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Abstract. In this paper, we deal with a geometric inequality for a closed convex plane curve γ
involving the area, the perimeter, the curvature of γ . Together with an inequality obtained by
Lin and Tsai in [12], we conclude the upper and lower bound estimates for the integration of the
squared curvature radius of γ and show the stability results of the corresponding inequalities.

1. Introduction

There are many inequalities in convex geometry and differential geometry, such as
the classical isoperimetric inequality (see [18]) in R

2 , given by: p(K)2−4πa(K) � 0,
here a(K) and p(K) denote the area and perimeter of the convex domain K , and the
equality holds if and only if K is a circular disc. This fact was known to the ancient
Greeks, and the first mathematical proof was only given in the 19th century by Steiner
in [18]. However, for dealing with the geometric flow problems, geometric inequalities
play a crucial role, especially, geometric inequalities with curvature are very important
in the curve evolution problem (see [3, 4, 5, 6, 12, 14]), such as the well known Gage’s
inequality [3] and so on. In [14], to estimate the isoperimetric deficit of a evolving
curve γ , Pan and Yang [14] established a reverse isoperimetric inequality:

∫ 2π

0

1
κ2(θ )

dθ � p(K)2−2πa(K)
π

, (1)

where K is a convex domain enclosed by γ , κ , p and a are the signed curvature, the
length of γ and the area it bounds, and the equality in (1) holds if and only if K is a
circular disc.

Furthermore, in [12], to study a nonlocal flow of convex plane curve, Lin and Tsai
established a new stronger reverse isoperimetric inequality:

∫ 2π

0

1
κ2(θ )

dθ � 2p(K)2−6πa(K)
π

, (2)
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and the equality in (2) holds if and only if the Minkowski support function of K is of
the form

HK(θ ) = a0 +a1 cosθ +b1 sinθ +a2 cos2θ +b2 sin2θ , ∀θ ∈ [0,2π ] (3)

for some constants a0,a1,b1,a2,b2 satisfying

H
′′
K(θ )+HK(θ ) > 0, ∀θ ∈ [0,2π ].

Here the variable θ is the outward normal angle of K .

In this paper, we estimate the upper bound of the integration of the squared cur-
vature radius of curve γ . Together with inequalities (1) and (2), we obtain the upper
and lower bound estimates for the integration of the squared curvature radius of γ . To
discuss the stability of the corresponding inequalities, we have to deal with the equality
cases between (1) and (2) as the following theorem.

THEOREM 1. Let K be a convex domain enclosed by a Ck+2 closed and strictly
convex plane curve γ with area a(K) and perimeter p(K) . Then

p(K)2 −2πa(K)+ ε(p(K)2−4πa(K))
π

�
2π∫
0

1
κ2(θ )

dθ � p(K)2

2π
+

1
4k

2π∫
0

(ρ (k)(θ ))2dθ

(4)
satisfied for any 0 � ε � 1 , where κ and ρ are the curvature and curvature radius of
γ respectively, ρ (k) denotes the k−order derivative of ρ with respect to θ . Moreover,

i) 0 � ε < 1 , the equality on the left-hand side of (4) holds if and only if K is a
circular disc; ε = 1 , the equality on the left-hand side of (4) holds if and only if
the Minkowski support function of K is of the form in (3);

ii) the equality on the right-hand side of (4) holds if and only if the Minkowski support
function of K is of the form in (3).

The next goal is to deal with the stability of inequalities in (4). Recently, the sta-
bility of geometric inequalities have been extensively investigated, see [1, 2, 7, 8, 9, 10,
11, 13, 16, 17]. Roughly speaking, these investigations focus on the geometric impli-
cations if the inequalities are in a certain sense close equalities. For more information
of the stability problem one may consult [7, 9].

Generally, the stability of inequalities depends on various measures. For convex
domains K, L with respective support functions HK(θ ) , HL(θ ) , the most frequently
used function to measure the deviation between K and L is the Hausdorff distance

h1(K,L) = max
θ

| HK(θ )−HL(θ ) | .

