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ON THE NORMS OF r-CIRCULANT MATRICES
WITH THE HYPERHARMONIC NUMBERS

MUSTAFA BAHSI

(Communicated by J. Pecari¢)

Abstract. In this paper, we study norms of circulant matrices H = Circ(H(()k)7 H (k), .., H (k)l) ,

1 1 in—
H= Circ(H,Eo)7 H,EI)P..,H,E'FU) and r— circulant matrices H, = Circr(H(()k),Hl(k),... ,H,Eﬁ)l),

I-?, = Circr(H, ,EO),HA(,I), ..., H ,5"71)) , where H,(,k) denotes the nth hyperharmonic number of order
.

1. Introduction

The circulant matrices and r— circulant matrices play important role in signal pro-
cessing, coding theory, image processing, linear forecast and so on. An n X n matrix
C, is called an r— circulant matrix if it is of the form

o ¢ €2 - Cp-2 Cp—1

ch—1 €0 €1 " Cp-3 Cp-2

Cr — rcp—2 rcy—1 € ... Cp—4 Cp-3
rcy rcp rczy -+ rcp—1 Co

The matrix C, is determined by its first row elements and r, thus we denote C, =
Circr (cq,c1,---,¢n—1). When we take r = 1, the matrix C; = C is called a circulant
matrix. We denote C; = C =Circ(co,c1,...,c,—1). Circulant matrices are especially
tractable class of matrices since their inverses, conjugate transposes, sums and products
are also circulant. Moreover, circulant matrices are normal matrices [9]. Also, by
means of [9,13], itis well known that the eigenvalues of C are

n

—1
dn = e (1)
0

0<m<n—1 k=
2mi . . .
where w = e » and i = +/—1, and the corresponding eigenvectors are
m . 2m (n—1)m T
Xm :<1,w W ) . @)
o<m<n—1

Mathematics subject classification (2010): 15A60, 15B05, 11B99.
Keywords and phrases: Circulant matrix, r-circulant matrix, hyper- harmonic, Euclidean norm, spec-
tral norm.

© depay, Zagreb 445

Paper IMI-10-35


http://dx.doi.org/10.7153/jmi-10-35

446 MUSTAFA BAHSI

Recently, there have been many papers on the inverse, determinants and norms of
special matrices with special elements such as Fibonacci and Lucas numbers [2,4,14-
19,22-24]. Shen and Cen [16] have given upper and lower bounds for the spectral norms
of r-circulant matrices in the forms A = C, (Fy, Fy,...,F,—1) and B=C, (Lo,Ly,....,L,—1).
Yazlik and Taskara [22,23] have obtained upper and lower bounds for the spectral norm
of circulant and r— circulant matrix with the generalized k— Horadam numbers. Bahsi
and Solak [4] have computed the spectral norms of circulant and r— circulant matri-

ces with the hyper-Fibonacci and hyper-Lucas numbers in the forms F, = Circr(FO(k>,

FO . F®) and L, = Cirer(t®. LV, LW

A L seees n_l). As for us, in this paper, we com-
pute the spectral norms of circulant and r— circulant matrices with the hyperharmonic
numbers.

The main contents of this paper are organized as follows: In Section 2, we give
some preliminaries, definitions and lemmas related to our study. In Section 3, we derive

some bounds for the spectral norms of r— circulant matrices with the hyperharmonic

numbers of the forms H, = Circr(H(()k) ,Hl(k), ... ,H,Ek_)l), I-?, = Circr(H,EO)7H,£1), ... ,H,E"_l))

and their Hadamard and Kronecker products. For this, we firstly compute the spectral

and Euclidean norms of circulant matrices of the forms H = Circ(H(gk)7 H l(k), . ,H,Eli)l)
and H = Circ(H,EO)7 H,El)7 ... ,H,E"_l)). Moreover, we give some examples related to

special cases of our results.

