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Abstract. We present the best possible parameters p,q ∈ (0,1] such that the double inequality
1

3p2 cos(px)+ 1− 1
3p2 < sin(x)

x < 1
3q2 cos(qx)+ 1− 1

3q2 holds for all x ∈ (0,π/2) . As applica-

tions, some new inequalities for the sine integral, Catalan constant and Schwab-Borchardt mean
are found.

1. Introduction

It is well known that the double inequality

cos1/3(x) <
sin(x)

x
<

2+ cos(x)
3

(1.1)

holds for all x∈ (0,π/2) . Recently, the improvements, refinements and generalizations
for inequality (1.1) have attracted the attention of many researchers.

Iyengar et al. [1] proved that p = 1√
3

and q = 2
π arccos

(
2
π
)

are the best possible
constants such that the double inequality

cos(px) � sin(x)
x

� cos(qx)

holds for all x ∈ (0,π/2) .
Qi et al. [2] established that

sin(x)
x

> cos2
( x

2

)
for all x ∈ (0,π/2) .

Neuman and Sándor [3] gave an improvement for the first inequality in (1.1) as
follows:

sin(x)
x

>

(
1+ cos(x)

2

)2/3

= cos4/3
( x

2

)
, x ∈

(
0,

π
2

)
. (1.2)
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Inequality (1.2) was also proved by Lv et al. in [4]. Klén et al. [5] proved that

cos2
( x

2

)
� sin(x)

x
� cos3

( x
3

)
(1.3)

for x ∈ (−√27/5,
√

27/5) .
In [6], Yang found that p = p0 and q = 1/3 are the best possible parameters in

(0,1] such that the double inequality

cos1/p(px) <
sin(x)

x
< cos1/q(qx)

holds for all x ∈ (0,π/2) , where p0 = 0.3473 . . . is the unique solution of the equation
p log(2/π)= log[cos(pπ/2)] on (0,1) . Yang [6] also proved that the double inequality

cosα
( x

3

)
<

sin(x)
x

< cosβ
( x

3

)

holds for all x ∈ (0,π/2) if and only if α � 2(logπ − log2)/(log4− log3) = 3.139 . . .
and β � 3.

Zhu [7] and Yang [8] proved that the double inequality

(
2
3

+
1
3

cosp(x)
)1/p

<
sin(x)

x
<

(
2
3

+
1
3

cosq(x)
)1/q

holds for all x ∈ (0,π/2) if and only if p � 4/5 and q � (log3− log2)/(logπ −
log2) = 0.8978 . . . .

Lv et al. [4] proved that the double inequality

cosλ
( x

2

)
<

sin(x)
x

< cosμ
( x

2

)

holds for all x ∈ (0,π/2) if and only if λ � 4/3 and μ � 2(logπ − log2)/ log2 =
1.3030 . . ..

Very recently, Yang et al. [9] proved that the double inequality

[
2
3

cos2p
( x

2

)
+

1
3

]1/p

<
sin(x)

x
<

[
2
3

cos2q
( x

2

)
+

1
3

]1/q

holds for all x ∈ (0,π/2) if and only if p � log(π −2)/ log2 and q � 1/5.
The main purpose of this paper is to find the best possible parameters p,q ∈ (0,1]

such that the double inequality 1
3p2 cos(px)+ 1− 1

3p2 < sin(x)
x < 1

3q2 cos(qx)+ 1− 1
3q2

holds for all x ∈ (0,π/2) , and present several new inequalities for the sine integral,
Catalan constant and Schwab-Borchardt.
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2. Lemmas

In order to prove our main result we need several lemmas, which we present in
this section.

LEMMA 2.1. Let

Up(x) =
1

3p2 cos(px)+1− 1
3p2 . (2.1)

Then Up(x) is strictly increasing with respect to p ∈ (0,1] for fixed x ∈ (0,π/2) .

Proof. It follows from (2.1) that

∂Up(x)
∂ p

=
1

3p3 [2−2cos(px)− pxsin(px)] (2.2)

=
2x
3p2

[
sin
( px

2

)
px
2

− cos
( px

2

)]
sin
( px

2

)
> 0

for p ∈ (0,1] and x ∈ (0,π/2) .
Therefore, Lemma 2.1 follows from (2.2). �

LEMMA 2.2. Let p ∈ (0,1] and the function Fp(x) be defined on (0,π/2) by

Fp(x) =
sin(x)

x
−
[

1
3p2 cos(px)+1− 1

3p2

]
. (2.3)

Then the following statements are true:
(1) If Fp(x) < 0 for all x ∈ (0,π/2) , then p �

√
15/5;

(2) If Fp(x) > 0 for all x ∈ (0,π/2) , then p � p0 , where p0 = 0.7708 . . . is the
unique solution of the equation

2
π
−
[

1
3p2 cos

( pπ
2

)
+1− 1

3p2

]
= 0 (2.4)

on (0,1/2) .

