
Journal of
Mathematical

Inequalities

Volume 10, Number 2 (2016), 471–489 doi:10.7153/jmi-10-37

SOME BENNETT–COPSON TYPE INEQUALITIES ON TIME SCALES

S. H. SAKER, R. R. MAHMOUD AND A. PETERSON

(Communicated by J. Pečarić)

Abstract. In this paper, we will prove some new dynamic inequalities with two different weighted
functions on a time scale. As special cases, the inequalities contain some dynamic inequalities
on time scales and also involve some discrete inequalities formulated by Copson, Leindler, Ben-
nett, Chen and Yang. The results will be proved by using Hölder’s inequality and Minkowski’s
inequality on time scales.

1. Introduction

In 1920 Hardy [12] proved the discrete inequality
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where an � 0 for n � 1. This inequality was discovered in his attempt to give an ele-
mentary proof of Hilbert’s inequality for double series that was known at that time. In
1925 Hardy [13] proved the continuous inequality
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by employing the calculus of variations, where f � 0 is integrable on any finite inter-
val (0,x) and f p is integrable and convergent over (0,∞), where p > 1. The constant
(p/(p−1))p in the two inequalities is the best possible constant. These two inequal-
ities have been extensively studied in the literature; we refer the reader to the books
[24, 17, 18, 21] and the papers [1, 9, 16, 23, 25, 37, 38] and the references cited therein.

In 1934 Hardy et al. [14, Theorem 337] showed that the reverse of the inequal-
ity (1.2) also holds when 0 < p < 1. In particular, they proved that if f (x) � 0,∫ ∞
0 f p(x)dx < ∞, then
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unless f ≡ 0. Again the constant (p/(1− p))p is the best possible constant.
In 1928 Copson [10] proved some new types of discrete inequalities (see also [14,

Theorem 344]). In particular one of his inequalities presented is given by
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where 0 < r < 1 and {wn} is a sequence with nonnegative terms.
In 1970 Leindler [19] generalized the Hardy inequality (1.1) in such a way that

the sequence {n−p} is replaced by an arbitrary sequence λn and did not say any thing
about the integral forms of his inequalites. In particular, Leindler proved that if p > 1,
λn , an > 0, then
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In 1976 Copson [11] showed that the continuous counterpart of the inequality (1.4)
holds. In particular, he proved that if 0 < k < 1 and g(t) is a non-negative function,
then ∫ b

0
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)k
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∫ b

0
(tg(t))k dt. (1.7)

In 1987 Bennett [4] extended Copson’s inequality (1.4). One of his results states that:
If 0 < r < s � 1, and
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for m = 1,2, . . . ,N , then
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where un , vn , wn are nonnegative sequences for n � 1.
In 1988 Bennett [5, Theorem 1’] made some simple modifications to (1.9) and

proved a new inequality when 0 < r < s � 1. In particular it was proved that if
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for m = 1,2, . . . ,N , then
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In 1990 Leindler [20] showed that the analoques of (1.5) and (1.6) are also true for
0 < p � 1. In particular, he proved that if λn , an > 0 and 0 < p � 1, then
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For more details of the Leindler inequalities we refer the reader to the paper [22].
In 2012 Chen and Yang [8] extended the inequality (1.4) and proved that if 0 <

p � 1, q > 0, 1 < λ � 1+q and ∑∞
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where the constant factor q/(λ −1) is the best possible constant.
In recent years the study of dynamic inequalities on time scales has received a lot

of attention and becomes a major field in pure and applied mathematics. All of these
disciplines are concerned with the properties of these inequalities of various types, for
more details we refer to the book [2]. The general idea is to prove a result for an
inequality where the domain of the unknown function is a so-called time scale T , which
is an arbitrary nonempty closed subset of the real numbers R . This idea goes back to
its founder Stefan Hilger [15] which started the study of dynamic equations on time
scales. The study of dynamic inequalities on time scales helps avoid proving results
twice – once for differential inequality and once again for difference inequality. For
example, in 2005 Řehák [26] proved the time scale version of (1.2). In 2014 Saker [27]
proved the time scale versions of the Leindler inequalities (1.5), (1.6), (1.12) and (1.13)
by employing a new technique that uses the Hölder inequality and a chain rule on time
scales. For more details we refer the reader to some recent results [28, 29, 30, 31, 32,
33, 34, 36] of Hardy’s type inequalities on time scales.

The question now arises: Is it possible to prove some new dynamic inequalities
on time scales which as special cases when T = N contain the inequalities (1.9), (1.11)
and (1.14)? Our aim in this paper is to give an affirmative answer to this question.