Another such measure with respect to stability problem is L2 -metric, which is defined
by

h2(K,L) =
(∫ 2π

0
| HK(θ )−HL(θ ) |2 dθ

) 1
2

.



INEQUALITIES WITH CURVATURE AND THEIR STABILITY ESTIMATES FOR CONVEX CURVES 435

It is obvious that h1(K,L) = 0 (or h2(K,L) = 0) if and only if K = L .
By Hausdorff distance h1 and L2 -metric h2 , we conclude the stability theorems

of inequalities in (4), see Theorems 2–4 below.
The contents of this paper are as follows. In section 2 we give some preliminaries

about convex domains. We proveTheorem 1 in section 3 and conclude the rest theorems
in section 4 by Fourier series of the support function.

2. Preliminaries

In this section, we recall some basic facts about plane convex geometry, which will
be used later. In this paper, we always assume that K is a convex domain in the plane
and is enclosed by a Ck+2 , closed and strictly convex plane curve γ with area a(K)
and perimeter p(K) such that the curvature of γ is positive everywhere and the Fourier
series needed in the proof converges uniformly. The details can be found in [13].

We assume that the origin o of R
2 lies in the interior of K . Let HK(θ ) denote

the Minkowski support function of K (or γ ), where θ is the angle between x -axis and
pointing outward normal vector �u along curve γ . It is clear that HK(θ ) is a continuous
2π -periodic function. Then the curvature κ and the curvature radius ρ of γ(θ ) are
given by

ρ(θ ) =
1

κ(θ )
= HK(θ )+H

′′
K(θ ) > 0, (5)

where ′ denotes the derivative with respect to θ . p(K) and a(K) can be calculated by

p(K) =
∫ 2π

0
HK(θ )dθ , (6)

and

a(K) =
1
2

∫ 2π

0

(
H2

K(θ )−H
′
K

2
(θ )
)
dθ . (7)

The support function HK(θ ) of K has a Fourier series of the form

HK(θ ) = a0 +
∞

∑
n=1

(an cosnθ +bn sinnθ ), (8)

where

a0 =
1
2π

∫ 2π

0
HK(θ )dθ =

p(K)
2π

and

an =
1
π

∫ 2π

0
HK(θ )cosnθ dθ , bn =

1
π

∫ 2π

0
HK(θ )sinnθ dθ , n ∈ Z

+.

Differentiation of this with respect to θ gives us

H
′
K(θ ) = −

∞

∑
n=1

n(an sinnθ −bn cosnθ ), H
′′
K(θ ) = −

∞

∑
n=1

n2(an cosnθ +bn sinnθ ).
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From (5) and (8), it follows immediately that

ρ(θ ) = a0 +
∞

∑
n=1

(an cosnθ +bn sinnθ )−
∞

∑
n=1

n2(an cosnθ +bn sinnθ ), (9)

and

ρ (k)(θ ) =

⎧⎪⎨
⎪⎩

(−1)
k−1
2

∞
∑

n=2
nk(n2−1)(an sinnθ −bn cosnθ ), k is odd,

(−1)
k
2−1

∞
∑

n=2
nk(n2−1)(an cosnθ +bn sinnθ ), k is even,

(10)

where k ∈ Z
+ . By the Parseval equality, one can get

∫ 2π

0
H2

K(θ )dθ = 2πa2
0 + π

∞

∑
n=1

(a2
n +b2

n),

∫ 2π

0
H

′
K

2
(θ )dθ = π

∞

∑
n=1

n2(a2
n +b2

n),
∫ 2π

0
H

′′
K

2
(θ )dθ = π

∞

∑
n=1

n4(a2
n +b2

n)

and

a(K) = πa2
0−

π
2

∞

∑
n=2

(n2−1)(a2
n +b2

n). (11)

The steiner disc of K , denoted by S(K) , is the circular disc with radius p(K)
2π and

center at the steiner point which can be defined in terms of the Minkowski support
function

�s(K) =
1
π

∫ 2π

0
�u(θ )HK(θ )dθ .