Proof. (1) If Fp(x) < 0 for all x ∈ (0,π/2) , then (2.3) leads to

lim
x→0+

Fp(x)
x4 =

3−5p2

360
� 0

and p �
√

15/5.
(2) If Fp(x) > 0 for all x ∈ (0,π/2) , then it follows from (2.3) that

Fp

(
π
2

−)
=

2
π
−
[

1
3p2 cos

( pπ
2

)
+1− 1

3p2

]
> 0. (2.5)
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From Lemma 2.1 and (2.5) we clearly see that the function p → Fp(π/2−) is
strictly decreasing on (0,1] .

Note that

F1/2

(
π
2

−)
=

2
π
− 2

√
2

3
+

1
3

> 0, F1

(
π
2

−)
=

2
π
− 2

3
< 0. (2.6)

Inequality (2.6) and the monotonicity of the function p → Fp(π/2−) lead to the
conclusion that equation (2.4) has a unique solution p = p0 ∈ (1/2,1) . Numerical
computations using Mathematical software show that p0 = 0.7708 . . . . Moreover, in-
equalities (2.5) and (2.6) together with the monotonicity of the function p→ Fp(π/2−)
imply that p � p0 . �

LEMMA 2.3. Let c∈ (0,3/5] and the sequence {an(c)} (n = 1,2, · · ·) be defined
by

an(c) = 3− (2n+1)cn−1. (2.7)

Then the following statements are true:
(1) an(c) � 0 for all n � 1;
(2) 1 < an+1(c)/an(c) � an+1(3/5)/an(3/5) � 11/5 for all n � 3.

Proof. (1) From (2.7) we clearly see that

a1(c) = 0, (2.8)

an+1(c)−an(c) = [(2n+1)− (2n+3)c]cn−1 (2.9)

�
[
(2n+1)− 3(2n+3)

5

]
cn−1 =

4(n−1)
5

cn−1 � 0

for all n � 1.
Therefore, Lemma 2.3(1) follows easily from (2.8) and (2.9).
(2) We first prove that the sequence {an+1(c)/an(c)} is strictly decreasing with

respect to n � 3 for any fixed c ∈ (0,3/5] .
From part (1) and (2.9) we clearly see that

an(c) > 0 (2.10)

for all n � 3.
It follows from (2.7) and (2.10) that

an+1(c)
an(c)

− an+2(c)
an+1(c)

=
cn−1

an(c)an+1(c)
[
4cn+1 +6n(c−1)2 +15c2−18c+3

]
(2.11)

� cn−1

an(c)an+1(c)
[
4cn+1 +18(c−1)2 +15c2−18c+3

]
=

cn−1

an(c)an+1(c)

[
4cn+1 +33(1− c)

(
7
11

− c

)]
> 0
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for all n � 3.
Inequality (2.11) implies that the sequence {an+1(c)/an(c)} is strictly decreasing

with respect to n � 3 for any fixed c ∈ (0,3/5] .
Next we prove that the function gn(c) = an+1(c)/an(c) is strictly increasing with

respect to c ∈ (0,3/5] for all n � 3.
From (2.7) and (2.10) we have

∂gn(c)
∂c

= a−2
n (c)cn−2hn(c), (2.12)

where
hn(c) = (4n2 +8n+3)cn−3n(2n+3)c+(6n2−3n−3),

∂hn(c)
∂c

= −n(2n+3)an(c) < 0 (2.13)

for all n � 3.
Inequality (2.13) implies that

hn(c) � hn

(
3
5

)
=
(

3
5

)n (
4n2 +8n+3

)
+

3
5

(
4n2−14n−5

)
(2.14)

for all n � 3 and c ∈ (0,3/5] .
Note that

h3

(
3
5

)
=

876
125

> 0 (2.15)

and
4n2−14n−5 = 2n(2n−7)−5� 2n−5 > 0 (2.16)

for n � 4.
It follows from (2.12) and (2.14)–(2.16) that gn(c) is strictly increasing with re-

spect to c ∈ (0,3/5] for all n � 3.
From (2.7) and above discussion we get

1 =
an+1(0)
an(0)

<
an+1(c)
an(c)

� an+1(3/5)
an(3/5)

� a4(3/5)
a3(3/5)