This paper is organized as follows. In Section 2, we present some preliminaries
about the theory of time scales and prove the basic lemmas that will be needed in the
proofs of the main results. In Section 3, we shall state and prove the main results of
this paper. In particular, in Theorems 3.1 and 3.2, we will prove the time scale versions
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of (1.9) and (1.11) and as a special case of Theorem 3.2 we will obtain the time scale
version of (1.14). When T = N we will obtain the inequalities (1.4), (1.12) and (1.13)
that have been proved by Copson and Leindler as special cases. Also, when T = R , we
will obtain the inequality (1.7) that has been proved by Copson. The main results will be
proved by employing Hölder’s inequality, Minkowski’s inequality and an appropriate
chain rule on time scales.

2. Preliminaries and basic lemmas

In the next sequel, we present some preliminaries on time scales. A time scale T

is an arbitrary nonempty closed subset of the real numbers R . We assume throughout
that T has the topology that is inherits from the standard topology on the real numbers
R. The forward jump operator and the backward jump operator are defined by: σ(t) :=
inf{s∈T : s > t}, ρ(t) := sup{s∈T : s < t} respectively , where sup /0 = infT . A point
t ∈ T, is said to be left–dense if ρ(t) = t and t > infT, is right–dense if σ(t) = t, is
left–scattered if ρ(t) < t and right–scattered if σ(t) > t. A function g : T → R is said
to be right–dense continuous (rd–continuous) provided g is continuous at right–dense
points and at left–dense points in T, left hand limits exist and are finite. The set of
all such rd–continuous functions is denoted by Crd(T). Without loss of generality, we
assume that supT = ∞ , and define the time scale interval [a,b]T by [a,b]T := [a,b]∩T .

The three most popular examples of calculus on time scales are differential cal-
culus, difference calculus, and quantum calculus, i.e., when T = R, T = N and T =
qN0 = {qt : t ∈ N0} where q > 1. For more details of time scale analysis we refer the
reader to the two books by Bohner and Peterson [6], [7] which summarize and organize
much of the time scale calculus. In this paper, we will refer to the (delta) integral which
we can define as follows. If GΔ(t) = g(t) , then the Cauchy (delta) integral of g is
defined by

∫ t
a g(s)Δs := G(t)−G(a). It can be shown (see [6]) that if g ∈Crd(T), then

the Cauchy integral G(t) :=
∫ t
t0

g(s)Δs exists, t0 ∈ T , and satisfies GΔ(t) = g(t) , t ∈ T.

An infinite integral is defined as
∫ ∞
a f (t)Δt = limb→∞

∫ b
a f (t)Δt. The following simple

consequence of Keller’s chain rule [6, Theorem 1.90] which is needed in the proof of
the main results is given by

(xγ (t))Δ = γ
1∫

0

[hxσ +(1−h)x]γ−1 dhxΔ(t), (2.1)

and the integration by parts formula on time scales is also given by
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a
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The Hölder’s inequality, see [3, Theorem 6.2], on time scales is given by
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where a, b ∈ T , f , g ∈ Crd([a,b]
T
,R) and 1

γ + 1
ν = 1. This inequality is reversed if

0 < γ < 1 and
∫ b
a |g(t)|νΔt > 0.

Now we present some basic lemmas that will be used in the proofs of our main
results. These lemmas are adapted from [36].
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In the following, we will state and prove some new lemmas which will be used in
the proofs and they are also important results in their own right.

LEMMA 2.4. Let T be a time scale with a, b∈T and f , g , h∈ Crd([a,b]
T
,R+) .

If
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Proof. Integrating by parts the left-hand side of (2.8), we have
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Integrating by parts the right-hand side of the inequality (2.9), we have that∫ b

a
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Since G(a) = 0 = H(b), we have from the last inequality that∫ b
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Combining (2.9) and (2.10), we get∫ b

a
f (t)H(t)Δt �

∫ b

a
g(t)H(t)Δt,

which is the desired inequality (2.8). The proof is complete. �
The following lemma is the dual of Lemma 2.4.

