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ON THE NORMS OF r-CIRCULANT MATRICES
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Abstract. In this paper, we study norms of circulant matrices H = Circ(H(k)
0 , H(k)

1 , . . . ,H(k)
n−1) ,

�
H = Circ(H(0)

k , H(1)
k , . . . ,H(n−1)

k ) and r−circulant matrices Hr = Circr(H(k)
0 ,H(k)

1 , . . . ,H(k)
n−1) ,

�
Hr = Circr(H(0)

k ,H(1)
k , . . . ,H(n−1)

k ) , where H(k)
n denotes the n th hyperharmonic number of order

r.

1. Introduction

The circulant matrices and r−circulant matrices play important role in signal pro-
cessing, coding theory, image processing, linear forecast and so on. An n× n matrix
Cr is called an r−circulant matrix if it is of the form

Cr =

⎡
⎢⎢⎢⎢⎢⎣

c0 c1 c2 · · · cn−2 cn−1

rcn−1

rcn−2

c0

rcn−1

c1

c0

· · ·
. . .

cn−3

cn−4

cn−2

cn−3
...

...
...

...
...

rc1 rc2 rc3 · · · rcn−1 c0

⎤
⎥⎥⎥⎥⎥⎦ .

The matrix Cr is determined by its first row elements and r , thus we denote Cr =
Circr(c0,c1, . . . ,cn−1) . When we take r = 1, the matrix C1 = C is called a circulant
matrix. We denote C1 = C =Circ(c0,c1, . . . ,cn−1) . Circulant matrices are especially
tractable class of matrices since their inverses, conjugate transposes, sums and products
are also circulant. Moreover, circulant matrices are normal matrices [9] . Also, by
means of [9,13] , it is well known that the eigenvalues of C are

λm
0�m�n−1

=
n−1

∑
k=0

ckw
−mk (1)

where w = e
2πi
n and i =

√−1, and the corresponding eigenvectors are

xm
0�m�n−1

=
(
1,wm,w2m, ...,w(n−1)m

)T
. (2)
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Recently, there have been many papers on the inverse, determinants and norms of
special matrices with special elements such as Fibonacci and Lucas numbers [2,4,14-
19,22-24]. Shen and Cen [16] have given upper and lower bounds for the spectral norms
of r -circulant matrices in the forms A =Cr (F0,F1, ...,Fn−1) and B =Cr (L0,L1, ...,Ln−1) .
Yazlik and Taskara [22,23] have obtained upper and lower bounds for the spectral norm
of circulant and r−circulant matrix with the generalized k−Horadam numbers. Bahşi
and Solak [4] have computed the spectral norms of circulant and r−circulant matri-

ces with the hyper-Fibonacci and hyper-Lucas numbers in the forms Fr = Circr(F (k)
0 ,

F(k)
1 , . . . ,F(k)

n−1) and Lr = Circr(L(k)
0 . L(k)

1 , . . . ,L(k)
n−1) . As for us, in this paper, we com-

pute the spectral norms of circulant and r−circulant matrices with the hyperharmonic
numbers.

The main contents of this paper are organized as follows: In Section 2, we give
some preliminaries, definitions and lemmas related to our study. In Section 3, we derive
some bounds for the spectral norms of r−circulant matrices with the hyperharmonic

numbers of the forms Hr = Circr(H(k)
0 ,H(k)

1 , . . . ,H(k)
n−1) ,

�
Hr = Circr(H(0)

k ,H(1)
k , . . . ,H(n−1)

k )
and their Hadamard and Kronecker products. For this, we firstly compute the spectral

and Euclidean norms of circulant matrices of the forms H = Circ(H(k)
0 , H(k)

1 , . . . ,H(k)
n−1)

and
�
H = Circ(H(0)

k , H(1)
k , . . . ,H(n−1)

k ). Moreover, we give some examples related to
special cases of our results.

