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Abstract. In this paper we deal with the problem of finding the maximal volume polyhedra
with a prescribed property and inscribed in the unit sphere. We generalize an inequality (called
icosahedron inequality) of L. Fejes-Tóth which has the following interesting consequence: the
regular icosahedron has maximal volume in the class of the polyhedra having twelve vertices
and inscribed in the unit sphere. We give an upper bound for the volume of such star-shaped
(with respect to the origin) simplicial polyhedra, whose number of faces, and also the list of
the maximal edge lengths of the faces are given. As a consequence of this inequality we prove
a conjecture which states that the maximal volume polyhedron spanned by the vertices of two
regular simplices with common centroid is the cube.

1. Introduction

The problem of finding the maximal volume polyhedra in R
3 with a given num-

ber of vertices and inscribed in the unit sphere, was first mentioned in [5] in 1964. A
systematic investigation of this question starts with the paper [1] of Berman and Hanes
in 1970, who found a necessary condition for optimal polyhedra, and determined those
with n � 8 vertices. The same problem was examined in [10], where the author pre-
sented the results of a computer-aided search for optimal polyhedra with 4 � n � 30
vertices. Nevertheless, according to our knowledge, this question, which is listed in
both research problem books [2] and [3], is still open for polyhedra with n > 8 vertices
apart from the fortunate case of n = 12 when the solution is the regular icosahedron.
In [9] the authors investigated this problem for polytopes in arbitrary dimensions. By
generalizing the methods of [1], the authors presented a necessary condition for the
optimality of a polytope. The authors found the maximum volume polytopes in R

d ,
inscribed in the unit sphere S

d−1 , with n = d +2 vertices; for n = d +3 vertices, they
found the maximum volume polytope for d odd, over the family of all polytopes, and
for d even, over the family of not cyclic polytopes, respectively.

One of the most important tools of 3-dimensional investigations is the result of L.
Fejes-Tóth on the volume bounds of the polyhedra inscribed in the unit sphere (formula
(2) on p. 263 in [5]). For simplicial polyhedra it can be simplified into another one (see
p. 264 in [5]) which we call icosahedron inequality. The term is motivated by the fact
that this inequality implies the case of n = 12 points when the unique solution is the
icosahedron.
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The aim of this paper is to give similar inequalities for such cases when certain
(other than the number of vertices) prescribed information on the examined class of
polytopes inscribed in the unit sphere need to be taken into consideration. In Section 3
we generalize the icosahedron inequality for such simplicial bodies whose faces have
given lengths of maximal edges, respectively (Prop. 2, Prop. 3, Theorem 1). Our ex-
tracted formula is valid not only for convex polyhedra but also for polyhedra that area
star-shaped with respect to origin. (Theorem 1). As an application of the generalized
inequality we prove a conjecture which states that the maximal volume polyhedron
spanned by the vertices of two regular simplices with common centroid is the cube.
This conjecture was raised and proved partially in [6] and inspired some other exami-
nations on the volume of the convex hull of simplices [7].

In Section 4 we consider the general (non-simplicial) case and prove some in-
equalities on it, too. Finally, we give the source file (written by Mathematica 10) of the
symbolic and numerous calculations of the proof of Theorem 1 in the last section.

2. Preliminaries

Since we use some of the important steps of the proof of these inequalities we
collect them in a separate proposition. Let a(P) be the area of a convex p -gon P lying
in the unit sphere, τ(P) the (spherical) area of the central projection of P upon the unit
sphere, and v(P) the volume of the pyramid of base P and apex O which is the centre
of the unit sphere. Let denote U(τ(P), p) the maximum of v(P) for a given pair of
values p and τ(P) .

PROPOSITION 1. ([5]) With the above notation we have the following statements
on U(τ(P), p) .

1. For given values of p and τ the volume v attains its maximum U(τ, p) if t is a
regular p-gon.

2. For general p � 3 we have

U(τ, p) =
p
3

cos2
π
p

tan
2π − τ

2p

(
1− cot2

π
p

tan2 2π − τ
2p

)
, (2.1)

implying that

U(τ,3) =
1
4

tan
2π − τ

6

(
1− 1

3
tan2 2π − τ

6

)
, (2.2)

3. The function U(τ, p) is concave on the domain determined by the inequalities
0 < τ � π , p � 3 .

4. If V denotes the volume, R the circumradius of a convex polyhedron having f
faces, v vertices and e edges, then

V � 2e
3

cos2 π f
2e

cot
πv
2e

(
1− cot2

π f
2e

cot2
πv
2e

)
R3. (2.3)
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Equality holds only for regular polyhedra.

REMARK 1. A polyhedron with a given number n of vertices is always the limit-
ing figure of a simplicial polyhedron with n vertices, hence, introducing the notation

ωn =
n

n−2
π
6

we have the following inequality

V � 1
6
(n−2)cotωn(3− cot2 ωn)R3. (2.4)

Equality holds in (2.4) only for the regular tetrahedron, octahedron and icosahedron
(n = 4,6,12).

3. Inequalities on the volume of a facial tetrahedron

Our first proposition is a rewriting of (1) of Proposition 1 in a more general form
when p = 3. If A,B,C are three points on the unit sphere we can take two triangles
with these vertices, one of the corresponding spherical triangle and the second one the
rectilineal triangle with these vertices, respectively. Both of them are denoted by ABC .
The angles of the rectilineal triangle are the halves of the angles between those radii of
the circumscribed circle which connect the center K of the rectilineal triangle ABC to
the vertices A,B,C . Since K is also the foot of the altitude of the tetrahedron with base
ABC and apex O , hence the angles αA , αB and αC of the rectilineal triangle ABC ,
play an important role in our investigations, we refer to them as the central angle of
the spherical edges BC , AC and AB , respectively. We call the tetrahedron ABCO the
facial tetrahedron with base ABC and apex O .

