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FENG-ZHEN ZHAO
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Abstract. In this paper, we investigate the properties of Genocchi number {Gn}n�1 . We prove
that the sequence {|G2n|}n�1 is log-convex. In addition, we discuss the monotonicity of some
sequences related to {Gn}n�1 . In particular, we show that { n

√|G2n|}n�1 is strictly increasing
and { n+1

√|G2n+2|/ n
√|G2n|}n�2 is strictly decreasing.

1. Introduction

For n � 1, let Gn denote the nth term of the Genocchi numbers. The sequence
{Gn}n�1 is a sequence of integers, which is defined by

2t
et +1

=
∞

∑
n=1

Gn
tn

n!
, |t| < π .

Genocchi numbers Gn satisfy G3 = G5 = G7 = · · · = 0. Some initial values of {Gn}
are as follows:

n 1 2 4 6 8 10 12 14 16 18 20
Gn 1 −1 1 −3 17 −155 2073 −38227 929569 −28820619 1109652905

For n � 0, let {Bn} denote the Bernoulli numbers. It is well known that

ζ (2n) =
22n−1π2n

(2n)!
|B2n|,

where

ζ (x) =
∞

∑
n=1

1
nx (Re(x) > 1)
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is the Riemann zeta function. It is clear that

ζ (2n) = 1+ ηn,

where

1
22n � ηn � 3

22n .

For n � 1, let {A2n−1} denote tangent numbers. Tangent numbers {A2n−1} are defined
by

∞

∑
n=1

A2n−1
t2n−1

(2n−1)!
= tan t, |t| < π

2
.

Genocchi numbers are related to Bernoulli numbers and tangent numbers, and there
two formula correlating them, which are (see [6])

G2n = 2(1−22n)B2n, n � 1, (1)

A2n−1 = 4n−1|G2n|/n, n � 1. (2)

Genocchi numbers have been studied in many subjects such as elementary number the-
ory, complex analytic number theory, theory of modular forms, p -adic analytic num-
ber theory and quantum physics. They have drawn much attention. See for instance
[1, 2, 3, 4, 8, 9, 10]. In this paper, we focus on the log-behavior of Genocchi numbers
and the monotonicity of some sequences related to Genocchi numbers.

A sequence {zn}n�0 of positive real numbers is said to be log-convex (log-concave)
if z2

n � zn−1zn+1 (z2
n � zn−1zn+1 ) for all n � 1. Log-convexity and log-concavity are

important properties of combinatorial sequences and they are also fertile sources of in-
equalities. It is clear that a sequence {zn}n�0 is log-convex (log-concave) if and only
if the sequence {zn+1/zn}n�0 is nondecreasing (nonincreasing). The log-behavior of
{|B2n|}n�1 has been studied in [5]. It seems that the log-behavior of {|G2n|}n�1 has not
been investigated. In this paper, we discuss the log-convexity of {|G2n|}n�1 . We will
prove that {|G2n|}n�1 , {|G2n|/n!}n�1 and {n|G2n|}n�1 are log-convex. In addition,
we also consider the monotonicity of some sequences involving {Gn}n�1 . In [12], Sun
posed a series of conjectures on monotonicity of sequences as the types { n

√
zn} and

{ n+1
√

zn+1/ n
√

zn} , where {zn}n�0 is a combinatorial sequence of positive integers. In
[5, 7, 11, 13, 14], many conjectures of [12] are confirmed. In particular, Wang and
Zhu [13] show that the monotonicity of { n

√
zn} is related to the log-convexity (log-

concavity) of {zn} . In this paper, we also show that { n
√|G2n|}n�1 is strictly increasing

and { n+1
√|G2n+2|/ n

√|G2n|}n�2 is strictly decreasing.
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2. Main results for {Gn}

In this section, we state and prove the main results of this paper. The following
result given by Chen, Guo and Wang in [5] will be useful:

LEMMA 2.1. For n > 1 ,

|B2n−2||B2n+2|
|B2n|2 � (n+1)(2n+1)

n(2n−1)
. (3)

Now we discuss the log-convexity of some sequences related to {Gn}n�1 .

THEOREM 2.1. The sequences {|G2n|}n�1 , {|G2n|/n!}n�1 and {n|G2n|}n�1 are
log-convex.

Proof. For n � 1, let

s2n =
|G2n+2|
|G2n| , t2n =

|G2n+2|
(n+1)|G2n| , u2n =

(n+1)|G2n+2|
n|G2n| .

By applying (1) and (3), we have

s2n+2

s2n
=

(22n+4−1)(22n−1)|B2n+4B2n|
(22n+2−1)2|B2n+2|2

>
(24n+4−22n+4−22n +1)(n+2)(2n+3)

(24n+4−22n+3 +1)(n+1)(2n+1)
,

t2n+2

t2n
>

(24n+4−22n+4−22n +1)(2n+3)
(24n+4−22n+3 +1)(2n+1)

,

u2n+2

u2n
>

(24n+4−22n+4−22n +1)(n+2)2(2n+3)n
(24n+4−22n+3 +1)(n+1)3(2n+1)

.