2. Preliminaries

The harmonic numbers are important in a wide range of diverse fields such as
analysis of algorithms in computer science, number theory and combinatorial prob-
lems. Also, they are closely related to the some special functions such as Riemann zeta
function [6]. The harmonic numbers are defined by

H0 = 0 and Hn =
n

∑
k=1

1
k

for n = 1,2, . . . . (3)

A generating function for the harmonic numbers is − ln(1−x)
1−x . The first few har-

monic numbers are 0,1, 3
2 , 11

6 , 25
12 , 137

12 , . . . . The harmonic numbers have many interest-
ing properties [6,7,20,21] . For n � 1, two of them are:

n−1

∑
k=1

Hk = nHn−n and
n

∑
k=0

(
n
k

)
Hk = 2n

(
Hn −

n

∑
k=1

1
k2k

)
. (4)

The harmonic numbers have been generalized in many ways [1,5− 8,10,21] . One of

them is the hyperharmonic number. The n th hyperharmonic number of order r, H(r)
n ,

defined as [8] : for n,r � 1

H(r)
n =

n

∑
k=1

H(r−1)
k with H(0)

n =
1
n

and H(n)
0 = H(0)

0 = 0. (5)
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From the definition of H(r)
n , we have H(r)

1 = 1, and H(1)
n =

n
∑

k=1

1
k = Hn where Hn is n th

ordinary harmonic number. The hyperharmonic numbers have the recurrence relation:

H(r)
n = H(r−1)

n +H(r)
n−1.

Also, Conway and Guy [8] gave an equality as follows:

H(r)
n =

(
n+ r−1

r−1

)
(Hn+r−1−Hr−1) , (6)

Benjamin and et all. [5] gave

H(r)
n =

n

∑
s=1

(
n+ r− s−1

r−1

)
1
s
,

r

∑
s=1

H(s)
n = H(r)

n+1−
1

n+1
(7)

and Bahşi and Solak [3] have studied on matrices with the hyperharmonic numbers.
Now we give some definitions and lemmas related to our study.

DEFINITION 1. Let A = (ai j) be any m×n matrix. The Euclidean norm of A is

‖A‖E =

√√√√( m

∑
i=1

n

∑
j=1

∣∣ai j
∣∣2).

DEFINITION 2. Let A = (ai j) be any m×n matrix. The spectral norm of A is

‖A‖2 =
√

max
i

λi (AHA),

where λi
(
AHA

)
are eigenvalues of AHA and AH is conjugate transpose of A .

There are two well known relations between Euclidean norm and spectral norm as
the following:

1√
n
‖A‖E � ‖A‖2 � ‖A‖E (8)

‖A‖2 � ‖A‖E �
√

n‖A‖2 . (9)

DEFINITION 3. Let A = (ai j) and B = (bi j) be m×n matrices. Then their Hada-
mard product A◦B is defined

A◦B = [ai jbi j] .

DEFINITION 4. Let A = (ai j) and B = (bi j) be m×n and p×r matrices, respec-
tively. Then their Kronecker product A⊗B is defined

A⊗B = [ai jB] .
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LEMMA 1. [12] Let A and B be two m×n matrices. Then we have

‖A◦B‖2 � ‖A‖2 ‖B‖2 .

LEMMA 2. [12] Let A and B be two m×n matrices. Then we have

‖A◦B‖2 � r1 (A)c1 (B)

where r1 (A) = max
1�i�m

√
n
∑
j=1

∣∣ai j
∣∣2 and c1 (B) = max

1� j�n

√
m
∑
i=1

∣∣bi j
∣∣2.

LEMMA 3. [12] Let A and B be two m×n matrices. Then we have

‖A⊗B‖2 = ‖A‖2 ‖B‖2 .

LEMMA 4. [11] Let A be an n×n matrix with eigenvalues λ1,λ2, . . . ,λn . Then,
A is a normal matrix if and only if the eigenvalues of AHA are |λ1|2 , |λ2|2 , . . . , |λn|2 .

3. Main results

THEOREM 1. The spectral norm of the matrix H = Circ(H(k)
0 , H(k)

1 , . . . ,H(k)
n−1) is

‖H‖2 = H(k+1)
n−1 .

