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AN INEQUALITY FOR INTEGRALS OF THE FORM
∫ ∞
x f (t)eit dt

GRAHAM J. O. JAMESON

(Communicated by G. Sinnamon)

Abstract. It is shown that for a completely monotonic function f , the absolute value of
∫ ∞
x f (t)eit dt

is not greater than f (x) .

1. Introduction

We consider integrals of the form

I f (x) =
∫ ∞

x
f (t)eit dt,

with real and imaginary parts

Cf (x) =
∫ ∞

x
f (t)cos t dt, S f (x) =

∫ ∞

x
f (t)sin t dt.

We assume that f (t) is defined and non-negative for all t > 0 (and possibly also for
t = 0), and that it satisfies a condition of the following type:

(CM): limt→∞ f (t) = 0 and (−1)n f (n)(t) � 0 for all n � 0 and t > 0.
(CM k ): the same restricted to n � k , with f (k)(t) continuous.

Functions satisfying (CM) are said to be completely monotonic, though the condition
limt→∞ f (t) = 0 is not always included in the definition.

It follows easily from condition (CMk ) that for 1 � r � k − 1, the function
(−1)r f (r)(t) is decreasing and tends to 0 as t → ∞ , so itself satisfies (CM k−r ). Also,
if f satisfies (CMk ), then so do f (t +a) and f (t)− f (t +a) for a > 0.

The most basic class of completely monotonic functions is f (t) = 1/t p for any
p > 0. In the case p = 1, the functions S f and Cf are the “sine” and “cosine” integrals
(the established notation for this case is si(x) =−S f (x) and ci(x) =−Cf (x)). The case
p = 1

2 gives the Fresnel integrals.
Another function satisfying (CM) is f (t) = e−at , where a > 0. Numerous further

examples are given in [1] and references listed there.
For f satisfying (CM1 ), we have | f ′(t)eit | � − f ′(t) , hence

|I f ′(x)| �
∫ ∞

x
(− f ′(t))dt = f (x). (1)
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Now integrating by parts, we have

I f (x) =
[
− i f (t)eit

]∞

x
+ i

∫ ∞

x
f ′(t)eit dt

= i f (x)eix + iI f ′(x). (2)

So the integral defining I f (x) is convergent, and also

|I f (x)| � 2 f (x). (3)

Our concern in this note is the best version of this inequality. It is arguable that
the natural comparison is with f (x) rather than 2 f (x) . Indeed, if f satisfies (CM2 ),
we can apply (3) to − f ′ and substitute in (2) to obtain |I f (x)| = f (x)+ r1(x) , where
|r1(x)|�−2 f ′(x) . If f ′(x) = o[ f (x)] as x→∞ , (which occurs in many cases, including
f (t) = t−p ), it follows that |I f (x)| ∼ f (x) as x → ∞ . Of course, this shows that if C is
the best constant in the inequality |I f (x)| � C f (x) , then C � 1.

However, without any differentiability conditions, a trivial example shows that it
is possible to have |I f (x)| > f (x) , in fact the factor 2 in (3) can be attained. To see
this, take f (t) to be 1 for 0 � t � π and 0 for t > π : then I f (0) = 2i . For an example
satisfying (CM2 ), take f (t) to be (2π − t)2 on [0,2π ] and 0 for t > 2π : it is easily
checked that I f (0) = 4π2i+4π . (Strictly, this example does not satisfy (CM2 ) because
f ′′ has a discontinuity at 2π ; however, this can be corrected by a small perturbation.)

In the light of these examples, it is rather striking that the suspected inequality
actually does hold under condition (CM4 ). In fact, we will prove the following theorem.

THEOREM 1. If f satisfies (CM4 ), then |I f (x)| is decreasing and |I f (x)| � f (x)
for all x > 0 .

Although these integrals are a highly classical topic, only limited attention seems
to have been given to inequalities of this type. For the special case f (t) = 1/t , it is
pointed out in [2, p. 123] that the usual contour integral method for the sine integral
delivers the inequality |S f (x)| � (π/2x) . For this case, a recent article [4] establishes
the stronger bound π

2 − tan−1 x : this is less than 1/x , and reproduces the exact value at
0.

We mention some further preliminary facts. If f satisfies (CM2 ), by applying
(2) to f ′(t) and substituting back (which is equivalent to repeating the integration by
parts), we obtain

I f (x) = i f (x)eix − f ′(x)eix − I f ′′(x). (4)

If f satisfies (CM4 ), we can apply this to f ′′ and substitute again to obtain

I f (x) = i
[
f (x)− f ′′(x)

]
eix −

[
f ′(x)− f (3)(x)

]
eix + I f (4)(x), (5)

For (CM) functions, as is well known, repetition of the process generates an asymptotic
expansion for I f (x) [3, p. 146, 150]. For the particular case f (t) = 1/t p , one can apply
(5) to establish |I f (x)| < f (x) (and indeed stronger inequalities with further terms) for
sufficiently large x , but the method does not extend to the whole range x > 0. Details
for the case f (t) = 1/t can be seen in [4].
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2. The auxiliary functions and the proof of Theorem 1

We consider the function Kf (x) = e−ixI f (x) . Note that

Kf (x) =
∫ ∞

x
f (t)ei(t−x) dt =

∫ ∞

0
f (u+ x)eiu du. (6)

Write Kf (x) = Vf (x)+ iUf (x) , so that

Uf (x) = S f (x)cosx−Cf (x)sinx, (7)

Vf (x) = Cf (x)cosx+S f (x)sinx, (8)

Uf and Vf are the “auxiliary functions”. (We write Uf , Vf this way round in a gesture
to customary notation.) Note that Uf (nπ)= (−1)nS f (nπ) and Vf (nπ)= (−1)nCf (nπ) ;
these points are the successive maxima and minima of S f (x) . Also, denoting (n− 1

2)π
by un , we have Uf (un) = (−1)nCf (un) and Vf (un) = (−1)n+1S f (un) .