LEMMA 2.5. Let T be a time scale with a, b∈T and f , g , h∈ Crd([a,b]
T
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If k is a positive constant such that
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Again integrating by parts the right-hand side of the inequality (2.13), we have that∫ b
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Combining (2.13) and (2.14), we get∫ b

a
f (t)Hσ (t)Δt � k

∫ b

a
g(t)Hσ (t)Δt,

which is the required inequality (2.12). The proof is complete. �
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3. Main results

Throughout the paper, we will assume that the functions (without mentioning) are
nonnegative rd-continuous functions, Δ-differentiable, locally delta integrable and the
left hand side of the inequalities exits if the right hand side exists. We also assume that
all the constants (without mentioning) are positive real numbers. For simplification, we
define
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∫ b

a
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x
v(t)w(t)Δt

)r

Δx, (3.1)
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)r
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Now, we are ready to state and prove our first main result. We begin with the time scale
version of Bennett’s inequality (1.9).

THEOREM 3.1. Let T be a time scale with a, b ∈ T , u, v, w are positive rd-
continuous functions defined on [a,b]

T
and 0 < r < s � 1 . If
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Proof. Actually, we will split our proof into two parts. In the first part we consider
the case when s = 1. In this case it is enough to prove that

A � rrB, (3.6)

where A and B are defined as in (3.1) and (3.2) respectively. Now, we define

f = v(x)
(∫ σ(x)

a
u(t)Δt

) r
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, g = u(x) and H =
(∫ b

x
v(s)w(s)Δs

)r

.

Using the functions f , g and H defined above and the condition (3.4) with s = 1, we
see that the condition (2.7) holds. Now, by applying Lemma 2.4, we get that

∫ b

a
v(x)

(∫ σ(x)
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Δx (3.7)
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where r∗ = r/(r − 1). Applying the reverse of (2.5) in Lemma 2.2 on the integral(∫ b
x v(t)w(t)Δt

)r
with f (t) = v(t)w(t) and 0 < α = r < 1, we get that

r
∫ b

a
u(t)
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t
v(x)w(x)

(∫ b

x
v(s)w(s)Δs
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Δx

)
Δt � A. (3.8)

Applying the Minkowski inequality (2.6) on the left-hand side of (3.8) with m = 1, we
have that

r
∫ b

a
v(x)w(x)

(∫ σ(x)

a
u(t)
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t
v(s)w(s)Δs

)r−1

Δt

)
Δx � A. (3.9)

From this, since 1/r+1/r∗ = 1, we have that

r
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a
v

1
r (x)v

1
r∗ (x)w(x)

(∫ σ(x)

a
u(t)

(∫ b

t
v(s)w(s)Δs
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Δt

)
Δx � A. (3.10)

Applying the reverse of Hölder’s inequality (2.3) with 0 < γ = r < 1, on the left-hand
side of (3.10), we obtain that

rB
1
r

(∫ b

a
v(x)

(∫ σ(x)

a
u(t)Δt

)r∗(∫ b

x
v(s)w(s)Δs

)r
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) 1
r∗

� A. (3.11)

Substituting (3.7) into (3.11), we get that

A � rB
1
r A

1
r∗ ,

which leads us directly to (3.6). The proof of the first part in the case s = 1 is complete.
Next, we prove the second part of the proof by reducing the general case 0 < r < s <
1 to the case when s = 1 that has been proved in the first part. Applying Hölder’s
inequality (2.3) on the integral

∫ t

a

(
v(x)w

r
s (x)

) 1
λ

v
1

λ∗ (x)
(∫ σ(x)

a
u(t)Δt

)r∗

Δx,

with exponents

λ =
1− r
1− s

, and λ ∗ =
1− r
s− r

, (3.12)

we get that

∫ t

a

(
v(x)w

r
s (x)

) 1
λ

v
1

λ∗ (x)
(∫ σ(x)

a
u(t)Δt

)r∗

Δx

� β

(∫ t

a
v(x)

(∫ σ(x)

a
u(t)Δt

) r
r−s

Δx

) 1
λ∗

,
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where β =
(∫ t

a v(x)w
r
s (x)Δx

) 1
λ

. Using the assumption (3.4) in the last inequality, we

have that

∫ t

a

(
v(x)w

r
s (x)

) 1
λ

v
1

λ∗ (x)
(∫ σ(x)

a
u(t)Δt

)r∗

Δx � β
∫ t

a
u(x)Δx. (3.13)

Now, we observe that the inequality (3.13) is just a restatement of assumption (3.4) with

s = 1 and v(x) is replaced by β−1
(
v(x)w

r
s (x)

) 1
λ

v
1

λ∗ (x) . Applying the inequality (3.6)

of the first part for the new function β−1
(
v(x)w

r
s (x)

) 1
λ

v
1

λ∗ (x) , we obtain that

∫ b

a
u(x)

(∫ b

x

(
v(t)w

r
s (t)
) 1

λ
v

1
λ∗ (t)w

1
sλ∗ (t)Δt

)r

Δx

� β r−1rr
∫ b

a

(
v(x)w

r
s (x)

) 1
λ

v
1

λ∗ (x)w
r

sλ∗ (x)Δx. (3.14)

Using (3.12) and simplifying the exponents on the inequality (3.14), we get (note that
0 < r < s < 1) that

∫ b

a
u(x)

(∫ b

x
v(t)w(t)Δt

)r

Δx � rr
(∫ b

a
v(x)w

r
s (x)Δx

)s

, (3.15)

which is the desired inequality (3.5). The proof is complete. �
As special cases of Theorem 3.1, we have the following results.