Proof. Since the circulant matrix H is normal, its spectral norm is equal to its
spectral radius. Furthermore, by considering H is irreducible and its entries are non-
negative, we have that the spectral radius (or spectral norm) of the matrix H is equal to
its Perron root. We select an n -dimensional column vector v = (1,1, . . . ,1)T , then

Hv =

(
n−1

∑
s=0

H(k)
s

)
v.

Obviously,
n−1
∑

s=0
H(k)

s is an eigenvalue of H associated with v and it is the Perron root of

H. Hence, from (5) we have

‖H‖2 =
n−1

∑
s=0

H(k)
s = H(k+1)

n−1 . �

EXAMPLE 1. From Theorem 1, we have

‖H‖2 =
{

Hn−1, if k = 0,
nHn−n, if k = 1.
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COROLLARY 1. For the Euclidean norm of the matrix H = Circ(H(k)
0 , H(k)

1 , . . . ,H(k)
n−1),

we have
H(k+1)

n−1 � ‖H‖E �
√

nH(k+1)
n−1 .

Proof. This follows from Theorem 1 and the relation (9). �

COROLLARY 2. The sum of squares of hyperharmonic numbers holds

1√
n

H(k+1)
n−1 �

√
n−1

∑
s=0

(
H(k)

s

)2
� H(k+1)

n−1 . (10)

Proof. The proof is trivial from the definition of Euclidean norm and Corollary
1. �

THEOREM 2. The spectral norm of the matrix
�
H = Circ(H(0)

k , H(1)
k , . . . ,H(n−1)

k )
is ∥∥∥�

H
∥∥∥

2
= H(n−1)

k+1 +
1

k(k+1)
for k > 0.

Proof. This theorem can be proved by using a similar method to method of the

proof of Theorem 1. But, we will use another method. Since
�
H is a circulant matrix,

from (1) its eigenvalues are of the form

λm
0�m�n−1

=
n−1

∑
s=0

H(s)
k e

−2πims
n .

From (7)

λ0 =
n−1

∑
s=0

H(s)
k = H(n−1)

k+1 +
1

k(k+1)
. (11)

Also, we have

|λm|
1�m�n−1

=

∣∣∣∣∣
n−1

∑
s=0

H(s)
k e

−2πims
n

∣∣∣∣∣�
n−1

∑
s=0

∣∣∣H(s)
k

∣∣∣ ∣∣∣e−2πims
n

∣∣∣� n−1

∑
s=0

∣∣∣H(s)
k

∣∣∣= n−1

∑
s=0

H(s)
k . (12)

By using Lemma 4 and the fact that the matrix
�
H is a normal matrix, we have

∥∥∥�
H
∥∥∥

2
= max

0�m�n−1
|λm| = max

(
|λ0| , max

1�m�n−1
|λm|

)
. (13)

From (11), (12) and (13), we have∥∥∥�
H
∥∥∥

2
= H(n−1)

k+1 +
1

k(k+1)
.

Thus the proof is completed. �
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EXAMPLE 2. By using Theorem 2, we have

∥∥∥�
H
∥∥∥

2
=
{

n, if k = 1,
n2

2 , if k = 2.

COROLLARY 3. The Euclidean norm of the matrix
�
H = Circ(H(0)

k , H(1)
k , . . . ,H(n−1)

k )
holds

H(n−1)
k+1 +

1
k(k+1)

�
∥∥∥�
H
∥∥∥

E
�
√

n(H(n−1)
k+1 +

1
k(k+1)

).

Proof. This follows from Theorem 2 and the relation (9). �

COROLLARY 4. The sum of squares of H(s)
k holds

1√
n
(H(n−1)

k+1 +
1

k(k+1)
) �

√
n−1

∑
s=0

(
H(s)

k

)2
� (H(n−1)

k+1 +
1

k(k+1)
). (14)

Proof. This follows from the definition of Euclidean norm and Corollary 3. �

COROLLARY 5. The spectral norm of the Hadamard product of H = Circ(H(m)
0 ,

H(m)
1 , . . . ,H(m)

n−1) and
�
H = Circ(H(0)

k , H(1)
k , . . . ,H(n−1)

k ) holds

∥∥∥H ◦ �
H
∥∥∥

2
� H(m+1)

n−1 (H(n−1)
k+1 +

1
k(k+1)

).

