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Abstract. In this paper, we investigate some new Polya-Szego type integral inequalities involving
the Riemann-Liouville fractional integral operator, and use them to prove some fractional integral
inequalities of Chebyshev type, concerning the integral of the product of two functions and
the product of two integrals. Certain special cases are also considered. Finally, examples for
constructing the bounding functions are also given.

1. Introduction

The well-known celebrated functional was introduced by Chebyshev [3] and is

defined by
bia/abf(x)g(x)dx— (bia/abf(x)dx) (llea/abg(x)dx), (1.1)

where f and g are two integrable functions on [a, b]. If f and g are synchronous, i.e.,

(f(x) = f() (g(x) —g(¥)) = 0,

for any x, y € [a,b], then T(f,g) > 0.

The functional (1.1) has attracted many researchers attention due to diverse appli-
cations in numerical quadrature, transform theory, probability and statistical problems.
Among those applications, the functional (1.1) has also been employed to yield a num-
ber of integral inequalities (see, e.g., [2, 5, 6, 9, 12]; for a very recent work, see also
[16D.

The well known Griiss inequality [8] states

T(fag) =

(M —m)(N—n)
4 )
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where f and g are two integrable functions on [a, b], and satisfy the following inequal-
ities:
m< f(x) <M and n<g(y)<N,
for all x, y € [a,b] and for some m, M, n, N € R.
Pdélya and Szeg6 [14] introduced the following inequality:

fy £ dx [ 8 <¢Mﬁ Vﬁ‘)

(fﬂ)()
Dragomir and Diamond [7] by using Pdlya-Szego inequality proved that
(M —m) / /
T ’ X d}C
(91 < ot [ s [ st

where f and g are two positive integrable functions on [a, b] satisfying
O<m< flx) SM<oo, 0<n<g(y) <N < oo,

for all x, y € [a,b] and for some m, M, n, N € R.

In recent years, fractional integral inequalities have proved to be one of the most
powerful and far-reaching tools for the development of many branches of pure and
applied mathematics. Very recently, many authors have presented some generalized
inequalities involving the fractional integral operators (see, e.g., [4, 11, 13, 15]; see
also the very recent work [1]). Our present paper has been motivated by the above-
mentioned works. The principle aim of the present paper is to establishing certain
new Pdélya-Szego and Chebyshev types integral inequalities associated with Riemann-
Liouville fractional integral operators.

We organize the paper as follows: in Section 3 we establish some generalized
Pélya-Szego type integral inequalities via Riemann-Liouville fractional integral oper-
ators, and use them to prove some fractional integral inequalities of Chebyshev type,
concerning the integral of the product of two functions and the product of two integrals.
In Section 4, as applications, we give examples for constructing the four functions for
bounding the two unknown functions. Moreover, we give some estimates of Chebyshev
type fractional integral inequalities of two unknown functions.

2. Preliminaries

In this section, we introduce some notations and definitions of fractional calculus
[10] and present preliminary results needed in our proofs later.

DEFINITION 2.1. The Riemann-Liouville fractional integral of order o« > 0 of a
function f: (0,0) — R is defined by

t—s)"‘_1

R, 1o = [ s, eaY
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provided the right-hand side is point-wise defined on (0,e), where I is the Gamma
function.

The above integral has following properties

R, RS {f} (1) =R, P {f} (1) =RE,RE, {f} (0),

and

I'(y+1
R&rﬁ@@)Zﬁt””, a>0,7y>—1,1>0.

For 0 =1y <t; <t <--- <ty <t,r1 =T, we define a notation of sub-integrals of
Riemann-Liouville fractional integral as

tjis1 (T — )% !

RE, AFHT) = /t/ Mo/ Wds 7=01p. 2.2)
Note that |
RS (FHT) = 2 f,itm{f}( )
- [ f(s)ds ot t: (T;(“Z) fs)ds

3. Certain Polya-Szego and Chebyshev types inequalities involving the
Riemann-Liouville fractional integral operator

In this section, we establish certain Pélya-Szego type integral inequalities for pos-
itive integrable functions involving the Riemann-Liouville fractional integral operator

@.1).