=
11
5

for n � 3 and c ∈ (0,3/5] . �

3. Main result

THEOREM 3.1. Let p,q ∈ (0,1] . Then the double inequality

1
3p2 cos(px)+1− 1

3p2 <
sin(x)

x
<

1
3q2 cos(qx)+1− 1

3q2 (3.1)

holds for all x ∈ (0,π/2) if and only if p � p0 and q � q0 =
√

15/5, where p0 =
0.7708 . . . is the unique solution of equation (2.4) on (1/2,1) .
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Proof. Let λ ∈ (0,
√

3/5] and fλ (x) = x−4Fλ (x) , where Fλ (x) is defined by (2.3).
Then making use of power series expansions and (2.3) we get

fλ (x) =
[
sin(x)

x
−
(

1
3λ 2 cos(λx)+1− 1

3λ 2

)]
x−4 (3.2)

=

[
∞

∑
n=0

(−1)nx2n

(2n+1)!
−
(

1
3λ 2

∞

∑
n=0

(−1)n(λx)2n

(2n)!
+1− 1

3λ 2

)]
x−4

=
∞

∑
n=2

(−1)n
[
3− (2n+1)λ 2n−2

]
3(2n+1)!

x2n−4

=
3−5λ 2

360
+

∞

∑
n=3

(−1)nan(λ 2)
3(2n+1)!

x2n−4,

∂ fλ (x)
∂x

=
∞

∑
n=3

(−1)n(2n−4)an(λ 2)
3(2n+1)!

x2n−5 =
∞

∑
n=3

(−1)nun(x), (3.3)

where an(λ 2) is defined by (2.7) and

un(x) =
(2n−4)an(λ 2)

3(2n+1)!
x2n−5. (3.4)

Equation (3.4) and Lemma 2.3 lead to

un+1(x)
un(x)

=
2n−2

(2n−4)(2n+3)(2n+2)
an+1(λ 2)
an(λ 2)

x2 (3.5)

<
1

(2×3−4)(2×3+3)
× 11

5
× π2

4
=

11π2

360
< 1

for n � 3 and x ∈ (0,π/2) .
From (3.3) and (3.5) we clearly see that ∑∞

n=3(−1)nun(x) is a Leibniz’s alternating
series and fλ (x) is strictly decreasing with respect to x on the interval (0,π/2) . In
particular, it follows from p0,q0 ∈ (0,

√
3/5] that both fp0(x) and fq0(x) are strictly

decreasing with respect to x on the interval (0,π/2) . Then from (3.2) we get[
sin(x)

x
−
(

1

3p2
0

cos(p0x)+1− 1

3p2
0

)]
x−4 = fp0(x) > fp0

(
π
2

−)
= 0, (3.6)

[
sin(x)

x
−
(

1

3q2
0

cos(q0x)+1− 1

3q2
0

)]
x−4 = fq0(x) < fq0

(
0+)= 0 (3.7)

for x ∈ (0,π/2) .
Therefore, Theorem 3.1 follows easily from (3.6) and (3.7) together with Lemma

2.2. �

REMARK 3.1. Let λ ∈ (0,
√

3/5] , c0(λ ) = fλ (π/2−) = 16[2/π−1+1/(3λ 2)−
cos(λ π/2)/(3λ 2)]/π4 and c1 = fλ (0+) = (3− 5λ 2)/360. Then from (3.2) and the
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monotonicity of fλ (x) with respect to x on (0,π/2) we know that the double inequality[
1

3λ 2 cos(λx)+1− 1
3λ 2

]
+c0(λ )x4 <

sin(x)
x

<

[
1

3λ 2 cos(λx)+1− 1
3λ 2

]
+c1(λ )x4

(3.8)
holds for all x ∈ (0,π/2) with the best possible constants c0(λ ) and c1(λ ) . In par-
ticular, if λ = p0 = 0.7708 . . . and λ = q0 =

√
15/5, then c0(p0) = 0, c1(p0) =

(3− 5p2
0)/360 = 8.020 . . .× 10−5 , c0(q0) = −7.261 . . .× 10−5 and c1(q0) = 0, and

the double inequalities[
1

3p2
0

cos(p0x)+1− 1

3p2
0

]
+c0(p0)x4 <

sin(x)
x

<

[
1

3p2
0

cos(p0x)+1− 1

3p2
0

]
+c1(p0)x4

(3.9)
and[

1

3q2
0

cos(q0x)+1− 1

3q2
0

]
+c0(q0)x4 <

sin(x)
x

<

[
1

3q2
0

cos(q0x)+1− 1

3q2
0

]
+c1(q0)x4

(3.10)
hold for all x ∈ (0,π/2) with the best possible parameters c0(p0) , c1(p0) , c0(q0) and
c1(q0) .

Letting p = 3/4 >
√

2/2 > 2/3 >
√

3/3 ∈ (0, p0) and q =
√

3/5 <
√

2/3 <√
3/2 < 1 ∈ [

√
15/5,1] , then Lemma 2.1 and Theorem 3.1 lead to Corollary 3.1.