Proof. The proof is trivial since
∥∥∥H ◦ �

H
∥∥∥

2
� ‖H‖2

∥∥∥�
H
∥∥∥

2
. �

COROLLARY 6. The spectral norm of the Kronecker product of H = Circ(H(m)
0 ,

H(m)
1 , . . . ,H(m)

n−1) and
�
H = Circ(H(0)

k , H(1)
k , . . . ,H(n−1)

k ) holds

∥∥∥H⊗ �
H
∥∥∥

2
= H(m+1)

n−1 (H(n−1)
k+1 +

1
k(k+1)

).

Proof. The proof is trivial since
∥∥∥H⊗ �

H
∥∥∥

2
= ‖H‖2

∥∥∥�
H
∥∥∥

2
. �

THEOREM 3. Let Hr = Circr(H(k)
0 ,H(k)

1 , . . . ,H(k)
n−1) be an r−circulant matrix.

i) If |r| � 1 , then

1√
n
H(k+1)

n−1 � ‖Hr‖2 � |r|
(
H(k+1)

n−1

)2
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ii) If |r| < 1 , then

|r|√
n
H(k+1)

n−1 � ‖Hr‖2 �
√

n−1H(k+1)
n−1 .

Proof. Since the matrix Hr is of the form

Hr =

⎡
⎢⎢⎢⎢⎢⎢⎣

H(k)
0 H(k)

1 H(k)
2 · · · H(k)

n−2 H(k)
n−1

rH(k)
n−1 H(k)

0 H(k)
1 · · · H(k)

n−3 H(k)
n−2

...
...

...
. . .

...
...

rH(k)
2 rH(k)

3 rH(k)
4 · · · H(k)

0 H(k)
1

rH(k)
1 rH(k)

2 rH(k)
3 · · · rH(k)

n−1 H(k)
0

⎤
⎥⎥⎥⎥⎥⎥⎦

and from the definition of Euclidean norm, we have

‖Hr‖E =

√
n−1

∑
s=0

(n− s)
(
H(k)

s

)2
+

n−1

∑
s=0

s |r|2
(
H(k)

s

)2
.

i) Since |r| � 1, by (10) we have

‖Hr‖E �
√

n−1

∑
s=0

(n− s)
(
H(k)

s

)2
+

n−1

∑
s=0

s
(
H(k)

s

)2
=

√
n

n−1

∑
s=0

(
H(k)

s

)2
� H(k+1)

n−1 .

Hence, from (8)

‖Hr‖2 � 1√
n
H(k+1)

n−1 .

Now, let we consider the matrices B and C be as

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

rH(k)
0 1 1 · · · 1 1

rH(k)
n−1 rH(k)

0 1 · · · 1 1
...

...
...

. . .
...

...

rH(k)
2 rH(k)

3 rH(k)
4 · · · rH(k)

0 1

rH(k)
1 rH(k)

2 rH(k)
3 · · · rH(k)

n−1 rH(k)
0

⎤
⎥⎥⎥⎥⎥⎥⎦

and

C =

⎡
⎢⎢⎢⎢⎢⎢⎣

H(k)
0 H(k)

1 H(k)
2 · · · H(k)

n−2 H(k)
n−1

1 H(k)
0 H(k)

1 . . . H(k)
n−3 H(k)

n−2
...

...
...

. . .
...

...

1 1 1 · · · H(k)
0 H(k)

1

1 1 1 · · · 1 H(k)
0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

That is, Hr = B◦C. Then we compute

r1 (B) = max
1�i�n

√
n

∑
j=1

∣∣bi j
∣∣2 =

√
n

∑
j=1

∣∣bn j
∣∣2 =

√
|r|2

n−1

∑
s=0

(
H(k)

s

)2
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and

c1 (B) = max
1� j�n

√
n

∑
i=1

∣∣ci j
∣∣2 =

√
n

∑
i=1

|cin|2 =

√
n−1

∑
s=0

(
H(k)

s

)2
.