From (8) and the definition of the Fourier coefficients, we have

�s(K) = (a1,b1). (12)

The steiner disc will play a role in our stability statement in section 4 below. For more
information on the steiner point of a convex body one may consult [16]. Let S2(K) be a
convex domain enclosed by a closed and strictly convex plane curve, and its the support
function is of the form

HS2(K)(θ ) = a0 +a1 cosθ +b1 sinθ +a2 cos2θ +b2 sin2θ . (13)

3. The proof of Theorem 1

In this section, we prove Theorem 1 by using Fourier series.
Proof of Theorem 1. By (9), one can easily get

∫ 2π

0

1
κ2(θ )

dθ = 2π
(
a2

0 +
1
2

∞

∑
n=2

(n2−1)2(a2
n +b2

n)
)
. (14)
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It follows from (10) that

∫ 2π

0
(ρ (k)(θ ))2dθ = π

∞

∑
n=2

n2k(n2−1)2(a2
n +b2

n). (15)

From (14) and (15), we can get

p(K)2

2π
+

1
4k

∫ 2π

0
(ρ (k)(θ ))2dθ −

∫ 2π

0

1
κ2(θ )

dθ

=π
∞

∑
n=2

(n2−1)2
((n2

4

)k −1
)
(a2

n +b2
n).

(16)

Hence, p(K)2
2π + 1

4k

∫ 2π
0 (ρ (k)(θ ))2dθ − ∫ 2π

0
1

κ2(θ)dθ � 0. Clearly, the equality on the

right hand in (4) holds if and only if an = bn = 0, n � 3, n ∈ N
+ , then the Minkowski

support function of K is of the form in (3), which completes the proof of inequality on
the right hand in (4).

On the other hand, let

f (K,ε) =
∫ 2π

0

1
κ2(θ )

dθ − p2(K)−2πa(K)+ ε(p2(K)−4πa(K))
π

.

It follows from (11) and (14) that

f (K,ε) =
1
π

{
π2

∞

∑
n=2

(
(n2−1)2− (n2−1)

)
(a2

n +b2
n)−2π2ε

∞

∑
n=2

(n2−1)(a2
n +b2

n)

}

= π
∞

∑
n=2

(n2−1)
(
n2−2(1+ ε)

)
(a2

n +b2
n),

(17)
observing that f (K,ε) is a linear function with respect to ε such that

f (K,1) = π
∞

∑
n=2

(n2−1)(n2−4)(a2
n +b2

n) � 0, (18)

thus for any 0 � ε � 1 we have

f (K,ε) � f (K,1) � 0.

In particular, case i). when 0 � ε < 1, the equality on the left-hand side of (4)
holds if and only if f (K,ε) = 0, i.e.

∞

∑
n=2

(n2−1)[n2−2(1+ ε)](a2
n +b2

n) = 0

which leads to an = bn = 0, n � 2, n ∈ N
+ , then the Minkowski support function of K

is of the form
HK(θ ) = a0 +a1 cosθ +b1 sinθ ,
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which implies that K is a circular disc.
Case ii). when ε = 1, the equality on the left-hand side of (4) holds if and only if

equality holds in (18), which leads to an = bn = 0, n � 3, n ∈ N
+ , then the Minkowski

support function of K is of the form in (3). This completes the proof of Theorem 1. �
From (15), it is not difficult to obtain the following corollary.

COROLLARY 1. Under the same assumptions as in Theorem 1, we have that

1
4k

∫ 2π

0
(ρ (k)(θ ))2dθ � 3

2π
(p(K)2 −4πa(K)),

with equality if and only if the Minkowski support funtion of K is of the form in (3).

4. The stability results

In this section, we use the Hausdorff distance h1 and the L2 -metric h2 to build
stability estimates of inequalities in (4), see theorems 2–4 below.

THEOREM 2. Let K be a convex domain enclosed by a C2 closed and strictly
convex plane curve γ with area a(K) and perimeter p(K) . Then

∫ 2π

0

1
κ2(θ )

dθ − p(K)2 −2πa(K)+ ε(p(K)2−4πa(K))
π

�
{

π
C(ε)h1(K,S(K))2, 0 � ε < 1;
144π

5 h1(K,S2(K))2, ε = 1,

(19)

where κ is the curvature of γ and

C(ε) =
1

(1+2ε)2 −
3

4(1+2ε)
+

1−√2(1+ ε)π cot(
√

2(1+ ε)π)
4(1+ ε)(1+2ε)

.