PROPOSITION 2. Let ABC be a triangle inscribed in the unit sphere. Then there is
an isosceles triangle A′B′C′ inscribed in the unit sphere with the following properties:

• the greatest central angles and also the spherical areas of the two triangles are
equal to each other, respectively;

• the volume of the facial tetrahedron with base A′B′C′ is greater than or equal to
the volume of the facial tetrahedron with base ABC.

Proof. Assume first that the triangle ABC contains the centre K of its circum-
scribed circle. Let us denote by K′ the central projection of K onto the unit sphere.
The angles 2αA and βA are the spherical angles of the triangle K′BC at K′ and B (or
C ), respectively. Then the area of the triangle KBC is equal to

a(KBC) = Δ(αA,βA) =
1
2

sin2αA sin2 ∠K′OB =
1
2

sin2αA
(
1− cot2 αA cot2 βA

)
.

On the domain
0 � α � π

2
, 0 � β � π

2
, α + β � π

2
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Figure 1: Facial, rectilineal and spherical simplices, respectively.

it is a concave function of two variables (see p. 267 in [5]). Hence

a(ABC) = Δ(αA,βA)+ Δ(αB,βB)+ Δ(αC,βC)

� 2Δ
(

αA + αB

2
,

βA + βB

2

)
+ Δ(αC,βC) = a(A′B′C′),

where the value on the right hand side of the inequality above is the area of the isosce-
les triangle A′B′C′ . (We note that the central projections upon the sphere of the two
triangles have the same spherical excess a(ABC) = a(A′B′C′) = 2(βA +βB +βC)−π ).

Compare now the altitudes m and m′ of the pyramids based on the two triangles,
respectively. The spherical area of the first triangle is

τ = 2(βA + βB + βC)−π = 2π +(2(βA + βB + βC)−3π)

= 2π +2
(
tan−1

(
tan
(

βA − π
2

))
+ tan−1

(
tan
(

βB − π
2

))
+ tan−1

(
tan
(

βC − π
2

)))
= 2π −2

(
tan−1 (m tanαA)

+ tan−1 (m tanαB)+ tan−1 (m tanαC)
)
.

Since we do not exclude the possibility of αC = π/2 (implying that βC = 0) we define
tan−1 tanπ/2 =: π/2. We also use the value tan−1 tan0 =: 0 determining the used
range of the function x �→ tan−1 x .

By the convexity (see e.g. p. 229 in [5]) of tan−1 (m tanαA) we get that

τ � 2π −2

(
2tan−1

(
m tan

αA + αB

2

)
+ tan−1 (m tanαC)

)
.

On the other hand for m′ we have

τ = 2π −2

(
2tan−1

(
m′ tan

αA + αB

2

)
+ tan−1 (m′ tanαC

))
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implying that (
2tan−1

(
m tan

αA + αB

2

)
+ tan−1 (m tanαC)

)
�
(

2tan−1
(

m′ tan
αA + αB

2

)
+ tan−1 (m′ tanαC

))
from which it follows that m′ � m .

Second assume that the angle at C is obtuse. Then αA + αB = αC < π/2 and we
have

τ = 2
(
tan−1 (m tan(αA + αB))− tan−1 (m tanαA)− tan−1 (m tanαB)

)
.

On the other hand

a(ABC) =
1−m2

2
(sin2αA + sin2αB − sin2αC)

and the volume in question is

v(αA,αB) =
m(1−m2)

6
(sin2αA + sin2αB − sin2(αA + αB)) . (3.1)

We consider the maximum of v(αA,αB) under the conditions 0 � αA,αB � π/2,

0 = −τ
2

+
(
tan−1 (m tan(αA + αB))− tan−1 (m tanαA)− tan−1 (m tanαB)

)
,

and
0 = αA + αB − const.

with respect to the unknown values αA,αB and m . Using Lagrange’s method we get
two equations

μ =
m(1−m2)

6
(cos2αA − cos2(αA + αB))+

λm(1−m2)
(
tan2 (αA + αB)− tan2 αA

)
(1+m2 tan2 (αA + αB)) (1+m2 tan2 αA)

μ =
m(1−m2)

6
(cos2αB − cos2(αA + αB))+

λm(1−m2)
(
tan2 (αA + αB)− tan2 αB

)
(1+m2 tan2 (αA + αB)) (1+m2 tan2 αB)

which are equivalent to the equations

μ
m(1−m2)

=
1
3

+
λ
(
1+ tan2 (αA + αB)

)(
1+ tan2 αA

)
(1+m2 tan2 (αA + αB)) (1+m2 tan2 αA)

μ
m(1−m2)

=
1
3

+
λ
(
1+ tan2 (αA + αB)

)(
1+ tan2 αB

)
(1+m2 tan2 (αA + αB)) (1+m2 tan2 αB)

because of the equality

tan2 (αA+αB)− tan2 αA

(1+ tan2 (αA+αB))(1+ tan2 αA)
= cos2 αA−cos2(αA+αB)=

cos2αA−cos2(αA+αB)
2

.
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These conditions turn out to be equivalent to(
1+ tan2 αA