For n � 1, let

f1(n) = (24n+4−22n+4−22n +1)(n+2)(2n+3)− (24n+4−22n+3 +1)(n+1)(2n+1),
f2(n) = (24n+4−22n+4−22n +1)(2n+3)− (24n+4−22n+3 +1)(2n+1),
f3(n) = (24n+4−22n+4−22n +1)(n+2)2(2n+3)n

−(24n+4−22n+3 +1)(n+1)3(2n+1).

By straightforward calculation, we have

f1(n) = (4n+5)(24n+4 +1)−22n(18n2 +95n+94)
> 24n+4(4n+5)−22n(18n2 +95n+94),

f2(n) = 2(24n+4 +1)−22n(18n+43),
f3(n) = (24n+4 +1)(4n3 +11n2 +7n−1)−22n(18n4 +131n3 +268n2 +164n−8).
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For n � 1, we can prove by induction that

22n+4 > 9(n+3). (4)

By means of the inequality (4), we have

f1(n) > 22n[9(n+3)(4n+5)−18n2−95n−94]
> 0,

f2(n) > 0,

f3(n) > 0.

Then

s2n+2/s2n > 1, t2n+2/t2n > 1, u2n+2/u2n > 1,

and the sequences {s2n}n�1 , {t2n}n�1 and {u2n}n�1 are strictly increasing. Hence the
sequences {|G2n|}n�1 , {|G2n|/n!}n�1 and {n|G2n|}n�1 are log-convex. �

COROLLARY 2.1. The sequence {A2n−1}n�1 is log-convex.

Proof. It is obvious that the sequence {4n−1/n}n�1 is log-convex. It follows from
(2) that the sequence {A2n−1}n�1 is log-convex. �

Sun [12] presented the following conjecture related to Bernoulli numbers:

(C1) The sequence { n
√|B2n|}n�1 is strictly increasing.

(C2) The sequence { n+1
√|B2n+2|/ n

√|B2n|}n�2 is strictly decreasing.

The answers to (C1) and (C2) are both positive. Recently, the monotonicities of
{ n
√|B2n|}n�1 and { n+1

√|B2n+2|/ n
√|B2n|}n�2 have been verified. See [5, 11]. In the rest

of this section, we investigate the monotonicity of some sequences involving {Gn}n�1 .

THEOREM 2.2. The sequences { n
√|G2n|}n�2 , { n

√|G2n|/n!}n�2 and { n
√

n|G2n|}n�2

are strictly increasing, and

n
√
|G2n| ∼ 4n2

(eπ)2 , (n → +∞). (5)

Proof. For n � 2, let s2n = |G2n+2|/|G2n| . Since

n
√
|G2n| < n+1

√
|G2n+2| ⇐⇒ (n+1) ln |G2n|−n ln |G2n+2| < 0

⇐⇒ ln |G2n|−n lns2n < 0,

we show that ln |G2n|−n lns2n < 0 for n � 2. In fact,

ln |G2n|−n lns2n = lns2n−2 + lns2n−4 + · · ·+ lns2 −n lns2n.
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Since {s2n}n�2 is strictly increasing and s4 = 3, ln |G2n|−n lns2n < 0.
Hence { n

√|G2n|}n�2 is strictly increasing.
Using the similar method, we can prove that the sequences { n

√|G2n|/n!}n�2 and
{ n
√

n|G2n|}n�2 are strictly increasing.
From (1),

|B2n| ∼ (2n)!/(2π)2n, (n → +∞), (6)

and

n! =
(

n
e

)n√
2πneθn , (n → +∞), where

1
12n+1

< θn <
1

12n
for all n � 1,

we obtain

|G2n| ∼ 22n+2
(

n
eπ

)2n√
πn, (n → +∞). (7)

Therefore we have (5). �

COROLLARY 2.2. The sequence { n
√

A2n−1}n�1 is strictly increasing and

n
√

A2n−1 ∼ 16n2

(eπ)2 , (n → +∞). (8)

Proof. Since the sequences { n
√

4n−1/n}n�2 and { n
√|G2n|}n�2 are both strictly

increasing, { n
√

A2n−1}n�2 is strictly increasing. Noting that A1 <
√

A3 , the sequence
{ n
√

A2n−1}n�1 is strictly increasing.
By using (2) and (5), we have (8). �
In fact, the monotonic increasing property of { n

√
A2n−1}n�1 has been proved in

[10].

THEOREM 2.3. The sequence { n+1
√|G2n+2|/ n

√|G2n|}n�2 is strictly decreasing.