Moreover, when

i) 0 � ε < 1 , the first equality in (19) holds if K is a circular disc;

ii) ε = 1 , the second equality in (19) holds if the Minkowski support function of K is
of the form in (3).

Proof. Without loss of generality, we may assume �s(K) =�0, then HS(K)(θ ) = a0

and HS2(K)(θ ) = a0 + a2 cos2θ + b2 sin2θ , where a0 = p(K)
2π . Since it is easy to see

that

| HK(θ )−HS(K)(θ ) |

= |
∞

∑
n=2

(an cosnθ +bn sinnθ ) |�
∞

∑
n=2

| (an cosnθ +bn sinnθ ) |�
∞

∑
n=2

√
a2

n +b2
n

(20)
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and

| HK(θ )−HS2(K)(θ ) |�
∞

∑
n=3

√
a2

n +b2
n. (21)

case i) When 0 � ε < 1, by (20) and Hölder’s inequality, we find

h1(K,S(K)) �
∞

∑
n=2

√
a2

n +b2
n

�
(

∞

∑
n=2

1
(n2−1)(n2−2(1+ ε))

) 1
2
(

∞

∑
n=2

(n2−1)(n2−2(1+ ε))(a2
n +b2

n)

) 1
2

,

hence,

h1(K,S(K))2 �
∞

∑
n=2

1
(n2−1)(n2−2(1+ ε))

∞

∑
n=2

(n2−1)(n2−2(1+ε))(a2
n +b2

n). (22)

Recall that if p is not an integer, by Fourier series calculation we have

π cot pπ =
1
p
−2p

∞

∑
n=1

1
n2− p2 .

Together with 0 � ε < 1 then we can calculate that

∞

∑
n=2

1
n2−2(1+ ε)

=
1

1+2ε
+

1
4(1+ ε)

−
√

2(1+ ε)π cot(
√

2(1+ ε)π)
4(1+ ε)

.

Moreover,

∞

∑
n=2

1(
n2−2(1+ ε)

)
(n2 −1)

=
1

1+2ε

∞

∑
n=2

( 1
n2−2(1+ ε)

− 1
n2−1

)

=
1

1+2ε

∞

∑
n=2

1
n2−2(1+ ε)

− 1
2(1+2ε)

∞

∑
n=2

( 1
n−1

− 1
n+1

)

=
1

(1+2ε)2 −
3

4(1+2ε)
+

1−√2(1+ ε)π cot(
√

2(1+ ε)π)
4(1+ ε)(1+2ε)

.

(23)

By (17), (22) and (23), we finally get

∫ 2π

0

1
κ2(θ )

dθ − p(K)2 −2πa(K)+ ε(p(K)2−4πa(K))
π

=π
∞

∑
n=2

(n2−1)(n2−2(1+ ε))(a2
n +b2

n)

� π
C(ε)

h1(K,S(K))2,
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where C(ε) = 1
(1+2ε)2 − 3

4(1+2ε) + 1−
√

2(1+ε)π cot(
√

2(1+ε)π)
4(1+ε)(1+2ε) . Furthermore, if K is a

circular disc, the first equality in (19) holds clearly.
case ii) When ε = 1, by (21) and Hölder’s inequality, we obtain

| HK(θ )−HS2(K)(θ ) |

�
∞

∑
n=3

√
a2

n +b2
n �

{
∞

∑
n=3

1
(n2−1)(n2−4)

} 1
2
{

∞

∑
n=3

(n2−1)(n2−4)(a2
n +b2

n)

} 1
2

,

thus

h1(K,S2(K))2 =
{

max
θ

| HK(θ )−HS2(K)(θ ) |
}2

�1
3

(
1
4

∞

∑
n=3

( 1
n−2

− 1
n+2

)− 1
2

∞

∑
n=3

( 1
n−1

− 1
n+1

)) ∞

∑
n=3

(n2−1)(n2−4)(a2
n +b2

n)

=
5

144

∞

∑
n=3

(n2−1)(n2−4)(a2
n +b2

n),

(24)
From (17) and (24) it follows that∫ 2π

0

1
κ2(θ )

dθ − 2p(K)2−6πa(K)
π

=π
∞

∑
n=3

(n2−1)(n2−4)(a2
n +b2

n)

�144π
5

h1(K,S2(K))2.