REMARK 3.1. If T = N , then inequality (3.5) in Theorem 3.1 reduces to Ben-
nett’s inequality (1.9).

REMARK 3.2. If T = R , then inequality (3.5) in Theorem 3.1 reduces to the fol-
lowing continuous inequality of Bennett-Copson type

∫ b

a
u(x)

(∫ b

x
v(t)w(t)dt

)r

dx � rr
(∫ b

a
v(t)w

r
s (t)dt

)s

, 0 < r < s � 1. (3.16)

Now, we will use some different forms of the weighted functions to obtain new
inequalities as special cases of Theorem 3.1. First, we assume that c < 0, setting 0 <
r = q, s = q/p where 0 < p < 1, and define

u(t) : =
λ (t)

(Λσ (t))1− q
p (1−c)

, v(t) := λ (t)

[
(Λσ (t))p−c

(
q
p

(1− c)
)−p

] 1
1−p

,

w(t) : = (Λσ (t))
c−p
1−p g(t), Λ(t) =

∫ t

a
λ (s)Δs,

where λ (t) is a non-negative rd-continuous function defined on T. So, to apply Theo-
rem 3.1, we need to prove that the hypothesis (3.4) is satisfied for the new functions u
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and v . Using the new definitions of these functions and substituting into (3.4), we get
that

∫ x

a
λ (t)

[
(Λσ (t))p−c

(
q
p

(1− c)
)−p

] 1
1−p

(3.17)

×
(∫ σ(t)

a

λ (s)

(Λσ (s))1− q
p (1−c)

Δs

) q
q− q

p
Δt

=
∫ x

a
λ (t)(Λσ (t))

p−c
1−p
(( q

p
(1− c)

)
(3.18)

∫ σ(t)

a
λ (s)

(∫ σ(s)

a
λ (θ )Δθ

) q
p (1−c)−1

Δs
) p

p−1 Δt.

Applying Lemma 2.1 on the inner integral with α = (q/p)(1− c), we get that

α
∫ σ(t)

a
λ (s)

(∫ σ(s)

a
λ (θ )Δθ

)α−1

Δs �
(∫ σ(t)

a
λ (t)Δt

)α

.

But since 0 < p < 1, we obtain that

(
α
∫ σ(t)

a
λ (s)

(∫ σ(s)

a
λ (θ )Δθ

)α−1

Δs

) p
p−1

�
(∫ σ(t)

a
λ (s)Δs

)α p
p−1

. (3.19)

Substituting (3.19) into (3.17), we have that

∫ x

a
λ (t)

[
(Λσ (t))p−c

(
q
p

(1− c)
)−p

] 1
1−p
(∫ σ(t)

a

λ (s)

(Λσ (s))1− q
p (1−c)

Δs

) q
q− q

p

Δt

(3.20)

�
∫ x

a
λ (t)(Λσ (t))

p−c
1−p

(
(Λσ (t))

q
p (1−c)

) p
p−1 Δt

=
∫ x

a
λ (t)(Λσ (t))

p−c
1−p (Λσ (t))

q(1−c)
p−1 Δt

�
∫ x

a
λ (t)(Λσ (t))

q
p (1−c) Δt,

which proves the assumption (3.4). This and Theorem 3.1 give us the following result.

COROLLARY 3.1. Let T be a time scale with a, b ∈ T and 0 < q � p < 1 . If
c < 0 , Λ(t) =

∫ t
a λ (s)Δs, and Φ(t) =

∫ b
t λ (s)g(s)Δs for t ∈ [a,b]

T
, then

∫ b

a
λ (t)(Λσ (t))

q
p (1−c)−1 Φq(t)Δt � pqq−1

(1− c)
p(1−q)
1−p

(∫ b

a
λ (t)(Λσ (t))p−c gp(t)Δt

) q
p

.