LEMMA 3.1. Let f and g be two positive integrable functions on [0,0). Assume
that there exist four positive integrable functions @y, @2, W and Y, on [0,0) such
that:

(H) 0<(0) <fO<p(r), 0<yi(D)<g(n)<ya(n), (€01 >0).

Then for t > 0 and o > 0, the following inequality holds:

RE Awiva 2} (ORS {01 0287} (1) 1

(RS‘,,{(%% +<pzl//z)fg}(t))

Proof. From (H}), for T € [0,7], t > 0, we have
o(t)  f(7) ) . .
(un(r) sm) 7" G2
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Analogously, we have

/0 o
<g<r> w(r)) =0 G-
Multiplying (3.2) and (3.3), we obtain
21 SO (SO o)
(%(T) g<r>> <g<r> w(r)) =0 G5

The inequality (3.4) can be written as

(@1 (D)1 (1) + (D) ¥2(7) f(T)g(T) = v (D) (0) 2 (T) + 01 (1) 92(7)87 (7). (3.5)

Now, multiplying both sides of (3.5) by (r —7)*~! /T'(ct) and integrating with respect
to 7 from O to 7, we get

RE{(91v1 + 2y2) f8}(1) = REAwi v} (1) + RE {01 9287} (0).
Applying the AM-GM inequality, i.e., a+b > 2v/ab, a,b € R, we have

REA(@1vi+ 0292) 83 (1) > 24 /R, {yn v P (ORE, {91928} ),
which leads to
R, vy Y OR, (000261 (0) < 5 (R (01w -+ 02y0) f2) (1))
Therefore, we obtain the inequality (3.1) as requested. [
As a special case of Lemma 3.1, we obtain the following result:

COROLLARY 3.1. Let f and g be two positive integrable functions on [0,c0)
satisfying

(Hy) 0<m< f(1) SM<oo, 0<n<g(r)<N<oo, (t€10,1],1>0).
Then for t > 0 and o > 0, we have

RS2} RS‘t{gz} (\/W \/W>

(rg, trer )

REMARK 3.2. Corollary 3.1 is Lemma 3 of [1] whose the proof in [1] is not cor-
rect, since it is based on the inequality

2
1 mn MN
Z(”M_N—’_V%) ) (3.6)

which obviously does not holds when constants m, n, M and N satisfy (H,) with strict

inequalities. As noted above Lemma 3 of [1] is reduced as special case of our Lemma
3.1
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LEMMA 3.3. Let all assumptions of Lemma 3.1 hold. Then for t >0 and o, >
0, the following inequality holds:

RE (9102} OR () ORE (PYORD YD) 1
(R Lo HORE, (wigh)+ RE, {our HORE (o} ) *
Proof. To prove (3.7), using the condition (H; ), we obtain
e f(1)
(lm(p) g(p>) =0
and 0 e
f0) e
<g<p> w(p)) =0
which imply that
00 @) f(1) L5 e Do)
(%(p) - l//l(p)) <)~ 20 e (3.8)

Multiplying both sides of (3.8) by w1 (p)wa(p)g?(p), we have

@1 (D) f (D)1 (p)g(p)+ea(T) f(T)w2(p)g(p) = w1 (p)Wz(p)fz(T)ﬂol(T)(pz(f)gigpg))~

Multiplying both sides of (3.9) by (r —7)* ' (t — p)B~!/(I'(a)T'(B)) and double inte-
grating with respect to 7 and p from O to 7, we have

RE AL f YRS {wig} (1) + RS (@2 f Y (ORE (w25} (1)
> RSS2} (ORE {wiwa} (1) + RE { o192} (ORE {7} (1).
Applying the AM-GM inequality, we get
R Ao f}(ORD (g} (1) + RS {oaf} (ORD, {yag} (1)
> 2[R L2 ORE Ly v} (ORS, L0192 ORE, {220,

which leads to the desired inequality in (3.7). The proof is completed. [

As a special case of Lemma 3.3, we get the following result:

COROLLARY 3.2. Let f and g be two positive integrable functions on [0,e0)
satisfying (H,). Then for # > 0 and a, 3 > 0, we have

@b R APYORASIO (N
To+1D)C(B+1) (RS‘J () (f)Rg,, (s} @)2 S 4 MN+ mn |
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LEMMA 3.4. Suppose that all assumptions of Lemma 3.1 are satisfied. Then for
t >0 and o, > 0, the following inequality holds:

RS {2} (ORE {2} (1) < RE {(02/2)/vi }ORS {(waf 8) /@1 } (1) (3.10)

Proof. From condition (H;), we have

S L[ pyem1 22(0)
T(0) /0 (1= (Ddr < Ta) /O (r—1) 1% )/ (e,

which implies
R3 {2 H0) < RE{(92f8)/wi (). (3.1D)

Analogously, we obtain

from which one has

RO ALY 1) < RO, {(vas9)/ 01} (). (3.12)
Multiplying (3.11) and (3.12), we get the desired inequality in (3.10). O

COROLLARY 3.3. Let f and g be two positive integrable functions on [0,c0)
satisfying (H,). Then for # > 0 and a, 3 > 0, we have

Re, {12} OR, {&7} (1) <My
RG, {fg} (I)Rg.’t {fg} () = mn

REMARK 3.5. The inequality (3.10) can not be reduced to the results in [1], be-
cause the proof of Lemma 6 in [1] is based on the inequality (3.6) which does not work
(see also Remark 3.2).

In the sequel, we establish our main Chebyshev type integral inequalities involving
the Riemann-Liouville fractional integral operator (2.1), with the help of Pélya-Szego
fractional integral inequality in Lemma 3.1 as follows.

THEOREM 3.6. Let f and g be two positive integrable functions on [0,c0). As-
sume that there exist four positive integrable functions @y, @2, Wi and Y, satisfying
(H1). Then fort >0 and o, 3 > 0, the following inequality is true

B

RO, e} () + gy R L) )

tOC
Io+1)

—RE{f} (1) Ry, {g} (1) — R, {g} ()RS, {1} (1)
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<[G1(f, 91, 92)(1) + Ga(f, 01 92) (1)]?
X |G (8,1, ¥2) (1) + Galg, wi, ya) (1) (3.13)
where
o (REAG 0 0)
AT(B+1) R {vw}h(1)
o (R0 0)
4T (o4 1) Rg,{vw}(t)

Gy (u,v,w) (1) = — RE {u} ()R] {u} (1),

Gou,v,w)(t) = — R {u} (0)RY {u} (r).

Proof. Let f and g be two positive integrable functions on [0,e). For 7, p €
(0,7) with > 0, we define A(t,p) as

A(t,.p) = (f(7) = f(p)) (g(7) —g(p)),

or, equivalently,

A(t.p) = f(1)e(t) +f(p)elp) — f(1)e(p) — f(p)e(T). (3.14)

Multiplying both sides of (3.14) by (r—7)* ' (t— p)P~! /T(ex+ 1)T(B + 1) and dou-
ble integrating with respect to 7 and p from O to ¢ we obtain

// p)P1A(t,p)dtdp
1o B
SCES) RE (g} (t)+ (ﬁ+l)Rm{fg}()
—R$,{FY(O)RE {8} (1) —RD, {1} (1) RS, {8} (1). (3.15)

By using the Cauchy Schwartz inequality for double integrals, we have

' // (=) (1= p)P~ lA(Tp)drdp'
{ // (t—0)% (1~ p)P! () dvdp
7//r—r (t=p)P~' f2(p)drdp
g [0 e e s arap)
x[ gl [ p)P g (1) drdp
// (1= 1) (1—p)P ' (p)dTdp
WA A <>g<p>drdpr.