(25)

Clearly, by (25), the second equality in (19) holds if K is S2(K) . �

THEOREM 3. Under the same assumptions as in Theorem 2, we have that∫ 2π

0

1
κ2(θ )

dθ − p(K)2 −2πa(K)+ ε(p(K)2−4πa(K))
π

�
{

6(1− ε)h2(K,S(K))2, 0 � ε < 1;

40h2(K,S2(K))2, ε = 1.

(26)

Moreover, when

i) 0 � ε < 1 , the first equality in (26) holds if K is a circular disc;

ii) ε = 1 , the second equality in (26) holds if the Minkowski support function of K is
of the form in (3).

Proof. As in the proof of Theorem 2, we use (8), (13) and Parseval’s equality to
deduce that

h2(K,S(K))2 =
∫ 2π

0
| HK(θ )−HS(K)(θ ) |2 dθ = π

∞

∑
n=2

(a2
n +b2

n), (27)
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and

h2(K,S2(K))2 =
∫ 2π

0
| HK(θ )−HS2(K)(θ ) |2 dθ = π

∞

∑
n=3

(a2
n +b2

n). (28)

case i) when 0 � ε < 1, together with (27) and (17) we have

∫ 2π

0

1
κ2(θ )

dθ − p(K)2 −2πa(K)+ ε(p(K)2−4πa(K))
π

=π
∞

∑
n=2

(n2−1)
(
n2−2(1+ ε)

)
(a2

n +b2
n) � 6(1− ε)h2(K,S(K))2.

It is clear that the equality in (26) holds if K is a circular disc when 0 � ε < 1.
case ii) when ε = 1, together with (28) and (17) we get

∫ 2π

0

1
κ2(θ )

dθ − 2p(K)2−6πa(K)
π

=π
∞

∑
n=3

(n2−1)(n2−4)(a2
n +b2

n) � 40h2(K,S2(K))2.

It is clear that the second equality in (26) holds if the support function of K is of the
form in (3). We complete the proof of Theorem 3. �

REMARK 1. By the proof of Theorem 3, it is clear that the equality in Theorem 3
holds if and only if the support function of K is of the form

HK(θ ) = a0 +a1 cosθ +b1 sinθ +a2 cos2θ +b2 sin2θ , 0 � ε < 1;

or

HK(θ ) = a0 +a1 cosθ +b1 sinθ +a2 cos2θ +b2 sin2θ +a3 cos3θ +b3 sin3θ , ε = 1.

THEOREM 4. Let K be a convex domain enclosed by a C3 , closed and strictly
convex plane curve γ with area a(K) and perimeter p(K) . Then

p(K)2

2π
+

1
4

∫ 2π

0
(ρ ′(θ ))2dθ −

∫ 2π

0

1
κ2(θ )

dθ �
{

9π
10−π2 h1(K,S2(K))2,

80h2(K,S2(K))2.
(29)

and equalities holds if the Minkowski support function of K is of the form in (3).

Proof. As in the proof of Theorem 2, by (21) and Hölder’s inequality, we find

h1(K,S2(K))2 �
∞

∑
n=3

1

( n2

4 −1)(n2−1)2

∞

∑
n=3

(
n2

4
−1)(n2−1)2(a2

n +b2
n). (30)
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By a direct calculation, one gets

∞

∑
n=3

1

( n2

4 −1)(n2−1)2

=4
∞

∑
n=3

( 1
36(n−2)

− 1
36(n+2)

− 1
36(n+1)

+
1

36(n−1)
− 1

12(n+1)2 −
1

12(n−1)2

)

=
10−π2

9
,

(31)
From (16), (30) and (31) it follows that

p(K)2

2π
+

1
4

∫ 2π

0
(ρ ′(θ ))2dθ −

∫ 2π

0

1
κ2(θ )

dθ � 9π
10−π2h1(K,S2(K))2,

we complete the proof of the first inequality in Theorem 4.
From (16) and (27), one gets

p(K)2

2π
+

1
4

∫ 2π

0
(ρ ′(θ ))2dθ −

∫ 2π

0

1
κ2(θ )

dθ � 80h2(K,S2(K))2.