(3.21)
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REMARK 3.3. If T = R , then Λσ (t) = Λ(t) and Corollary 3.1 reduces to the
following continuous inequality of Bennett-Copson type

∫ b

a
λ (t)(Λ(t))

q
p (1−c)−1 Φq(t)dt � pqq−1

(1− c)
p(1−q)
1−p

(∫ b

a
λ (t)(Λ(t))p−c gp(t)dt

) q
p

,

(3.22)
which is essentially new and is not stated in any of Bennett’s work.

REMARK 3.4. If T = N , then Corollary 3.1 reduces to the following discrete
result

N

∑
n=1

λnΛ
q
p (1−c)−1
n

(
N

∑
k=n

λkxk

)q

� pqq−1

(1− c)
p(1−q)
1−p

(
N

∑
n=1

λnΛp−c
n xp

n

) q
p

, (3.23)

due to Bennett [5, Corollary 4].

If p = q = k , then the inequality (3.21) reduces to the following dynamic Copson-
type inequality on time scales due to Saker et al. [35, Theorem 2.3].

COROLLARY 3.2. Let T be a time scale with a, b ∈ T and c < 0 < k < 1 . Let
Λ(t) =

∫ t
a λ (s)Δs, and

Φ(t) =
∫ b

t
λ (s)g(s)Δs, t ∈ [a,b]

T
, (3.24)

then ∫ b

a

λ (t)
(Λσ (t))c Φk(t)Δt �

(
k

1− c

)k ∫ b

a
λ (t)(Λσ (t))k−c gk(t)Δt. (3.25)

We can also obtain the Leindler type inequalities on time scales proved in [27,
Theorem 2.4]. In fact by choosing

u(t) = λ (t), v(t) = λ (t)
(∫ t

a
λ (s)Δs

) p
1−p

, w(t) =
g(t)
λ (t)

(∫ t

a
λ (s)Δs

) p
p−1

,

(3.26)
and s = 1, r = p and substituting in (3.4), we get (since 0 < p < 1) that

∫ x

a
λ (t)

(∫ t

a
λ (s)Δs

) p
1−p
(∫ σ(t)

a
λ (s)Δs

) p
p−1

Δt

�
∫ x

a
λ (t)

(∫ t

a
λ (s)Δs

) p
1−p
(∫ t

a
λ (s)Δs

) p
p−1

Δt =
∫ x

a
λ (t)Δt,

which proves that the condition (3.4) is satisfied for the new functions u and v defined
in (3.26). This and Theorem 3.1 give us the following Leindler type inequality on time
scales.
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COROLLARY 3.3. Let T be a time scale with a ∈ T and 0 < p < 1 . If λ (t) > 0
and g(t) � 0, then

∫ ∞

a
λ (t)

(∫ ∞

t
g(s)Δs

)p

Δt � pp
∫ ∞

a
λ 1−p(t)

(∫ σ(t)

a
λ (s)Δs

)p

gp(t)Δt. (3.27)

REMARK 3.5. If T = N , then Corollary 3.3 reduces to the discrete result (1.13)
due to Leindler [20] and Mohapatra and Salzman [22].

In the following, we will use some simple different forms of the weighted func-
tions to obtain new inequalities. For example, if we set a = 0, s = 1, u = x−r ,
v = (1− r)−r and w = f , then inequality (3.5) in Theorem 3.1 reduces to the following
inequality ∫ b

0

(
1
x

∫ b

x
f (t)Δt

)r

Δx >

(
r

1− r

)r ∫ b

0
f r(t)Δt, (3.28)

which can be considered as the time scale version of (1.3) due to Hardy. If we set
u = t−r , v = 1 and s = 1, then the inequality (3.5) reduces to the following inequality

∫ b

a

(
1
t

∫ b

x
w(t)Δt

)r

Δx � rr
∫ b

a
wr(t)Δt, (3.29)

which can be considered as the time scales version of the following Copson-type in-
equality (see [14, Theorem 345])

N

∑
n=1

(
1
k

N

∑
k=n

wk

)r

� rr
N

∑
k=1

wr
k.

If we set a = 0, 0 < r < 1, s = 1, u = 1, v = x
−r
r−1 and w = x

r
r−1 f , we see that the

hypothesis (3.4) reads

∫ t

0
x

−r
r−1

(∫ σ(x)

0
1Δt

) r
r−1

Δx =
∫ t

0
x

−r
r−1 (σ (x))

r
r−1 Δx.