)
(1+m2 tan2 αA)

=

(
1+ tan2 αB

)
(1+m2 tan2 αB)

which cannot be satisfied unless αA = αB . Hence if the triangle is not an isosceles one
it is not a local extremum of our problem, on the other hand by compactness it has at
least one local maximum proving our statement. �

REMARK 2. We can compare the formulas of Proposition 2

V � m′(1−m′2)
6

(2sinαC − sin2(αC)) =
m′(1−m′2)

3
sinαC(1− cosαC)

and

V � m′(1−m′2)
6

(2sin(π − α̃C)+ sin2(α̃C)) =
m′(1−m′2)

3
sin α̃C(1+ cosα̃C)

on αC and α̃C . In both cases we assumed that αC and α̃C are in the interval [0,π/2] ,
respectively. Using the equality αC = π − α̃C the above formulas simplify to the fol-
lowing common form

V � m′(1−m′2)
3

sinαC(1− cosαC) =: v
(
m′,αC

)
where 0 < α < π . (3.2)

In the case when AC = BC we saw that

τ = 2
(
tan−1 (m′ tanαC

)−2tan−1
(
m′ tan

αC

2

))
and

τ = 2π −2

(
2tan−1

(
m′ tan

π − α̃C

2

)
+ tan−1 (m′ tan α̃C

))
,

respectively. (Observe that by the definition tan−1(∞) =: π/2 these formulas are valid
for αC = π/2 and lead to the same equality.) These equalities can be considered in the
following common form

tan
τ
2

= tan
(
tan−1 (m′ tanαC

)−2tan−1
(
m′ tan

αC

2

))
, (3.3)

where 0 < αC < π . In the case when π/2 < αC we have tan(τ/2) < 0 and τ/2 =
π + tan−1 (tan(τ/2)) .

COROLLARY 1. The upper bound function for fixed τ with the parameters |AB| ,
αC is

v(|AB|,αC) :=
|AB|2
12

√
sin2 αC − |AB|2

4

1+ cosαC
, (3.4)
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and using the equality |AB| = 2sin AB
2 it is of the form

v(AB,αC) :=
sin2 AB

2

3

√
sin2 αC − sin2 AB

2

1+ cosαC
. (3.5)

If AB is given the maximal volume of the possible facial tetrahedra are attained at the

isosceles triangle with parameter value αC = cos−1
( |AB|2

4 −1
)

= cos−1
(−cos2 AB

2

)
.

The formula is

v

(
|AB|,cos−1

( |AB|2
4

−1

))
=

|AB|
6

√(
1− |AB|2

4

)
=

1
6

sinAB.

Proof. Assume that the value of the length of AB is given. Then by Proposition
2 for fixed τ the maximal value of the volume V can be attained only for an isosceles
triangle and the upper bound function gives this maximal volume. Using the equality

sinαC =
|AB|

2
√

1−m′2

we get that

v
(
m′,αC

)
=

m′(1−m′2)
3

sinαC(1− cosαC) =
|AB|2
12

√
sin2 αC − |AB|2

4

1+ cosαC
= v(|AB|,αC),

where the possible values of αC can be got from the equality sin2 αC � |AB|2/4. The
derivative of v(|AB|,αC) = v(y,x) is

v′(y,x) =
y2 sin(x)

√
sin2(x)− y2

4

12(cos(x)+1)2 +
y2 sin(x)cos(x)

12(cos(x)+1)
√

sin2(x)− y2

4

hence we have

v′(|AB|,αC) =
|AB|2 sinαC

(
cosαC +1− |AB|2

4

)
12(1+ cosαC)2

√
sin2 αC − |AB|2

4

⎧⎪⎨⎪⎩
< 0 if cosαC +1 < |AB|2

4

= 0 if cosαC +1 = |AB|2
4

> 0 if cosαC +1 > |AB|2
4 .

Since cos−1
( |AB|2

4 −1
)

� π − sin−1(|AB|/2) , on the interval

sin−1(|AB|/2) < αC � π/2 � cos−1
( |AB|2

4
−1

)
� π − sin−1(|AB|/2)

the function v(αC) attains its maximal value at cos−1
(|AB|2/4−1

)
furthermore

v

(
|AB|,cos−1

( |AB|2
4

−1

))
=

|AB|2
12

√
|AB|2

4

(
1− |AB|2

4

)
|AB|2

4

=
|AB|
6

√(
1− |AB|2

4

)
.
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v(|AB|,αC) on the interval sin−1(|AB|/2) < αC � cos−1
( |AB|2

4 −1
)

is a strictly in-

creasing function and on the interval cos−1
( |AB|2

4 −1
)

� π − sin−1(|AB|/2) it is a

decreasing one. This shows that an optimal triangle with the fixed edge length |AB|
(which corresponding to a facial tetrahedron with maximal volume) is an isosceles
one. �

We also have a formula on the upper bound function v(m′,αC) using as a param-
eter the surface area τ (introduced in Proposition 2).

PROPOSITION 3. Let the spherical area of the spherical triangle ABC be τ . Let
αC be the greatest central angle of ABC corresponding to AB. Then the volume V of
the Euclidean pyramid with base ABC and apex O holds the inequality

V � 1
3

tan
τ
2

(
2− |AB|2

4

(
1+

1
(1+ cosαC)

))
. (3.6)

In terms of τ and c := AB we have

V � v(τ,c) :=
1
6

sinc
cos τ−c

2 − cos τ
2 cos c

2

1− cos c
2 cos τ

2
. (3.7)

Equality holds if and only if |AC|= |CB| .