It is easy to see that equalities in (29) hold if an = bn = 0, n � 3, n ∈ Z
+ . We

complete the proof of Theorem 4. �

REMARK 2. By the proof of Theorem 4, it is easy to see that the second equality
in Theorem 4 holds if and only if the support function of K is of the form

HK(θ ) = a0 +a1 cosθ +b1 sinθ +a2 cos2θ +b2 sin2θ +a3 cos3θ +b3 sin3θ ,

where a2, b2,a3, b3 are small in comparison with a0 .

REMARK 3. Obviously, when ε = 1, Theorems 2 and 3 are stability estimates of
the inequality (2). Meanwhile, the above three stability theorems are looked as stronger
versions of inequalities in (4).

Acknowledgements. The author would like to thank the referee for his or her care-
ful reading of the manuscript of the paper. The author would also like to thank Professor
Shengliang Pan for many suggestions and Yunlong Yang for useful discussions.

RE F ER EN C ES

[1] V. I. DISKANT, Stability of the solution of the Minkowski equation, Siberian Math. J., 14 (1973),
466–469.

[2] B. FUGLEDE, Stability in the isoperimetric problem, Bull. London Math. Soc., 18 (1986), 599–605.
[3] M. GAGE, An isoperimetric inequality with applications to curve shortening, Duke. Math. J., 50, 4

(1983), 1225–1229.



INEQUALITIES WITH CURVATURE AND THEIR STABILITY ESTIMATES FOR CONVEX CURVES 443

[4] M. GAGE, Curve shortening makes convex curves circular, Invent. Math., 76, 2 (1984), 357–364.
[5] M. GAGE, On an area-preserving evolution equation for plane curves, Contemp. Math., 51 (1986),

51–62.
[6] M. GAGE AND R. HAMILTON, The heat equation shrinking convex plane curves, J. Diff. Geom., 23,

1 (1986), 69–96.
[7] X. GAO, A new reverse isoperimetric inequality and its stability, Math. Inequalities and Appl., 12, 3

(2012), 733–743.
[8] H. GROEMER, Stability theorems for convex domains of constant width, Canad. Math. Bull., 31 (1988),

328–337.
[9] H. GROEMER AND R. SCHNEIDER, Stability estimates for some geometric inequalities, Bull. London

Math. Soc., 23 (1991), 67–74.
[10] H. GROEMER, Stability theorems for projections of convex sets, Israel J. Math., 60, 2 (1987), 177–190.
[11] Q. GUO, Stability of the Minkowski measure of asymmetry for convex bodies, Discrete Comput.

Geom., 34 (2005), 351–362.
[12] Y. C. LIN AND D. H. TSAI, Application of Andrews and Green-Osher inequalities to nonlocal flow

of convex plane curve, J. Evol. Equ., 12 (2012), 833–854.
[13] S. L. PAN AND H. P. XU, Stability of a reverse isoperimetric inequality, J. Math. Anal. Appl., 350

(2009), 348–353.
[14] S. L. PAN AND J. N. YANG, On a non-local perimeter-preserving curve evolution problem for convex

plane curves, Manuscripta Math., 127 (2008), 469–484.
[15] R. SCHNEIDER, On Steiner points of convex bodies, Israel J. Math., 9 (1971), 241–249.
[16] R. SCHNEIDER, Stability in the Aleksandrov-Fenchel-Jesson theorem, Mathematika, 36 (1989), 50–

59.
[17] R. SCHNEIDER, A stability estimate for the Aleksandrov-Fenchel inequality, with an application to

mean curvature, Manuscripta Math., 69 (1990), 291–300.
[18] J. STEINER, Sur le maximum et le minimum des figures dans le plan, sur la sphère, et dans l’espace
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