Hence, from (10) and Lemma 2, we have

‖Hr‖2 � r1 (B)c1 (B) � |r|
(
H(k+1)

n−1

)2
.

Thus,
1√
n
H(k+1)

n−1 � ‖Hr‖2 � |r|
(
H(k+1)

n−1

)2
.

ii) Since |r| < 1, by (10) we have

‖Hr‖E =

√
n−1

∑
s=0

(n− s)
(
H(k)

s

)2
+

n−1

∑
s=0

s |r|2
(
H(k)

s

)2

�
√

n−1

∑
s=0

(n− s) |r|2
(
H(k)

s

)2
+

n−1

∑
s=0

s |r|2
(
H(k)

s

)2

= |r|
√

n
n−1

∑
s=0

(
H(k)

s

)2
� |r|H(k+1)

n−1 .

From (8)

‖Hr‖2 � |r|√
n
H(k+1)

n−1 .

Now, let we consider the matrices D and E be as

D =

⎡
⎢⎢⎢⎢⎢⎢⎣

H(k)
0 1 1 · · · 1 1

r H(k)
0 1 · · · 1 1

...
...

...
. . .

...
...

r r r · · · H(k)
0 1

r r r · · · r H(k)
0

⎤
⎥⎥⎥⎥⎥⎥⎦

and

E =

⎡
⎢⎢⎢⎢⎢⎢⎣

H(k)
0 H(k)

1 H(k)
2 · · · H(k)

n−2 H(k)
n−1

H(k)
n−1 H(k)

0 H(k)
1 · · · H(k)

n−3 H(k)
n−2

...
...

...
. . .

...
...

H(k)
2 H(k)

3 H(k)
4 · · · H(k)

0 H(k)
1

H(k)
1 H(k)

2 H(k)
3 · · · H(k)

n−1 H(k)
0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

That is, Hr = D◦E. Then we compute

r1 (D) = max
1�i�n

√
n

∑
j=1

∣∣di j
∣∣2 =

√
H(k)

0 +n−1 =
√

n−1
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and

c1 (D) = max
1� j�n

√
n

∑
i=1

∣∣di j
∣∣2 =

√
n−1

∑
s=0

(
H(k)

s

)2
.

Hence, from (10) and Lemma 2, we have

‖Hr‖2 � r1 (D)c1 (D) �
√

n−1H(k+1)
n−1 .

Thus,
|r|√
n
H(k+1)

n−1 � ‖Hr‖2 �
√

n−1H(k+1)
n−1 .

Thus, the proof is completed. �

EXAMPLE 3. By using Theorem 3, if |r| � 1, we have

1√
n
Hn−1 � ‖Hr‖2 � |r|H2

n−1, if k = 0,

√
n(Hn−1) � ‖Hr‖2 � n2 |r|(Hn −1)2 , if k = 1

and if |r| < 1 , we have

|r|√
n
Hn−1 � ‖Hr‖2 �

√
n−1Hn−1, if k = 0,

√
n |r| (Hn−1) � ‖Hr‖2 � n

√
n−1(Hn−1) , if k = 1.

THEOREM 4. Let
�
Hr = Circr(H(0)

k ,H(1)
k , . . . ,H(n−1)

k ) be an r−circulant matrix
and k > 0 .

i) If |r| � 1 , then

1√
n

(
H(n−1)

k+1 +
1

k(k+1)

)
�
∥∥∥�
Hr

∥∥∥
2
� |r|

(
H(n−1)

k+1 +
1

k(k+1)

)2

.

ii) If |r| < 1 , then

|r|√
n

(
H(n−1)

k+1 +
1

k(k+1)

)
�
∥∥∥�
Hr

∥∥∥
2
�
√

n

(
H(n−1)

k+1 +
1

k(k+1)

)
.

Proof. Since the matrix
�
Hr is of the form

�
Hr =

⎡
⎢⎢⎢⎢⎢⎢⎣

H(0)
k H(1)

k H(2)
k · · · H(n−2)

k H(n−1)
k

rH(n−1)
k H(0)

k H(1)
k · · · H(n−3)

k H(n−2)
k

...
...