Now, since r/(r−1) < 0, it follows that

∫ t

0
x

−r
r−1

(∫ σ(x)

0
1Δt

) r
r−1

Δx �
∫ t

0
x

−r
r−1 (x)

r
r−1 Δx =

∫ t

0
1Δx =

∫ t

0
u(x)Δx,

which gives the validity of hypothesis (3.4). Then the inequality (3.5) in Theorem 3.1
reduces to the following inequality

∫ b

0

(∫ b

x
f (t)Δt

)r

Δx > rr
∫ b

a
(t f (t))r Δt, (3.30)

which unifies the discrete inequality (1.4) and the continuous inequality (1.7) to an
arbitrary time scale T .

Next, we prove the time scale version of Bennett’s inequality (1.11).
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THEOREM 3.2. Let T be a time scale with a, b ∈ T , u, v, w are positive rd-
continuous functions defined on [a,b]

T
and 0 < r < s � 1 . If

∫ b

t
v(x)

(∫ b

x
u(t)Δt

) r
r−s

Δx � K

(∫ b

t
u(x)Δx

) 1−r
s−r

, for t ∈ [a,b]
T
, (3.31)

then

∫ b

a
u(x)

(∫ σ(x)

a
v(t)w(t)Δt

)r

Δx � Kr−srr
(∫ b

a
v(x)w

r
s (x)Δx

)s

, (3.32)

where K is a positive constant depends on r and s.

Proof. Actually, we will split our proof into two parts. In the first part, we consider
the case s = 1. In this case it is enough to prove that

C � Kr−1rrB, (3.33)

where B and C are defined as in (3.2) and (3.3). Now, we define

f (x) = v(x)
(∫ b

x
u(t)Δt

) r
r−1

, g = u(x) and Hσ (x) =
(∫ σ(x)

a
v(t)w(t)Δt

)r

.

Using these functions and the condition (3.31), we see that the condition (2.11) in
Lemma 2.5 holds. Now applying Lemma 2.5, we get that

∫ b

a
v(x)

(∫ b

x
u(t)Δt

)r∗(∫ σ(x)

a
v(t)w(t)Δt

)r

Δx

� K
∫ b

a
u(x)

(∫ σ(x)

a
v(t)w(t)Δt

)r

Δx = KC. (3.34)

Applying Lemma 2.1 on the term C defined in (3.3), we get that

r
∫ b

a
u(t)

(∫ σ(t)

a
v(x)w(x)

(∫ σ(x)

a
v(s)w(s)Δs

)r−1

Δx

)
Δt � C. (3.35)

Applying the Minkowski inequality (2.6) on the left-hand side of (3.35) with m = 1,
we have that

r
∫ b

a
v(x)w(x)

(∫ b

x
u(t)

(∫ σ(t)

a
v(s)w(s)Δs

)r−1

Δt

)
Δx � C. (3.36)

From this we see that

r
∫ b

a
v

1
r (x)w(x)v

1
r∗ (x)

(∫ b

x
u(t)

(∫ σ(t)

a
v(s)w(s)Δs

)r−1

Δt

)
Δx � C. (3.37)
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Applying the reverse of Hölder’s inequality (2.3) with 0 < r < 1, on the left-hand side
of (3.37), we obtain that

rB
1
r

(∫ b

a
v(x)

(∫ b

x
u(t)Δt

)r∗(∫ σ(x)

a
v(s)w(s)Δs

)r

Δx

) 1
r∗

� C. (3.38)

Substituting (3.34) into (3.38), we get that

C � rB
1
r K

1
r∗ C

1
r∗ ,

which leads us directly to (3.33). The proof of the first part in the case s = 1 is complete.
Next, we prove the second part of the proof by reducing the general case 0 < r < s < 1
to the proof of the first part when s = 1. Applying Hölder’s inequality (2.3) on the
integral ∫ b

t

(
vw

r
s

) 1
λ (x)v

1
λ∗ (x)

(∫ b

x
u(t)Δt

)r∗

Δx,

with exponents

λ =
1− r
1− s

and λ ∗ =
1− r
s− r

, (3.39)

we have that

∫ b

t

(
vw

r
s

) 1
λ (x)v

1
λ∗ (x)

(∫ b

x
u(t)Δt

)r∗

Δx � h

(∫ b

t
v(x)

(∫ b

x
u(t)Δt

) r
r−s

Δx

) 1
λ∗

,

where h =
(∫ b

t v(x)w
r
s (x)Δx

) 1
λ . Using the assumption (3.31) in the last inequality, we

have that

∫ b

t

(
vw

r
s

) 1
λ (x)v

1
λ∗ (x)

(∫ b

x
u(t)Δt

)r∗

Δx � hK
1

λ∗
∫ b

t
u(x)Δx. (3.40)