1
2
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Therefore, we get

//t—r‘"1 )P A(T,p)dTdp

1
2

o B
< r<;+1 RLAP O+ R (20} - 286 {f()}RS‘,,{f(t)}]
. B 2
* | ey o (80} + prgypy R {800} — 288, {800} RS, {g(t)}]
(3.16)

Applying Lemma 3.1 with y;(t) = ya(¢) = g(¢r) = 1, we have

s (R Aot o))

P 2
0 Y S I R Tee @
This implies that
tﬁ R% 2 R% Rﬁ
TR+ 0. {/7H0) = RGASHOR, { S} (1)
s (R l@reno)
TEI . R oo e IORADE
=Gi(f,01,9)(1), (3.17)
and
SR~ RE U ORE (1)
o (Riorono)
ST R gy ORI
=Ga(f, 01, 92)(2). (3.18)
Also, applying the same procedure with ¢;(1) = ¢ () = f(z) = 1, we get
B
mR&z{f}@ —R&t{g}(z)Rg7,{g}(z) <Gi(gyL,w)(), (319
and
TR0~ R OR] (6} 0) < ale.vi) (). G20

Finally, considering (3.15) to (3.20), we arrive at the desired result in (3.13). This
completes the proof of Theorem 3.6. [
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THEOREM 3.7. Assume that all conditions of Theorem 3.6 are fulfilled. Then for
t >0 and o > 0, the following inequality holds:

tO(

NCES) R, {fe} (1) = R§, {f} (RS, {g} (1)

D=

<IG(f,01,02)(t)G(g, w1, y2)(1)] 2, (3.21)

where

o (R L 0)

G(u,v,w)(t) = I CES TR RO — (R§, {u(1))*.

Proof. Setting oo = f in (3.13), we arrive at the desired resultin (3.21). [

REMARK 3.8. If ¢ =m, ¢ =M, y; =n and y, = N, then we have

—m)?
Gtrmm ey = I (ke 1y,

_n)?
Glen M) = VI (Rg (1 0))?

COROLLARY 3.4. Let f and g be two positive integrable functions on [0,c0)

satisfying (H,). Then for z > 0 and a > 0, we have
tO(
mR&t {fe} () —RG, {f} (1)RG, {g} (1)
(M — m) (N — n) o o
<{———°R 1R t).
A/ mMnN O,I{f}() O,I{g}()

REMARK 3.9. Corollary 3.4 is Theorem 1 of [1] whose the proof is not correct

since it again is based on inequality (3.6).

4. Applications

In this section we present a way for constructing the four bounding functions, and
use them to give some estimates of Chebyshev type fractional integral inequalities of
two unknown functions.

Let u be a unit step function defined by

u(t) = {1, t>0,

0, <0,
and let u,(r) be the Heaviside unit step function defined by

1, t>a,
0, t<a.

us(t) =u(t —a)= {
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Let ¢; be a piecewise continuous function on [0, 7] defined by

@1(2) = my(uo(t) — ur, (1)) 4 ma(ury (1) — gy (1)) +m3(ur, () — gy (1))
+"'+mp+1ut,,(t)
= myug(t) + (ma —my)us (t) + (maz —m)ugy (t) + - -+ (mpy1 —mp)uyg, (¢)

Z My —mj)ug (1), 4.1

where moEO and O=1p <ty <t < <tp<tpy1=T.
Analogously, we define the functions ¢,, y; and y; as

oat) = 3 My — My (1), 42)
j=0

Vi) = 3 (0501 — ) 1), @3
j=0

val) = 3 (N — NjJu (1), (4.4)
=0

where constants ng = Ng = My = 0. If there is an integrable function f on [0,7]
satisfying condition (H;) then we have mj < f(t) < Mjy for each 1 € (,1j,1],
j=0,1,2,...,p. Inparticular, p =4, the time history of f can be shown as in figure 1.

Figure 1: Functions f, ¢y and ¢;.

