∂ξ (k)
s

|ξ (1)|α+2dξ

=
1
2

r

∑
k=2

nk

∑
s=1

∫
G+

∂u2

∂ξ (1)
j

p j
k,s(ξ

(1), · · · ,ξ (k−1))
∂g2

∂ξ (k)
s

|ξ (1)|α+2dξ .
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Since wk,s(·) ∈C∞
0 (R) for all 2 � k � r and 1 � s � nk , we have

∫
R

∂w2
k,s(ξ

(k)
s )

∂ξ (k)
s

dξ (k)
s = 0.

Therefore ∫
R

∂g2

∂ξ (k)
s

dξ (k)
s = 0.

Thus (∗) = 0 and

∫
G+

|∇G f |2|ξ (1)|α+2dξ =
n1

∑
j=1

⎧⎪⎨
⎪⎩

∫
G+

⎛
⎝ ∂u

∂ξ (1)
j

⎞
⎠

2

g2|ξ (1)|α+2dξ+

∫
G+

u2

∣∣∣∣∣
r

∑
k=2

nk

∑
s=1

p j
k,s

∂g

∂ξ (k)
s

∣∣∣∣∣
2

|ξ (1)|α+2dξ

⎫⎬
⎭ .

(15)

Let CG be a positive constant such that
∣∣∣∣∣

r

∑
k=2

nk

∑
s=1

p j
k,s

∂g

∂ξ (k)
s

∣∣∣∣∣
2

�CG

r

∑
k=2

nk

∑
s=1

∣∣∣∣∣p j
k,s

∂g

∂ξ (k)
s

∣∣∣∣∣
2

.

We have, by (15),
∫
G+

|∇G f |2|ξ (1)|α+2dξ∫
G+

f 2|ξ (1)|αdξ

�

∫
R

n1
+

∑n1
j=1

(
∂u

∂ξ (1)
j

)2

|ξ (1)|α+2dξ (1)

∫
R

n1
+

u2|ξ (1)|αdξ (1) +CG

r

∑
k=2

nk

∑
s=1

∫
G u2

∣∣∣∣p j
k,s

∂g

∂ξ (k)
s

∣∣∣∣
2

|ξ (1)|α+2dξ
∫
G f 2|ξ (1)|αdξ

,

Where R
n1
+ = {(ξ1, · · · ,ξn1) ∈ R

n1 : ξ1 > 0} .
Since for all 2 � k � r and 1 � s � nl ,

inf
wk,s∈C∞

0 (R)\{0}

∫
R
|w′

k,s|2dξ (k)
s∫

R
|wk,s|2dξ (k)

s

= 0,

we have

inf
wk,s∈C∞

0 (R)\{0}

∫
G+

u2

∣∣∣∣p j
k,s

∂g

∂ξ (k)
s

∣∣∣∣
2

|ξ (1)|α+2dξ
∫
G+

f 2|ξ (1)|αdξ

=

∫
R

n1
+ ×R

n2+···+nk−1 u2|p j
k,s|2 ∏k−1

l=1 ∏nl
i=1 w2

l,i|ξ (1)|α+2

∫
R

n1
+ ×R

n2+···+nk−1 u2 ∏k−1
l=1 ∏nl

i=1 w2
l,i|ξ (1)|α · inf

wk,s∈C∞
0 (R)\{0}

∫
R
|w′

k,s|2dξ (k)
s∫

R
|wk,s|2dξ (k)

s

= 0.
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Therefore, by Lemma 1,

inf
φ∈C∞

0 (G+)\{0}

∫
G+

|∇Gφ |p|ξ (1)|α+2

∫
G+

|φ |p|ξ (1)|α � inf
u∈C∞

0 (Rn1
+ )\{0}

∫
R

n1
+

∑n1
j=1

(
∂u

∂ξ (1)
j

)2

|ξ (1)|α+2dξ (1)

∫
R

n1
+

u2|ξ (1)|αdξ (1)

=
(

(n1 +2+ α)2

4
−α −2

)
.

The proof of Theorem 1 is thereby completed.
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