Proof. For αC = π/2 the statement is obviously true. In the other cases, by Propo-
sition 2 and by the note before this statement we have to investigate the inequality

V � m′(1−m′2)
3

sinαC(1− cosαC) =: v
(
m′,αC

)
where 0 < αC < π , αC �= π/2

with the condition

tan
τ
2

= tan
(
tan−1 (m′ tanαC

)−2tan−1
(
m′ tan

αC

2

))

=
m′ tanαC − tan

(
2tan−1

(
m′ tan αC

2

))
1+m′ tanαC tan

(
2tan−1

(
m′ tan αC

2

)) =

2m′ tan αC
2

1−tan2 αC
2
− 2m′ tan αC

2

1−m′2 tan2 αC
2

1+ 2m′ tan αC
2

1−tan2 αC
2

2m′ tan αC
2

1−m′2 tan2 αC
2

=
2m′(1−m′2) tan3 αC

2

(1− tan2 αC
2 )(1−m′2 tan2 αC

2 )+4m′2 tan2 αC
2

=
2m′(1−m′2) tan αC

2

(cot αC
2 − tan αC

2 )(cot αC
2 −m′2 tan αC

2 )+4m′2

=
m′(1−m′2)sinαC(1− cosαC)

(1−m′2)
(
cosαC − sin2 αC

)
+(1+m′2)

=
3v(m′,αC)

(1−m′2)cosαC(1+ cosαC)+2m′2 .
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Since

sinαC =
|AB|

2
√

1−m′2 ,

hence

1−m′2 =
|AB|2

4sin2 αC

implying that

3v
(
m′,αC

)
= tan

τ
2

( |AB|2 cosαC(1+ cosαC)
4sin2 αC

+2

(
1− |AB|2

4sin2 αC

))
= tan

τ
2

(
2+

|AB|2
4sin2 αC

(cosαC(1+ cosαC)−2)
)

= tan
τ
2

(
2− |AB|2 (2+ cosαC)

4(1+ cosαC)

)
.

So

V � 1
3

tan
τ
2

(
2− |AB|2

4

(
1+

1
(1+ cosαC)

))
as we stated.

Since π −αC is the angle of the chordal triangle (rectilineal triangle) ABC at C ,
thus we can give it as a function of the spherical lengths of the sides of the spherical
triangle ABC . Thus we have (see eq. (486) in [4])

cosαC = −1+ cosAB−2cosAC

4sin2 AC
2

= −−1+ cosAB+4sin2 AC
2

4sin2 AC
2

.

Using the notation a := BC = AC , c = AB we get the formula

V � 1
3

tan
τ
2

(
2− sin2 AB

2
−2sin2 AC

2

)
=

1
3

tan
τ
2

(
2− sin2 c

2
−2sin2 a

2

)
.

Finally use the spherical Heron’s formula proved first by Lhuilier (see p. 88 in [4]):

tan
τ
4

=

√
tan

a+b+ c
4

tan
−a+b+ c

4
tan

a−b+ c
4

tan
a+b− c

4
.

Since a = b it can be reduced to the form

tan
τ
4

= tan
c
4

√
tan

2a+ c
4

tan
2a− c

4
= tan

c
4

√
sin2 a

2 − sin2 c
4

1− sin2 a
2 − sin2 c

4

.

From this we get that

sin2 a
2

=
tan2 τ

4 cos2 c
4 + tan2 c

4 sin2 c
4

tan2 τ
4 + tan2 c

4
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and thus the inequality

V � 1
3

tan
τ
2

(
2− sin2 c

2
−2

tan2 τ
4 cos2 c

4 + tan2 c
4 sin2 c

4

tan2 τ
4 + tan2 c

4

)

=
1
3

tan
τ
2

cos
c
2

(
cos

c
2

+
tan2 c

4 − tan2 τ
4

tan2 c
4 + tan2 τ

4

)

=
sin τ

2 cos c
2 sin2 c

2

3
(
1− cos c

2 cos τ
2

) =
sincsin τ

2 sin c
2

6
(
1− cos c

2 cos τ
2

)
=

1
6

sinc
cos τ−c

2 − cos τ
2 cos c

2

1− cos c
2 cos τ

2
. �

REMARK 3. In the case when a = b = c the connection between the parameters
c and τ is

tan
τ
4

= tan
c
4

√
tan

3c
4

tan
c
4

= tan2 c
4

√
3− tan2 c

4

1−3tan2 c
4

.

To determine the parameter c we introduce the notion x= tan2(c/4) and θ = tan2(τ/4) .
Now we get the equation of order three

0 = x3 −3x2−3θx+ θ = (x−1)3−3x(θ +1)+ (θ +1),

and if we set y = x−1 then the equality

0 = y3−3y(θ +1)−2(θ +1).

Using Cardano’s formula finally we get that

y =
2cos

( τ
12 + 4π

3

)
cos τ

4

.

Hence we have

1− cos c
2

1+ cos c
2

= tan2 c
4

= x =
2cos

( τ
12 + 4π

3

)
+ cos τ

4

cos τ
4

implying that

cos
c
2

=
−1

2cos τ+4π
6

and sin2 c
2

=
4cos2

( τ+4π
6

)−1

4cos2
( τ+4π

6

) .

Substituting these values into the formula (3.6) we get the inequality (2.2) showing that
Proposition 2 is the generalization of Proposition 1 in the case of p = 3.