Now, we observe that the inequality (3.40) is just a restatement of the assumption (3.31)

with s = 1 and v(t) replaced by h−1K
−1
λ∗
(
v(x)w

r
s (x)

) 1
λ

v
1

λ∗ (x) . So we can apply the

special inequality (3.33) of the theorem for the new function

h−1K
−1
λ∗
(
v(x)w

r
s (x)

) 1
λ

v
1

λ∗ (x),

to obtain

∫ b

a
u(x)

(∫ σ(x)

a

(
vw

r
s

) 1
λ (t)v

1
λ∗ (t)w

1
sλ∗ (t)Δt

)r

Δx (3.41)

� hr−1rrK
r−1
λ∗
∫ b

a

(
vw

r
s

) 1
λ (x)v

1
λ∗ (x)w

r
sλ∗ (x)Δx.
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Using (3.39) and simplifying the exponents on the above inequality, we obtain (note
that 0 < r < s < 1)

∫ b

a
u(x)

(∫ σ(x)

a
v(t)w(t)Δt

)r

Δx � Kr−srr
(∫ b

a
v(x)w

r
s (x)Δx

)s

, (3.42)

which is the desired inequality (3.32). �

As a special case of Theorem 3.2, we get the following result.

REMARK 3.6. If T = N , then the inequality (3.32) in Theorem 3.2 reduces to
Bennett’s inequality (1.11).

REMARK 3.7. If T = R , then inequality (3.32) in Theorem 3.2, reduces to the
following continuous inequality of Bennett-Copson type

∫ b

a
u(x)

(∫ σ(x)

a
v(t)w(t)dt

)r

dx � Kr−srr
(∫ b

a
v(t)w

r
s (t)dt

)s

. (3.43)

Now, we will use some different forms of the weighted functions to obtain new
inequalities as special cases from Theorem 3.2. We let

u(t) =
λ (t)

(Ω(t))
q
p (c−1)−1

, v(t) = λ (t)

[
(Ω(t))p−c

(
q
p

(c−1)
)−p

] 1
1−p

,

w(t) = (Ω(t))
c−p
1−p g(t), Ω(t) =

∫ b

t
λ (s)Δs,

c > 1, s = q/p and r = q. Now by following the proof of the hypothesis (3.4) in
Corollary 3.1 and applying Lemma 2.2 instead of Lemma 2.1 we can prove that the
condition (3.31) holds. This and Theorem 3.2 give us the following result.

COROLLARY 3.4. Let T be a time scale with a, b ∈ T and 0 < p � q < 1 . If
c > 1 , Ω(t) =

∫ b
t λ (s)Δs, and

Φ(t) =
∫ σ(t)

a
λ (s)g(s)Δs, for t ∈ [a,b]

T
,

then

∫ b

a
λ (t)Ω1− q

p (c−1)(t)(Φσ (t))q Δt � K2

(∫ b

a
λ (t)Ωp−c(t)gp(t)Δt

) q
p

, (3.44)

where

K2 =
pqq−1

(c−1)
p(1−q)
1−p

.
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If p = q = k , then the reduced version of the inequality (3.44) gives the Copson-
type inequality proved in [35, Theorem 2.4].

COROLLARY 3.5. Let T be a time scale with a, b ∈ T , c > 1 and 0 < k < 1 .
Let Ω(t) =

∫ b
t λ (s)Δs, and

Φ(t) =
∫ σ(t)

a
λ (s)g(s)Δs, for t ∈ [a,b]

T
, (3.45)

then ∫ b

a

λ (t)
Ωc(t)

(Φσ (t))k Δt �
(

k
c−1

)k ∫ b

a
λ (t)Ωk−c(t)gk(t)Δt. (3.46)

We can also obtain the Leindler type inequality on time scales that has been proved
in [27, Theorem 2.3] by choosing

u(t) = λ (t), v(t) = λ (t)
(∫ ∞

t
λ (s)Δs

) p
1−p

, w(t) = λ−1(t)
(∫ ∞

t
λ (s)Δs

) p
p−1

g(t),

(3.47)
s = 1 and r = p as follows.