2. Preliminaries

The harmonic numbers are important in a wide range of diverse fields such as
analysis of algorithms in computer science, number theory and combinatorial prob-
lems. Also, they are closely related to the some special functions such as Riemann zeta
function [6]. The harmonic numbers are defined by

|
Hy=0 and Hn:EEfornzl,Z,.... (3)
k=1

A generating function for the harmonic numbers is w The first few har-
3 1125 137

monic numbers are 0,1,5, %, 35, 75 ;- --- The harmonic numbers have many interest-
ing properties [6,7,20,21]. For n > 1, two of them are:

n—1 n n
n 1
3. =it~ and %<k)Hk:zn<Hn_I;ﬁ>. @

The harmonic numbers have been generalized in many ways [1,5 —8,10,21]. One of
them is the hyperharmonic number. The nth hyperharmonic number of order r, H,,(r),

defined as [8]: for n,r > 1

A =Y HY with £ = Land B =B =0, )
=1 n
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n
From the definition of H,,(r), we have H(r) =1, and H,El) Y % = H,, where H,, is nth
k=1
ordinary harmonic number. The hyperharmonic numbers have the recurrence relation:
mY =8+ 1",

Also, Conway and Guy [8] gave an equality as follows:

, +r—1
Hrg ) = (n " ) (HnJrrfl _Hr71)7 (6)

r—1

Benjamin and et all. [5] gave

EH H)) =g ™

and Bahsi and Solak [3] have studied on matrices with the hyperharmonic numbers.
Now we give some definitions and lemmas related to our study.

DEFINITION 1. Let A = (g;j) be any m x n matrix. The Euclidean norm of A is

(£8 7).

i=1j

1]l =

DEFINITION 2. Let A = (a;j) be any m x n matrix. The spectral norm of A is
1]l = | /maxd; (A7A),
1

where 2; (AfA) are eigenvalues of A”A and A" is conjugate transpose of A.

There are two well known relations between Euclidean norm and spectral norm as
the following:

f 1Al < [lAll; < llAllg (®)

1]l < Al < vVa Al ©)

DEFINITION 3. Let A = (a;;) and B = (b;;) be m x n matrices. Then their Hada-
mard product A o B is defined
AoB= [a,'jb,'j} .

DEFINITION 4. Let A = (a;;) and B= (b;;) be m xn and p x r matrices, respec-
tively. Then their Kronecker product A ® B is defined

ARB= [a,-jB} .
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LEMMA 1. [12] Let A and B be two m x n matrices. Then we have

[AeBll, < [[All2 B,

LEMMA 2. [12] Let A and B be two m x n matrices. Then we have

|AcBll, <ri(A)ci(B)

where r| (A) = jnax / 2 |a,,| and c¢1(B) = 1@??;1’ / 2 |b,,|

LEMMA 3. [12] Let A and B be two m x n matrices. Then we have

lA@Bll, = [|All, |Bll,-

LEMMA 4. [11] Let A be an n x n matrix with eigenvalues A, Aa, ..., A,. Then,
A is a normal matrix if and only if the eigenvalues of APA are ||| A%, .., | Al

3. Main results

HO, g®

THEOREM 1. The spectral norm of the matrix H = Circ(H, ", H®

oo Hy L) s

k+1
IH||, =BV,

n—

Proof. Since the circulant matrix H is normal, its spectral norm is equal to its
spectral radius. Furthermore, by considering H is irreducible and its entries are non-
negative, we have that the spectral radius (or spectral norm) of the matrix H is equal to
its Perron root. We select an n-dimensional column vector v = (1,1,..., l)T, then

n—1 "
Hv = ZHS() V.
s=0

Obviously, Z H )is an eigenvalue of H associated with v and it is the Perron root of

H. Hence, from (5) we have
IH|, = ZH =gV 0

EXAMPLE 1. From Theorem 1, we have

o He, if k=0,
Hz_{nH,,—n, if k=1.
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n—

COROLLARY 1. Forthe Euclidean norm of the matrix H = Circ(H, (gk), Hl(k), e ,H(
we have 41) 41)
+
Hn HHHE \/_Hn :
Proof. This follows from Theorem 1 and the relation (9). U
COROLLARY 2. The sum of squares of hyperharmonic numbers holds
L (k1) SN kD)
—HEV <\ 3 (H0) <Y, (10)
NG 1 .Z(’) 1

Proof. The proof is trivial from the definition of Euclidean norm and Corollary
1. O

THEOREM 2. The spectral norm of the matrix H= Circ(H,EO)7 H,El), . ,H,En_l))
is
n 1)

H +k(k—|—l) for k> 0.