Assume now that the simplicial polyhedron P , starshaped with respect to the ori-
gin has f faces and is inscribed in the unit sphere. Let c1, . . . ,c f be the arc-lengths
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of the edges of the faces F1, . . . ,Ff corresponding to their maximal central angles, re-
spectively. Denote by τi the spherical area of the spherical triangle corresponding to
the face Fi for all i . We note that for a spherical triangle which has edges a,b,c , the
inqualities 0 < a � b � c < π/2 as well as the inequality τ � c holds. In fact, for fixed
τ the least value of the maximal edge length is attained at a regular triangle. If c < π/2
then we have

tan
τ
4

=

(
tan

c
4

√
tan

3c
4

tan
c
4

)
=

⎛⎝tan
c
4

√
1− tan 3c

4 + tan c
4

tanc

⎞⎠< tan
c
4
,

and if c = π/2 then τ = 8π/4 = π/2 proving our statement.
Observe that the function v(τ,c) is concave in the parameter domain D := {0 <

τ < π/2,τ � c < min{ f (τ),2sin−1
√

2/3}} with certain concave (in τ ) function f (τ)
defined by the zeros of the Hessian; and non-concave in the domain D ′ = {0 < τ �
ω , f (τ) � c � 2sin−1

√
2/3} = {0 < τ � c � π/2}\D , where f (ω) = 2sin−1

√
2/3.

(The corresponding calculations can be checked by any symbolic software. In the last
section we can see such a computation using Mathematica 10. The precise value of ω
can be found in the last section (at Out[22]) which is approximately ω ≈ 0.697715.)

THEOREM 1. Assume that 0 < τi < π/2 holds for all i . For i = 1, . . . , f ′ we
require the inequalities 0 < τi � ci � min{ f (τi),2sin−1

√
2/3} and for all j with

j � f ′ the inequalities 0 < f (τ j) � c j � 2sin−1
√

2/3 , respectively. Let denote c′ :=

1
f ′

f ′
∑
i=1

ci , c� := 1
f− f ′

f
∑

i= f ′+1
f (τi) and τ ′ :=

f
∑

i= f ′+1
τi , respectively. Then we have

v(P) � f
6

sin

(
f ′c′ +( f − f ′)c�

f

) cos
(

4π− f ′c′−( f− f ′)c�

2 f

)
− cos 2π

f cos
(

f ′c′+( f− f ′)c�

2 f

)
1− cos 4π

2 f cos
(

f ′c′+( f− f ′)c�

2 f

) .

(3.8)

Proof. The volume of P is bounded above by the quantity

v(P) �
f

∑
i=1

v(τi,ci) :=
1
6

f

∑
i=1

sinci
cos τi−ci

2 − cos τi
2 cos ci

2

1− cos ci
2 cos τi

2

.

Using the concavity of the function v(τ,c) on the domain D and the fact that the
function v(τ, ·) for fixed τ is a monotone decreasing function of c on the domain D ′ ,
we get the following upper bound for v(P) :

v(P) � f ′

6
v

(
4π − τ ′

f ′
,c′
)

+
f − f ′

6
v

(
τ ′

f − f ′
,c�

)
.

Since for i = f ′ + 1, . . . , f the points (τi, f (τi)) are in the convex domain D then the

point
(

τ ′
f− f ′ ,c

�
)

also in D . Applying again the concavity property of the function
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v(τ,c) , we get the inequality

v(P) � f
6
v

(
4π
f

,
f ′c′ +( f − f ′)c�

f

)

=
f
6

sin

(
f ′c′ +( f − f ′)c�

f

) cos
(

4π− f ′c′−( f− f ′)c�

2 f

)
− cos 2π

f cos
(

f ′c′+( f− f ′)c�

2 f

)
1− cos 4π

2 f cos
(

f ′c′+( f− f ′)c�

2 f

) ,

as we stated. �

REMARK 4. When f ′ = f we have the following formula:

v(P) � f
6

sinc′
cos
(

2π
f − c′

2

)
− cos 2π

f cos c′
2

1− cos c′
2 cos 2π

f

, (3.9)

where c′ = 1
f

f
∑
i=1

ci . In this case the upper bound is sharp if all face-triangles are obtuse

isosceles ones with the same area and maximal edge lengths.

The condition of sharpness implies that the unit sphere tiling by the congruent
copies of such isosceles spherical triangles which equal sides are less than or equal
to the third one. Observe that a polyhedron corresponding to such a tiling could not
be convex. This motivates the following problem: Give such values τ and c that the
isosceles spherical triangle with area τ and unique maximal edge length c can be
generated by a tiling of the unit sphere. We note that the simplicial regular polyhedra
satisfy the above property.

EXAMPLE 1. We get a non-trivial example for this question, if we consider a
rhombic dodecahedron with its centroid as the center of the sphere and we project from
the center its vertices to the sphere (see the left figure in Fig. 2). (Note that there is no
circumscribed sphere about a rhombic dodecahedron hence the projection is necessary.)
We get a tiling of the sphere containing congruent spherical quadrangles. One of these
quadrangles has four congruent sides and two diagonals, respectively. The length of the
longer diagonal is c = π/2.