PROPOSITION 4.1. Let f and g be two positive integrable functions on [0,T].
Assume that the functions @1, ¢, Y| and Y, defined by (4.1), (4.2), (4.3) and (4.4),
respectively, satisfy (Hy). Then for o. > 0, the following inequality holds:

<2n1+1N1+1Rt, t,H{f} ) <2m1+1M1+1Rt1,tj+l{g HT ))

J=0 Jj=0

M"c

l
Z (mj+1nj+1 +Mj+1Nj+1)Rg’th{fg}(T). (45)
0

J
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Proof. By using the definition (2.2), we have

ROT{V/IVQf} an+le+1Rt],t,+l{f }( ),

j=0

ROT{(PI(PZg} 2’”1+le+1 tjtj+1{g }( )
Jj=

and

14

Ryr{(@1y1 + @ayn) fe}(T) = 2 (mjy1njq +Mj+1Nj+1)R;O;7tj+l {fg}(T).

Jj=0

By applying Lemma 3.1, the desired inequality (4.5) is established. [

501

PROPOSITION 4.2. Suppose that all assumptions of Proposition 4.1 are satisfied.

Then for o, 3 > 0, the following inequality holds:

T Tlf‘

—R& L} (T)RS {8} (T) — R&; {g} (T) R {f} (T)

< |GH(fmps1. My ) (T) + G3(frmpsr, My )(T))|?
X |Gi(g,nj41,Nj1)(T)+ G3(g,nj41,Nj1)(T )|

where

2
P
Tﬁl"(a +1) <j§6(\/—|—w)ijH {u}(T)>

4AT(B+1) &

G (u,v,w)(r) =

ZZ)VW[ = (T =1j11)°]
&m@)@&w ).
2
P
GE(” ww)(T) = T°T(B+1) (ZE) v+w) ’J’/+1{g}( ))
. P
AT(a+1) 3 vw { (T—tjﬂ)ﬁ}

J

=0
— (RE{uh(r Mﬁm&)

(4.6)
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Proof. Since

R, A0 = [

J

- T(a+1) (T —1))* = (T —1j41)%],

1j+1 (T _ S)Otfl

we have

P o MM \& a
Ry {102 }(T) _jgf) 1“(+oc+1+) (T —1))% = (T —1;:1)%],

o _ 4 nj 1Nj+1 o \a
REr {yiya (1) = Eorfa g (T =) = (T =120)°].

By direct computations, we have

2
Tﬁl“(a.g_l) (jgb(mjﬂ+Mf+1)R,O;JM{f}(T)>
4r(ﬁ+l imj-‘rle-‘rl [(T tj)a_(T—[j+1)a]
j=0

Gl(f7(Pl7(p2)(T) =

~ (RErLrH(D) (R A1)(T))

2
14
+N
Tﬂl“a+1 (;2() nj+1 J+1 t,tﬂ{g}( ))

Gi(g w1, v2)(T

4r(g+1) inj+1Nj+l (T —(T—1j41)%]

=0

~ (R&r {2} (1) (RE {g)(T )
2
p

 TOT(B+1) (;6 mjg1+Mjy1) t,-.,tjﬂ{f}(T))

Ga(f,01,.9:)(T) = o)) 2
2, miiMj1 [(T )P — (T_tj+l)ﬁ]

j=0
~ (R A1) (REASHD)).

and

2
P
r'rp+1) (EB (njﬂ +Nj+l) R?Njﬂ {g}(T)>

Ta+l) i”j+1Nj+l [(T—fj)ﬁ—(T—th)ﬁ}
=0
(7))

(RS 4g3(m)).

G2(g7l//1’ W2)(T) =

- (R&T{g} r
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By applying Theorem 3.6, the required inequality (4.6) is established. [

COROLLARY 4.1. Let all assumptions of Proposition 4.2 be fulfilled. Then for
a > 0, the following inequality holds:

o

To+1) RG 7 {fe}(T) = R {fH(T)RG 7 {8} (T)

Nl—

< |G (f,mjs1, M1 )(T)G*(g,mj1,Njp 1 )(T)|2, (47)

where
» 2
o Z (v+w)R 1 tH{”}( )
G () (T) = - ~ (RS {u}(1))?
Z w (T —1;)% = (T —tj11)"]

Proof. Setting oo = f in (4.6), we arrive at the desired result in (4.7). O

REMARK 4.3. The accuracy of approximate bounds of inequalities (4.5), (4.7)
and (4.6) is dependent on p € N.
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