Stated for Kf (x) and its components, identity (2) becomes

Kf (x) = i f (x)+ iKf ′(x), (9)

Uf (x) = f (x)+Vf ′(x), Vf (x) = −Uf ′(x). (10)

Similarly, (4) becomes

Kf (x) = i f (x)− f ′(x)−Kf ′′(x), (11)

Uf (x) = f (x)−Uf ′′(x), Vf (x) = − f ′(x)−Vf ′′(x), (12)

Also, since I′f (x) = −eix f (x) (distinguish between I′f (x) and I f ′(x)!), we have

K′
f (x) = −ieixI f (x)− e−ixeix f (x) = −iKf (x)− f (x), (13)

hence
U ′

f (x) = −Vf (x), V ′
f (x) = Uf (x)− f (x). (14)

By (9) and (13), we have K′
f (x) = Kf ′(x) , and similarly for Uf and Vf : this also follows

formally from (6) by differentiation under the integral sign. We remark (though we will
not use this fact) that Uf and Vf satisfy the differential equations U ′′

f +Uf = − f ′ and
V ′′

f +Vf = f .
Some basic facts about Uf (x) and Vf (x) are summarised in the next result.

PROPOSITION 2. If f satisfies (CM4 ), then

0 � Uf (x) � f (x), (15)

0 � Vf (x) � − f ′(x). (16)

Further, Uf (x) , Vf (x) and f (x)−Uf (x) are decreasing.

Proof. For f satisfying (CM1 ), we have, by (1), |Vf ′(x)| � |I f ′(x)| � f (x) , so
by (10), Uf (x) � 0. If f satisfies (CM2 ), then − f ′ satisfies (CM1 ), so this gives
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Uf ′(x) � 0, and again by (10), we have Vf (x) � 0. Now assuming f satisfies (CM4 ),
we apply these statements to f ′′ , concluding that Uf ′′(x) and Vf ′′(x) are non-negative.
So by (12), we have Uf (x) � f (x) and Vf (x) � − f ′(x) .

By (14), we now have U ′
f (x) = −Vf (x) � 0, also V ′

f (x) = Uf (x)− f (x) � 0 and
f ′(x)−U ′

f (x) = f ′(x)+Vf (x) � 0. �

Theorem 1 now follows in a simple and pleasant way.

Proof of Theorem 1. Let Mf (x) = |I f (x)|2 = Cf (x)2 +S f (x)2 . Then

M′
f (x) = −2Cf (x) f (x)cosx−2S f (x) f (x)sin x

= −2 f (x)[Cf (x)cosx+S f (x)sinx]
= −2 f (x)Vf (x).

By (16), we have 0 � Vf (x) � − f ′(x) . Hence M′
f (x) � 0, so Mf (x) is decreasing.

Also, M′
f (x) � 2 f (x) f ′(x) , so f (x)2 −Mf (x) is decreasing. Since it tends to 0 as

x → ∞ , it follows that it is non-negative, so Mf (x) � f (x)2 , hence |I f (x)| � f (x) , for
x > 0. �

Of course, it follows that |Cf (x)| and |S f (x)| are also bounded by f (x) . The upper
bounds in (15) and (16), which were used in the proof, are now seen to be special cases
of Theorem 1.

We derive a version of the result for integrals on intervals of length 2kπ . Write
I f (x,y) =

∫ y
x f (t)eit dt .

COROLLARY 1.1. If f satisfies (CM4 ) and y = x+2kπ , then |I f (x,y)| � f (x)−
f (y) .

Proof. Clearly, I f (x+ a) = eiaIg(x) , where g(t) = f (t + a) . In particular, if a =
2kπ , then I f (x+a) = Ig(x) . Hence I f (x,y) = I f (x)− I f (x+a) = Ih(x) , where h(t) =
f (t)− f (t +a) . The statement follows by applying Theorem 1 to h . �

EXAMPLE. (the Fresnel integral) Among the many particular cases of Theorem
1, we just mention the Fresnel integral, given by f (t) = 1/t1/2 . It is often presented in
the following alternative form, given by the substitution t = u2 :

JF(x) =:
∫ ∞

x
eiu2

du = 1
2 I f (x2).

By Theorem 1, we have |JF(x)| � 1
2x .

3. An alternative proof for completely monotonic functions

We sketch a superficially very quick alternative proof of Theorem 1 for (CM)
functions using a theorem of Bernstein [5, p. 160]. This theorem states that all such
functions can be expressed as

f (t) =
∫ ∞

0
e−ut dμ(u)
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for some non-negative measure μ . As an illustration, the expression for 1/t p is

1
t p =

1
Γ(p)

∫ ∞

0
up−1e−ut du.

Proof of Theorem 1 for (CM) functions. Assuming validity of the reversal of inte-
gration, we have

I f (x) =
∫ ∞

x
eit

∫ ∞

0
e−ut dμ(u)dt

=
∫ ∞

0

∫ ∞

x
e−(u−i)t dt dμ(u)

=
∫ ∞

0

e−(u−i)x

u− i
dμ(u).

Since |u− i|� 1, we deduce

|I f (x)| �
∫ ∞

0
e−ux dμ(u) = f (x). �

However, this method only applies to (CM) functions, and it depends on heavy
machinery, in the form of Bernstein’s theorem. Also, the reversal of integration requires
justification, at least by first considering the integral on a bounded interval [x,y] for t .
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