We can dissect these quadrangles at these longer diagonals into two congruent
spherical triangles. Denote by P the polyhedron defined by those plane triangles
as facets which correspond to these spherical triangles, respectively. The angles and
sides have the respective measures γ = 2π/3, α = π/4, β = π/4 and c = π/2, a =
sin−1

√
2/3, b = sin−1

√
2/3. Hence the area of this triangle 2π/3+π/4+π/4−π =

π/6 = 4π/24 as follows from the fact, that the 24 congruent copies of it, tile the whole
sphere. Observe that P is not convex since the distance of the opposite vertices of
two triangles with common base (in Euclidean measure) (2/

√
3) is less than that of the

Euclidean length of the common base (
√

2). Since we have only one type of triangles
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Figure 2: The star-shaped polyhedron P (on left), the original rhombic dodecahedron and the
convex convex hull Q of P (on right).

for which f (τ1) = f (π/6)≈ f (0,52360) � π/2 = c1 we can apply (3.9) with f = 24,
c′ = π/2, hence

v(P) = 4

√
2cos π

6 − cos π
12√

2− cos π
12

.

This quantity is an upper bound for the volume of such star-shaped polyhedra which are
inscribed into the unit sphere, have 24 faces with spherical area τi with the assumption
that f (τi) � π/2 and with maximal edge length π/2. We get such polyhedra if we
change a little bit the position of those vertices of P which denoted by white circles
on Fig. 2. (For τ (by Mathematica 10 see in the last section at In [20]) we get the

assumption π/2 � τ � tan−1
(
2
√

5−3
√

2
)

/(10+7
√

2) ≈ τ = 0.427922.)

Denote by Q the convex hull of P (see the right figure on Fig. 2). Then c1 =
2sin−1

√
1/3 ≈ 1, 23096 < π/2 < f (τ1) and we can apply again (3.9). Hence we get

that

v(Q) =
8
3

√
6cos

(
π
12 − sin−1

√
1
3

)
−2cos π

12
√

3− cos π
12

√
2

.

Q has maximal volume of the class of such polyhedra which can be gotten from Q by
a little change of the position of the vertices denoted by black circles, respectively.

EXAMPLE 2. Assume that f ′ = f = 12 and c = 2sin−1(
√

2/3) . Then the upper
bound is

2
2
√

2
3

cos
(

π
6 − sin−1(

√
2/3)

)
− 1√

3
cos π

6

1− 1√
3
cos π

6

=
8

3
√

3
,

which is the volume of the cube inscribed into the unit sphere. Hence we got a new
proof for that case of Theorem 3.3 of [6] when we restrict our examination to those
triangulations in which there is no face-triangle having edge length greater than the
edge length of a regular tetrahedron inscribed into the unit sphere.
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We now apply our inequality (3.7) to prove the general form of Theorem 3.3 in
[6] in which the additional assumption ”the tetrahedra are in dual position” has been
omitted.

THEOREM 2. Consider two regular tetrahedron inscribed into the unit sphere.
The maximal volume of the convex hull P of the eight vertices is the volume of the cube
C inscribed in the unit sphere, so

v(P) � v(C) =
8

3
√

3
.

Proof. We have to consider only that case which is not considered in [6]. Hence
we assume that in the spherical regular triangles of the spherical tiling corresponding
to the first regular tetrahedron there are 2,1,1,0 vertices of the second tetrahedron,
respectively. The five points (the three vertices of the first spherical triangle and the
two vertices of the second tetrahedron having in this triangle) having in the first closed
spherical triangle form a triangular dissection of it into five other spherical triangle.
Unfortunately, this dissection contains also such triangles which maximal edge lengths
greater than that of the edge length of the regular spherical triangle containing them. On
the other hand these triangles belong to the parameter domain D ′ (defined in Theorem

1) because f (π/5) = 1.83487< 2sin−1
√

2
3 . Hence the upper bound function for fixed

τ is locally a decreasing function of c . So we can assume that all of these triangles

have the same maximal spherical edge-lengths, which is equal to 2sin−1
√

2
3 . Thus we

get the following upper bound for the volume:

v(P) � v

(
π ,2sin−1

√
2
3

)
+6v

(
π/3,2sin−1

√
2
3

)
+

5

∑
i=1

v

(
τi,2sin−1

√
2
3

)

=
1
9

+
4

3
√

3
+

2
9

5

∑
i=1

sin τi
2√

3− cos τi
2

where 0 � τi and
5
∑
i=1

τi = π . But with this conditions as we can check in Section 5 (at

In[30])
5

∑
i=1

sin τi
2√

3− cos τi
2

� 1.97836 < 2

implying that

v(P) <

1√
3
+4+ 4√

3

3
√

3
<

8

3
√

3
= v(C)

as we stated. �
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4. Notes on the general case of the inequality

In this section we assume that the examined face F of the polyhedron P has
p sides. Then we have p points of a circle with center K of the unit sphere which
corresponds to a spherical convex polygon and also an rectilineal polygon with the
same set of vertices {A1, . . . ,Ap} , respectively. We introduce the concept of central
angle αi,i+1 which is the half of the convex angle AiKAi+1� when the line AiAi+1

does not separate K to the other vertices of the polygon, and it is the half of the value
2(π −AiKAi+1�) in the other case. Then the angle 0 < αi,i+1 < π corresponds to the
edge AiAi+1 . Analogously, we can introduce the angles βi,i+1 which is the angle of
the spherical triangle AiAi+1K′ at the vertex Ai (and Ai+1 ), where K′ is the central
projection of K to the sphere. Now the proof of Prop. 2 can be modified as follows. If
the rectilineal polygon contains K then

a(KAiAi+1) = Δ(αi,i+1,βi,i+1) =
1
2

sin2αi,i+1 sin2 ∠K′OAi

=
1
2

sin2αi,i+1
(
1− cot2 αi,i+1 cot2 βi,i+1

)
.