COROLLARY 3.1. The inequalities

cos

(√
3x
3

)
<

3
4

cos

(
2x
3

)
+

1
4

<
2
3

cos

(√
2x
2

)
+

1
3

<
16
27

cos

(
3x
4

)
+

11
27

<
sin(x)

x
<

5
9

cos

(√
15x
5

)
+

4
9

< cos2

(√
6x
6

)

<
4
9

cos

(√
3x
2

)
+

5
9

<
1
3

cos(x)+
2
3

hold for x ∈ (0,π/2) .

4. Applications

In this section, we present several new inequalities for the sine integral, Catalan
constant and Schwab-Borchardt by use of Theorem 3.1.

The sine integral is given by

Si(t) =
∫ t

0

sin(x)
x

dx,

some estimates for the sine integral can be found in the literature [10–13]. From (3.8)
we get a new estimate for the sine integral as follows.
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REMARK 4.1. Let λ ∈ (0,
√

3/5] , c0(λ ) = 16[2/π−1+1/(3λ 2)−cos(λ π/2)/
(3λ 2)]/π4 and c1 = (3−5λ 2)/360. Then the double inequality

sin(λ t)
3λ 3 +

(
1− 1

3λ 2

)
t +

c0(λ )
5

t5 < Si(t) <
sin(λ t)

3λ 3 +
(

1− 1
3λ 2

)
t +

c1(λ )
5

t5 (4.1)

holds for t ∈ (0,π/2) . Let p = 0+ and p = 2/3, then (4.1) leads to

t− 1
18

t3 +
2π3−48π +96

15π5 t5 < Si(t) < t− 1
18

t3 +
1

600
t5, (4.2)

9
8

sin

(
2t
3

)
+

1
4
t +

2(16−5π)
5π5 t5 < Si(t) <

9
8

sin

(
2t
3

)
+

1
4
t +

7
16200

t5. (4.3)

In particular, let t → π
2
− , then (4.2) and (4.3) become

1.370 . . . =
2π +1

5
− π3

360
< Si

(π
2

)
<

π
2
− π3

144
+

π5

19200
= 1.371 . . . ,

1.370 . . . =
π +9

√
3

16
+

1
5

< Si
(π

2

)
<

π
8

+
7π5

518400
+

9
√

3
16

= 1.371 . . . .

The Catalan constant

G =
∞

∑
n=0

(−1)n

(2n+1)2 =
1
2

∫ π/2

0

x
sin(x)

dx = 0.9159655941772190 . . . (4.4)

is a mysterious constant in mathematics and physics [14–17].
It follows from Corollary 3.1 and (4.4) that

∫ π/2

0

9

10cos
(√

15x
5

)
+8

< G <

∫ π/2

0

27

32cos
(

3x
4

)
+22

. (4.5)

Inequality (4.5) leads to an estimation for the Catalan constant G .

REMARK 4.2. The Catalan constant G satisfies the two-sided inequality

0.9158 . . . =
√

15
4

log
4cos

(√
15π
10

)
+3sin

(√
15π
10

)
+5

4cos
(√

15π
10

)
−3sin

(√
15π
10

)
+5

< G

<

√
15
5

log
11
√

2−√
2+3

√
15
√

2+
√

2+32

11
√

2−√
2−3

√
15
√

2+
√

2+32
= 0.9167 . . . .

The Schwab-Borchardt mean SB(a,b) [18–20] of two positive real numbers a and
b is given by

SB(a,b) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
b2−a2

arccos( a
b )

, a < b,

a, a = b,√
a2−b2

cosh−1 (a/b)
, a > b.

(4.6)
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Let b > a > 0 and x = arccos(a/b) , then from Corollary 3.1 and (4.6) together
with the facts √

b2−a2

arccos
(

a
b

) = b
sin(x)

x
,

16
27

cos

(
3x
4

)
+

11
27

=
16
27

cos

[
3arccos

(
a
b

)
4

]
+

11
27

and
5
9

cos

(√
15x
5

)
+

4
9

=
5
9

cos

[√
15arccos

(
a
b

)
5

]
+

4
9

we get

16b
27

cos

[
3arccos

(
a
b

)
4

]
+

11b
27

< SB(a,b) <
5b
9

cos

[√
15arccos

(
a
b

)
5

]
+

4b
9

. (4.7)

The following Remark 4.3 can be derived immediately from the first inequality in
(4.7).

REMARK 4.3. Let b > a > 0, then

SB(a,b) >
8b1/4

27

√
2b3/2 +

√
2(a+b)(b−2a)2+

11b
27

� 11+8
√

2
27

b = 0.8264 · · ·×b.
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