COROLLARY 3.6. Let T be a time scale with a ∈ T and 0 < p � 1 . If λ (t) > 0
and g(t) � 0, then∫ ∞

a
λ (t)

(∫ σ(t)

a
g(s)Δs

)p

Δt � pp
∫ ∞

a
λ 1−p(t)

(∫ ∞

t
λ (s)Δs

)p

gp(t)Δt. (3.48)

Next, in the following we consider the functions

u(t) =
λ −1

q

[
p
q

(λ −1)
] p

p−1

σ (t)
p
q (1−λ )−1 , v(t) = σ (t)

p(1− λ−1
q )−1

1−p ,

w(t) = σ (t)
p(1− λ−1

q )−1

p−1 f (t),

s = 1 and r = p. To apply Theorem 3.2 we need to prove that the hypothesis (3.31) is
satisfied for the new functions u and v . Now, the left-hand side of (3.31) becomes(

λ −1
q

) p
p−1
∫ ∞

x
σ (t)

p(1− λ−1
q )−1

1−p

(
p
q

(λ −1)
∫ ∞

t
σ (x)

p
q (1−λ )−1 Δx

) p
p−1

Δt. (3.49)

Using the chain rule (2.1) , we get that(
x

p
q (1−λ )

)Δ
=

p
q

(1−λ )
∫ 1

0
(hσ (x)+ (1−h)x)

p
q (1−λ )−1 dh

=
p
q

(λ −1)
∫ 0

1

dh

(hσ (x)+ (1−h)x)
p
q (λ−1)+1

� p
q

(λ −1)
∫ 0

1

dh

(hσ (x)+ (1−h)σ (x))
p
q (λ−1)+1

=
p
q

(1−λ )(σ (x))
p
q (1−λ )−1 .
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Integrating from t to ∞ , we obtain that

p
q

(1−λ )
∫ ∞

t
(σ (x))

p
q (1−λ )−1 Δx �

∫ ∞

t

(
x

p
q (1−λ )

)Δ
Δx

� −t
p
q (1−λ ),

which can be rewritten as

t
p
q (1−λ ) � p

q
(λ −1)

∫ ∞

t
(σ (x))

p
q (1−λ )−1 Δx.

But since 1−λ < 0, we have that

σ (t)
p
q (1−λ ) � p

q
(λ −1)

∫ ∞

t
(σ (x))

p
q (1−λ )−1 Δx.

By raising both sides to the power p/(p−1) < 0, we obtain that

(
p
q

(λ −1)
∫ ∞

t
(σ (x))

p
q (1−λ )−1 Δx

) p
p−1

� σ (t)
p

p−1

(
p
q (1−λ )

)
. (3.50)

Substituting (3.50) into (3.49), we have that

(
λ −1

q

) p
p−1
∫ ∞

x
t

p(1− λ−1
q )−1

1−p

(
p
q

(λ −1)
∫ ∞

t
x

p
q (1−λ )−1Δx

) p
p−1

Δt

�
(

λ −1
q

) p
p−1
∫ ∞

x
σ (t)

p(1− λ−1
q )−1

1−p ·σ (t)
p

p−1

(
p
q (1−λ )

)
Δt

=
(

λ −1
q

) p
p−1
∫ ∞

x
σ (t)

p
q (1−λ )−1 Δt,

which asserts the assumption (3.31). Now, as a special case of Theorem 3.2 by using
(3.47), we obtain the time scale version of the inequality (1.14) that has been proved by
Chen and Yang [8, Theorem 1] as follows.

COROLLARY 3.7. Let T be a time scale with a ∈ T . If 0 < p < 1, q > 0 , 1 <
λ � 1+q, then

(∫ ∞

a
σ (t)

p
q (1−λ )−1

(∫ σ(t)

a
f (s)Δs

)p

Δt

) 1
p

(3.51)

>
q

λ −1

(∫ ∞

a
(σ(t))

p(1− λ−1
q )−1

f p(t)Δt

) 1
p

.

If we choose q = p in Corollary 3.7, we obtain the following result.
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COROLLARY 3.8. Let T be a time scale with a ∈ T . If 0 < p < 1 and 0 <
λ −1 � p, then

∫ ∞

a

1

σ (t)λ

(∫ σ(t)

a
f (s)Δs

)p

Δt >

(
p

λ −1

)p∫ ∞

a

f p(t)

σ (t)λ−p
Δt. (3.52)

If we choose p = λ −1 in Corollary 3.8, we obtain the following result.

COROLLARY 3.9. Let T be a time scale with a ∈ T . If 0 < p < 1 , then

∫ ∞

a

1
σ (t)

(
1

σ (t)

∫ σ(t)

a
f (s)Δs

)p

Δt >

∫ ∞

a

1
σ (t)

f p(t)Δt. (3.53)

REMARK 3.8. If T = N , then (3.51), (3.52) and (3.53) reduce to the inequalities
(11), (12) and (13) in [8], respectively.
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