I,
Proof. This theorem can be proved by using a similar method to method of the

proof of Theorem 1. But, we will use another method. Since H is a circulant matrix,
from (1) its eigenvalues are of the form

2 H 72mma

From (7)

, 1
Ao = }51{ H" Y+ . (11)

Also, we have

o] ,f) (12)

1<m<n—1

2 H 2mms

§=

’ 2mms

<3 |-

n—1
<3 |
s=0
By using Lemma 4 and the fact that the matrix H is a normal matrix, we have

| A | = max(?to max |/lm>. (13)

H H2 O<m<n 1 1<m<n—

From (11), (12) and (13), we have

1
ﬂ‘—H"” .
“ k1 +kw+n

Thus the proof is completed. [
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EXAMPLE 2. By using Theorem 2, we have

H}:IH_ n, if k=1,
2 ly, k=2

COROLLARY 3. The Euclidean norm of the matrix H= Circ(H,EO) , H,El) N ,H,E"il))
holds

g <, <+
H <||H| < H .
ket +k(k+1) E ViHey +k(k+1))
Proof. This follows from Theorem 2 and the relation (9). U
COROLLARY 4. The sum of squares ofH,ES) holds
Lo 1L ”‘1( O\ < go-n, |
—(H < H < (H . 14
A ) S X N) <@ ) a9

Proof. This follows from the definition of Euclidean norm and Corollary 3. [

COROLLARY 5. The spectral norm of the Hadamard product of H = Circ(H(gm),

™, . H™) and H=Circ(H”, H" ... H" ") holds
o (m+1) gy (n—1) 1

Ho H|| <H H, .

o m, < m e L

Proof. The proof is trivial since HHo ?—IH2 < |H|, H ?—IH2 O

COROLLARY 6. The spectral norm of the Kronecker product of H = Circ(H(gm),

H™ . H™) and H=Circ(H"”, H" ... H" ") holds
- (m+1) 77 (n—1) 1

Ho H| =" V(H :

e ul, = L

Proof. The proof is trivial since HH@ }:qu =||H|l, H }:qu O

THEOREM 3. Let H, = Circr(H(gk),Hl(k), . ,H,Eli)l) be an r— circulant matrix.

i) If |[r] > 1, then

2
1 1
D <, < 1l (1Y)

i
NG
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i) If |r| <1, then

7| k1) —— (k1)
ﬁHrE—l <|Hl, < ”_1H;5—1 :

Proof. Since the matrix H, is of the form

Y Y,
Y A

Hy = : : P :
i 1Y rEd g H
e A {2

and from the definition of Euclidean norm, we have

||HrE—\/2 n—s) k)+2sr\( 9)’.

i) Since |r| > 1, by (10) we have

> ) (1) S () = oS ()

Hence, from (8)

\\/

I (k1)
||HV||2 = %anl .

Now, let we consider the matrices B and C be as

PHY 11 1
rH”eré) T T |
er(k) rH3(k) rHik) rHék) 1
rHl(k) rH2(k) rH3(k) rHr(l]i)1 rHék)
and
0 B ),
k k
1 HY Y HY, 5
c= | o
111 - Y Y

Thatis, H, = Bo C. Then we compute

= sy [l =[Sl oS ()

H k+1).

451
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and

= max
l<J<n

Hence, from (10) and Lemma

MUSTAFA BAHSI

Skl =\ -3 (1)

2, we have

2
k+1
1l < (Byer (B) < Irf (V)
Thus,
1 2
SR <Ml < (m5)

ii) Since |r| < 1, by (10) we have

Hh—¢2n—s k)+2sﬂ( )

5l (1) Sl (1

= |r| nZ( ) r|Hk+1).
From (8)
7l ket
H.|,>—H "’ .
|| ||2 \/ﬁ n—1
Now, let we consider the matrices D and E be as
HY 1 11 1
k
P HM 11
D= ' L
r ror- Hék) 1
r ror r Hék)
and (k) (k) 7(k) (k) g7(k)
HO Hl H2 e Hn72 anl
bl
E=| i & o
Hz(k) H3(k) H‘Ek) Hék) Hl(k)
il ),

Thatis, H, = Do E. Then we compute

= max
l<z<n
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and
n ’ n—1 ")
(D) = m\/ sl = %, (1)

Hence, from (10) and Lemma 2, we have
|, < ri (D)er (D) < V= THY.

Thus,

| k1 k+1
el <y < v,

Thus, the proof is completed. [

EXAMPLE 3. By using Theorem 3, if |r| > 1, we have
1
NG

Vi (Hy = 1) < |[Hylly <n? |r| (Hy = 1)%, if k=1

H,_1 < ||Hll, < |r|Hy_, if k=0,

and if |r| <1, we have

|L|Hn71 < ||HrH2 <vn—1H, 4, lf k=0,
Jn v

Valr|(Hy—=1) < |H |, <nvn—1(H,— 1), if k=1.