On the domain

0 � αi,i+1 � π
2

, 0 � βi,i+1 � π
2

, αi,i+1 + βi,i+1 � π
2

it is a concave function of two variables (see p. 267 in [5]). Hence

a(A1 . . .Ap) =
p−1

∑
i=1

Δ(αi,i+1,βi,i+1)+ Δ(αp,1,βp,1)

� (p−1)Δ

⎛⎜⎜⎝
p−1
∑
i=1

αi,i+1

p−1
,

p−1
∑
i=1

βi,i+1

p−1

⎞⎟⎟⎠+ Δ(αp,1,βp,1) = a(A′
1 . . .A′

p),

where the value of the right hand side is the area of a polygon A′
1 . . .A′

p whose edges
A′

iA
′
i+1 have equal lengths for i = 1, . . . , p− 1. (We note that the central projections

upon the sphere of the two polygons have the same spherical excess a(A1 . . .Ap) =
a(A′

1 . . .A′
p−1) = 2∑p

i=1 βi,i+1− (p−2)π .)
Compare now the altitudes m and m′ of the pyramids based on the two polygons,

respectively. The spherical area of the first one is

τ = 2
p

∑
i=1

βi,i+1− (p−2)π = 2π +

(
2

p

∑
i=1

βi,i+1− pπ

)

= 2π +2

(
p−1

∑
i=1

tan−1
(
tan
(

βi,i+1− π
2

))
+ tan−1

(
tan
(

βp,1− π
2

)))

= 2π −2

(
p−1

∑
i=1

tan−1 (m tanαi,i+1)+ tan−1 (m tanαp,1)

)
.
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We get that

τ � 2π −2

⎛⎜⎜⎝(p−1) tan−1

⎛⎜⎜⎝m tan

p−1
∑
i=1

αi,i+1

p−1

⎞⎟⎟⎠+ tan−1 (m tanαp,1)

⎞⎟⎟⎠ .

On the other hand by m′ we have

τ = 2π −2

⎛⎜⎜⎝(p−1) tan−1

⎛⎜⎜⎝m′ tan

p−1
∑
i=1

αi,i+1

p−1

⎞⎟⎟⎠+ tan−1 (m′ tanαp,1
)⎞⎟⎟⎠

implying that m′ � m .
We have to investigate also the second case, when ApA1 separates K and the other

vertices to each other. Then ∑p−1
i=1 αi,i+1 = π −αp,1 = α̃p,1 < π/2 and we have

τ = 2

(
tan−1

(
m tan

(
p−1

∑
i=1

αi,i+1

))
−

p−1

∑
i=1

tan−1 (m tanαi,i+1)

)
.

On the other hand

a(A1 . . .Ap) =
1−m2

2

(
p−1

∑
i=1

sin2αi,i+1− sin2α̃p,1

)
and the volume in question is

v(α1,2, . . . ,αp−1,p) =
m(1−m2)

6

(
p−1

∑
i=1

sin2αi,i+1− sin2
p−1

∑
i=1

αi,i+1

)
. (4.1)

We consider the maximum of v(α1,2, . . . ,αp−1,p) under the conditions 0 � αi,i+1 �
π/2,

0 = −τ
2

+

(
tan−1

(
m tan

(
p−1

∑
i=1

αi,i+1

))
−

p−1

∑
i=1

tan−1 (m tanαi,i+1)

)
,

and

0 =
p−1

∑
i=1

αi,i+1 − const.

with respect to the unknown values αi,i+1 and m . As in the proof of Proposition 2,
using Lagrange’s method we get p−1 equations of form

μ =
m(1−m2)

6

(
cos2αi,i+1 − cos2

p−1

∑
i=1

αi,i+1

)

+
λim(1−m2)

(
tan2

p−1
∑
i=1

αi,i+1 − tan2 αi,i+1

)
(

1+m2 tan2
p−1
∑
i=1

αi,i+1

)
(1+m2 tan2 αi,i+1)

.
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These lead to the equations(
1+ tan2 α1,2

)
(1+m2 tan2 α1,2)

= . . . =

(
1+ tan2 αp−1,p

)
(1+m2 tan2 αp−1,p)

which cannot be satisfied unless α1,2 = . . . = αp−1,p . Hence if the corresponding sides
of the polygon are not equal then the polygon is not a local extremum of our problem.
On the other hand, by compactness, it has at least one local maximum proving the
following statement:

PROPOSITION 4. Let A1 . . .Ap be a convex polygon inscribed into a circle of the
unit sphere. Then there is another convex polygon A′

1 . . .A′
p inscribed also into a circle

of the unit sphere with the following properties:

• A′
1A

′
2 = . . . = A′

p−1A
′
p ;

• the greatest central angles and also the spherical areas of the two polygons are
equal to each other, respectively;

• the volume of the facial pyramid with base A′
1 . . .A′

p and apex O is greater than
or equal to the volume of the pyramid with base A1 . . .Ap and apex O.