...
. . .

...
...

rH(2)
k rH(3)

k rH(4)
k · · · H(0)

k H(1)
k

rH(1)
k rH(2)

k rH(3)
k · · · rH(n−1)

k H(0)
k

⎤
⎥⎥⎥⎥⎥⎥⎦
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and from the definition of Euclidean norm, we have

∥∥∥�
Hr

∥∥∥
E

=

√
n−1

∑
s=0

(n− s)
(
H(s)

k

)2
+

n−1

∑
s=0

s |r|2
(
H(s)

k

)2
.

i) Since |r| � 1, by (14) we obtain

∥∥∥�
Hr

∥∥∥
E

�
√

n−1

∑
s=0

(n− s)
(
H(s)

k

)2
+

n−1

∑
s=0

s
(
H(s)

k

)2
=

√
n

n−1

∑
s=0

(
H(s)

k

)2
� H(n−1)

k+1 +
1

k(k+1)
.

From (8) ∥∥∥�
Hr

∥∥∥
2
� 1√

n

(
H(n−1)

k+1 +
1

k(k+1)

)
.

Now, let we consider the matrices B and C be as

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1 · · · 1 1

rH(n−1)
k 1 1 · · · 1 1
...

...
...

. . .
...

...

rH(2)
k rH(3)

k rH(4)
k · · · 1 1

rH(1)
k rH(2)

k rH(3)
k · · · rH(n−1)

k 1

⎤
⎥⎥⎥⎥⎥⎥⎦

and

C =

⎡
⎢⎢⎢⎢⎢⎢⎣

H(0)
k H(1)

k H(2)
k · · · H(n−2)

k H(n−1)
k

1 H(0)
k H(1)

k · · · H(n−3)
k H(n−2)

k
...

...
...

. . .
...

...

1 1 1 · · · H(0)
k H(1)

k

1 1 1 · · · 1 H(0)
k

⎤
⎥⎥⎥⎥⎥⎥⎦

.

That is,
�
Hr = B◦C. Then we have

r1 (B) = max
1�i�n

√
n

∑
j=1

∣∣bi j
∣∣2 =

√
n

∑
j=1

∣∣bn j
∣∣2 =

√
1+

n−1

∑
s=1

|r|2
(
H(s)

k

)2

� |r|
√

n−1

∑
s=0

(
H(s)

k

)2

and

c1 (B) = max
1� j�n

√
n

∑
i=1

∣∣ci j
∣∣2 =

√
n

∑
i=1

|cin|2 =

√
n−1

∑
s=0

(
H(s)

k

)2
.

Hence, from (14) and Lemma 2, we have

∥∥∥�
Hr

∥∥∥
2
� r1 (B)c1 (B) � |r|

(
H(n−1)

k+1 +
1

k(k+1)

)2

.
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Thus,
1√
n

(
H(n−1)

k+1 +
1

k(k+1)

)
�
∥∥∥�
Hr

∥∥∥
2
� |r|

(
H(n−1)

k+1 +
1

k(k+1)

)2

.

ii) Since |r| < 1, by (14) we have

∥∥∥�
Hr

∥∥∥
E

=

√
n−1

∑
s=0

(n− s)
(
H(s)

k

)2
+

n−1

∑
s=0

s |r|2
(
H(s)

k

)2

�
√

n−1

∑
s=0

(n− s) |r|2
(
H(s)

k

)2
+

n−1

∑
s=0

s |r|2
(
H(s)

k

)2

=

√
n |r|2

n−1

∑
s=0

(
H(s)

k

)2
� |r|

(
H(n−1)

k+1 +
1

k(k+1)

)
.

From (8) ∥∥∥�
Hr

∥∥∥
2
� |r|√

n

(
H(n−1)

k+1 +
1

k(k+1)

)
.

Now, let the matrices D and E be as

D =

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 · · · 1 1
r 1 1 · · · 1 1
...

...
...

. . .
...