THEOREM 4. Let I;, = Circr(H,EO),HIEI), . ,H,E"il)) be an r— circulant matrix
and k > 0.
i) If |[r] > 1, then

r

|| < (500! 2
, ST\ e ety ) -

L H("71)+ 1 < )
NZANEEN (T A
i) If |r| <1, then

(1) 1 "
— — <
NG i +k(k+1) \HH’ 2

Proof. Since the matrix H, is of the form

n—1 1
<V (HnY )

v® HY B ..

rH D 5 HY 5"

)

<

Y 1D . 5" HY
1 1D S Y
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and from the definition of Euclidean norm, we have

— \/HE(; (n—s) (H,ES)>2+HZ(;S|F|2 (H,ES)>2.

i) Since |r| > 1, by (14) we obtain

o o () S0 < ) 2y

s=0

From (8)

—~

|7

1 (n—1) 1
>—|H — .
2 \/ﬁ< ket +k(k+1))
Now, let we consider the matrices B and C be as

R T R T
PHYD 11 1
B= :
rHY i rHY 11
rHY 5 rH Y
and
-HIEO) H]El) H}gz) - H]En 2) H]En 1)
1 H]EO) H]El) - H]En 3) H]En—2)
co L .
o1 Y HY
111 1 HY

That is, I:I\, = BoC. Then we have

n—1 s 2
=[S0 =[5 o = 1S ()
<] Z(H,E“))

s=0

and

n ) n—1 s)
- lrgjai(n\/z’ |Cl]’ - Z{ ‘Cin‘ = \/% (Hk

Hence, from (14) and Lemma 2, we have

|7

2
n—1) 1
< n@®e®) < (B35 + )
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Thus,

2
r| n 1) + 1
U k(k+ 1))

1 (n—1) 1 ~

— | H —— | < ||H,

ﬁ( 4l +k(k+1>) ’
ii) Since |r| < 1, by (14) we have

— \/ni‘l (n—s) (Hés)>2+r§{15|r|2 (H,E”)z
\/Z (n—s r| >2+gs|r|2<H,§S)>2
=it Z<H’£S> ||< e k(ki—l))'

s=0

From (8)

> I (g !
Jyn \UHL k(1) )

Now, let the matrices D and E be as

111---11
rll---11
D: . . . .
rrr---11
rrr---rl
and
HIEO) H(l) H(z) H]En—Z) H]E"_l)

That is, I-?, = Do FE. Then we compute

(D)= s |3 oo =
—gg¢ZMA—¢z

Hence, from (14) and Lemma 2, we have

and

—~

n—1 1
rll, s P)a®d) < \/E<H’E“ )+k(k+ 1)) '

455
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[l (1) ! ~ (n-1) 1
i et T e [, < v (A MCET)

This completes the proof. [l

EXAMPLE 4. By using Theorem 4, if |r| > 1, we have

\/Zguﬁr zg‘r|n2v ifk=1,
ny/n -~ |

W e <20 i k=2
2 ’ s 7

and if |r] <1, we have
v < |||, <nva i k=1,
ny/n|r HA nn
S| Hr||. € —5— k=2.

2 2 2 v

COROLLARY 7. The spectral norm of the Hadamard product of H, = Circr(H(gm),
H™ .. H™) and H, = Cirer(H" H" ... .H" ™) holds

i) If |r| =1, then

e

2
2 (o m+D\2 [ (n—1) 1
, S (H'H ) (Hk+1 +k(k+1)) '
i) If |r| <1, then

s

(n—1) 1 (m+1)
< — I
, S n(n 1)<Hk_~_1 +k(k 1)>Hn1 .

Proof. The proof is trivial since HH, o I-?r U

<, |

)
COROLLARY 8. The spectral norm of the Kronecker product of H, = Circr(H(gk),
2. HY)) and H, = Cirer(H5” B ..., H"V) holds

i) If |r| > 1, then

L( 1) 1 (m+1) -
Z(HW o | < || e,

2 B 1 2
< 12 (m+1) (n—1)
k(k—l— 1) n— 2 =X ‘r| (anl ) Hk+1 + k(k—l— 1) :




I (e 1 (m+1) ~
2 (o g <
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i) If |r| <1, then

n—

k(k+1) 2

<Vn(n—1) (H,EL” + %) H"Y.

Proof. The proofis trivial since HH, ® H, U

= ], |,

5
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