We can rewrite the formulas (3.2), (3.4), and (3.5) of Section 3 to the correspond-
ing formulas on the upper bound functions of a facial pyramid based on a p -gon, re-
spectively. We get that

v(m′,αp,1) =
m′(1−m′2)

6

(
(p−1)sin

2αp,1

p−1
− sin2αp,1

)
. (4.2)

Since

sinαp,1 =
|A1Ap|

2
√

1−m′2 , hence m′(1−m′2) =
|A1Ap|2

√
sin2 αp,1 − |A1Ap|2

4

4sin3 αp,1

we have that

v(|A1Ap|,αp,1) :=
|A1Ap|2

√
sin2 αp,1− |A1Ap|2

4

24

(
(p−1)sin

2αp,1
p−1 − sin2αp,1

)
sin3 αp,1

, (4.3)

and using the equality |A1Ap| = 2sin A1Ap
2 it gets the form

v(A1Ap,αp,1) :=
sin2 A1Ap

2

√
sin2 αp,1− sin2 A1Ap

2

6

(
(p−1)sin

2αp,1
p−1 − sin2αp,1

)
sin3 αp,1

.

(4.4)
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Finally, we note that the formulas (3.6) and (3.7) cannot be reproduced in an obvious
way. The reason is that a complicated trigonometric formula

tan
τ
2

= tan

(
tan−1 (m′ tanαp,1

)− (p−1) tan−1
(

m′ tan
αp,1

p−1

))

=
m′ tanαp,1− tan

(
(p−1) tan−1

(
m′ tan αp,1

p−1

))
1+m′ tanαp,1 tan

(
(p−1) tan−1

(
m′ tan αp,1

p−1

))
connects the parameters τ,m′ and

αp,1
p−1 excluding the possibility to get explicit formulas

similar to (3.6) and (3.7), respectively.

5. Numerical and symbolic computations with Mathematica 10

Present section contains those command lines (in Mathematica 10), which support
our statements on the examined functions. The source file with the results can be found
on the web [8].

In[1]: D[1/6Sin[c](Cos[(x−c)/2]−Cos[x/2]Cos[c/2])/(1−Cos[x/2]Cos[c/2]),x,c]

In[2]: Simplify[%]

In[3]: D[1/6Sin[c](Cos[(x−c)/2]−Cos[x/2]Cos[c/2])/(1−Cos[x/2]Cos[c/2]),{x,2}]
In[4]: Simplify[%]

In[5]: D[1/6Sin[c](Cos[(x−c)/2]−Cos[x/2]Cos[c/2])/(1−Cos[x/2]Cos[c/2]),{c,2}]
In[6]: Simplify[%]

In[7]: D[1/6Sin[c](Cos[(x−c)/2]−Cos[x/2]Cos[c/2])/(1−Cos[x/2]Cos[c/2]),{x,2}]
D[1/6Sin[c]Cos[(x−c)/2]−Cos[x/2]Cos[c/2])/(1−Cos[x/2]Cos[c/2]),{c,2}]
−D[1/6Sin[c](Cos[(x−c)/2]−Cos[x/2]Cos[c/2])/(1−Cos[x/2]Cos[c/2]),x,c]∧2

In[8]: Simplify[%]

In[9]: Plot3D[1/6Sin[c](Cos[(x−c)/2]−Cos[x/2]Cos[c/2])/(1−Cos[x/2]Cos[c/2]),
{x,0,Pi/2},{c,x,2ArcSin[Sqrt[2/3]]}]

In[10]: D[1/6Sin[c](Cos[(x−c)/2]−Cos[x/2]Cos[c/2])/(1−Cos[x/2]Cos[c/2]),c]

In[11]: Simplify[%]

In[12]: Plot3D[Out[11],{x,0,Pi/2},{c,x,2ArcSin[Sqrt[2/3]]}]
In[13]: RegionPlot[Out[11]>=0,{x,0,Pi/2},{c,0,2ArcSin[Sqrt[2/3]]}]
In[14]: Plot3D[Out[8],{x,0,Pi/2},{c,x,2ArcSin[Sqrt[2/3]]}]
In[15]: RegionPlot[Out[8]>=0,{x,0,Pi/2},{c,0,2ArcSin[Sqrt[2/3]]}]
In[16]: Reduce[Out[8]==0&&x==Pi/2&&0 < c < 2ArcSin[Sqrt[2/3]],{x,c}]
In[17]: N[%]

In[18]: Solve[z∧4−24z∧3+78z∧2−24z+1==0]
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In[19]: N[%]

In[20]: Reduce[Out[8]==0&&c==Pi/2&&0¡x¡Pi/2 ,{x,c}]
In[21]: N[%]

In[22]: Reduce[Out[8]==0&&c==2ArcSin[Sqrt[2/3]]&&0 < x < Pi/2,{x,c}]
In[23]: N[%]

In[24]: Reduce[Out[8]==0&&x==−2Pi/3+2ArcSin[Sqrt[14]/4]&&x < c < 2ArcSin[Sqrt[2/3]],
{x,c}]

In[25]: N[%]

In[26]: Reduce[Out[8]==0&&x==−4ArcSin[Sqrt[14]/4]+5Pi/3&&x < c < Pi/2,{x,c}]
In[27]: N[%]

In[28]: Reduce[Out[8]==0&&x==Pi/5&&0 < c < 2ArcSin[Sqrt[2/3]],{x,c}]
In[29]: N[%]

In[30]: NMaximize[{Sin[x]/(Sqrt[3]−Cos[x])+Sin[y]/(Sqrt[3]−Cos[y])+Sin[z]/(Sqrt[3]−
Cos[z])+Sin[u]/(Sqrt[3]−Cos[u])+Sin[v]/(Sqrt[3]−Cos[v]),x+y+z+v+u<=Pi/2,
0 < x,0 < y,0 < z,0 < u,0 < v},{x,y,z,u,v}]
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