...
r r r · · · 1 1
r r r · · · r 1

⎤
⎥⎥⎥⎥⎥⎦

and

E =

⎡
⎢⎢⎢⎢⎢⎢⎣

H(0)
k H(1)

k H(2)
k · · · H(n−2)

k H(n−1)
k

H(n−1)
k H(0)

k H(1)
k · · · H(n−3)

k H(n−2)
k

...
...

...
. . .

...
...

H(2)
k H(3)

k H(4)
k · · · H(0)

k H(1)
k

H(1)
k H(2)

k H(3)
k · · · H(n−1)

k H(0)
k

⎤
⎥⎥⎥⎥⎥⎥⎦

.

That is,
�
Hr = D◦E. Then we compute

r1 (D) = max
1�i�n

√
n

∑
j=1

∣∣di j
∣∣2 =

√
n

and

c1 (D) = max
1� j�n

√
n

∑
i=1

∣∣di j
∣∣2 =

√
n−1

∑
s=0

(
H(s)

k

)2
.

Hence, from (14) and Lemma 2, we have∥∥∥�
Hr

∥∥∥
2
� r1 (D)c1 (D) �

√
n

(
H(n−1)

k+1 +
1

k(k+1)

)
.
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Thus,
|r|√
n

(
H(n−1)

k+1 +
1

k(k+1)

)
�
∥∥∥�
Hr

∥∥∥
2
�
√

n

(
H(n−1)

k+1 +
1

k(k+1)

)
.

This completes the proof. �

EXAMPLE 4. By using Theorem 4, if |r| � 1 , we have

√
n �

∥∥∥�
Hr

∥∥∥
2
� |r|n2, if k = 1,

n
√

n
2

�
∥∥∥�
Hr

∥∥∥
2
� n4 |r|

4
, if k = 2

and if |r| < 1 , we have

|r|√n �
∥∥∥�
Hr

∥∥∥
2
� n

√
n, if k = 1,

n
√

n |r|
2

�
∥∥∥�
Hr

∥∥∥
2
� n2√n

2
, if k = 2.

COROLLARY 7. The spectral norm of the Hadamard product of Hr = Circr(H(m)
0 ,

H(m)
1 , . . . ,H(m)

n−1) and
�
Hr = Circr(H(0)

k ,H(1)
k , . . . ,H(n−1)

k ) holds

i) If |r| � 1 , then

∥∥∥Hr ◦
�
Hr

∥∥∥
2
� |r|2

(
H(m+1)

n−1

)2
(

H(n−1)
k+1 +

1
k(k+1)

)2

.

ii) If |r| < 1 , then

∥∥∥Hr ◦
�
Hr

∥∥∥
2
�
√

n(n−1)
(

H(n−1)
k+1 +

1
k(k+1)

)
H(m+1)

n−1 .

Proof. The proof is trivial since
∥∥∥Hr ◦

�
Hr

∥∥∥
2
� ‖Hr‖2

∥∥∥�
Hr

∥∥∥
2
. �

COROLLARY 8. The spectral norm of the Kronecker product of Hr = Circr(H(k)
0 ,

H(k)
1 , . . . ,H(k)

n−1) and
�
Hr = Circr(H(0)

k ,H(1)
k , . . . ,H(n−1)

k ) holds

i) If |r| � 1 , then

1
n

(
H(n−1)

k+1 +
1

k(k+1)

)
H(m+1)

n−1 �
∥∥∥Hr ⊗

�
Hr

∥∥∥
2
� |r|2

(
H(m+1)

n−1

)2
(

H(n−1)
k+1 +

1
k(k+1)

)2

.
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ii) If |r| < 1 , then

|r|2
n

(
H(n−1)

k+1 +
1

k(k+1)

)
H(m+1)

n−1 �
∥∥∥Hr ⊗

�
Hr

∥∥∥
2

�
√

n(n−1)
(

H(n−1)
k+1 +

1
k(k+1)

)
H(m+1)

n−1 .

Proof. The proof is trivial since
∥∥∥Hr ⊗

�
Hr

∥∥∥
2
= ‖Hr‖2

∥∥∥�
Hr

∥∥∥
2
. �
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