Proof. For n � 1,

n+2
√
|G2n+4|/ n+1

√
|G2n+2| < n+1

√
|G2n+2|/ n

√
|G2n|

⇐⇒ ln |G2n+4|
n+2

+
ln |G2n|

n
− 2ln |G2n+2|

n+1
< 0

By using (1), we have

ln |G2n+4|
n+2

+
ln |G2n|

n
− 2ln |G2n+2|

n+1

=
2ln2

n(n+1)(n+2)
+

1
n+2

ln

(
1− 1

22n+4

)
+

1
n

ln

(
1− 1

22n

)
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− 2
n+1

ln

(
1− 1

22n+2

)
+

1
n+2

ln |B2n+4|+ 1
n

ln |B2n|− 2
n+1

ln |B2n+2|

=
2ln2

n(n+1)(n+2)
+

1
n+2

ln

(
1− 1

22n+4

)
+

1
n

ln

(
1− 1

22n

)

+
2

n+1
ln

(
1+

1
22n+2−1

)
+

1
n+2

ln |B2n+4|+ 1
n

ln |B2n|− 2
n+1

ln |B2n+2|.

By means of the following inequality

ln(1+ x) � x, x > −1,

we get

ln |G2n+4|
n+2

+
ln |G2n|

n
− 2ln |G2n+2|

n+1

� 2ln2
n(n+1)(n+2)

− 1
22n+4(n+2)

− 1
22nn

+
2

(22n+2−1)(n+1)

+
1

n+2
ln |B2n+4|+ 1

n
ln |B2n|− 2

n+1
ln |B2n+2|.

Noting that (see [10])

1
n+2

ln |B2n+4|+ 1
n

ln |B2n|− 2
n+1

ln |B2n+2| < − 2
(n+1)2 +

lnn+2+ ln(16π)
n(n+1)(n+2)

+
1

6n2 +
12

22nn
, n � 3,

we have

ln |G2n+4|
n+2

+
ln |G2n|

n
− 2ln |G2n+2|

n+1

� − 1
22n+4(n+2)

− 1
22nn

+
2

(22n+2−1)(n+1)
− 2

(n+1)2 +
lnn+2+ ln(64π)
n(n+1)(n+2)

+
1

6n2 +
12

22nn

< − 1
22n+4(n+2)

− 2
(n+1)2

[
1− lnn+2+ ln(64π)

2n(n+1)(n+2)
− (n+1)2

12n2 − 6(n+1)2

22nn

]
.

For n � 4, we can verify that

1− lnn+2+ ln(64π)
2n(n+1)(n+2)

− (n+1)2

12n2 − 6(n+1)2

22nn
> 0.

Then

ln |G2n+4|
n+2

+
ln |G2n|

n
− 2ln |G2n+2|

n+1
< 0, n � 4,
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and the sequence { n+1
√|G2n+2|/ n

√|G2n|}n�4 is strictly decreasing. On the other hand,

n+2
√
|G2n+4|/ n+1

√
|G2n+2| < n+1

√
|G2n+2|/ n

√
|G2n|, (n = 2,3).

Hence the sequence { n+1
√|G2n+2|/ n

√|G2n|}n�2 is strictly decreasing. �
Since the sequence { n+1

√|G2n+2|/ n
√|G2n|}n�2 is strictly decreasing, { n

√|G2n|}n�2

is log-concave.

COROLLARY 2.3. The sequence { n+1
√

(n+1)|G2n+2|/ n
√

n|G2n|}n�1 is strictly de-
creasing.

Proof. We first prove that the sequence { n+1
√

n+1/ n
√

n}n�2 is strictly decreasing.
It is clear that

n+1
√

n+1/ n
√

n > n+2
√

n+2/ n+1
√

n+1

⇐⇒ 2n(n+2) ln(n+1)− (n+1)(n+2) lnn−n(n+1) ln(n+2) > 0.

Now we show that

2n(n+2) ln(n+1)− (n+1)(n+2) lnn−n(n+1) ln(n+2) > 0, n � 2.

By computation, we have

2n(n+2) ln(n+1)− (n+1)(n+2) lnn−n(n+1) ln(n+2)

= (n2 +n) ln

(
1+

1
n

)
−2lnn+2n ln

(
1+

1
n

)
− (n2 +n) ln

(
1+

1
n+1

)

> (n2 +n) ln

(
1+

1
n+1

)
−2lnn+2n ln

(
1+

1
n

)
.

By using the following inequality

x
1+ x

< ln(1+ x), x > 0,

we obtain

2n(n+2) ln(n+1)− (n+1)(n+2) lnn−n(n+1) ln(n+2)

>
n2 +n
n+2

−2lnn+2n ln

(
1+

1
n

)

=
n2 +n−2(n+2) lnn

n+2
+2n ln

(
1+

1
n

)

> 0, n � 2.

Then the sequence { n+1
√

n+1/ n
√

n}n�2 is strictly decreasing. It follows from Theo-
rem 2.3 that the sequence { n+1

√|G2n+2|/ n
√|G2n|}n�2 is strictly decreasing. Hence the

sequence { n+1
√

(n+1)|G2n+2|/ n
√

n|G2n|}n�2 is also strictly decreasing. On the other
hand, we can verify that

√
2|G4|/|G2| > 3

√
3|G6|/

√
2|G4| .

Therefore, { n+1
√

(n+1)|G2n+2|/ n
√

n|G2n|}n�1 is strictly decreasing. �
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THEOREM 2.4. There exist a positive integer M such that the sequence

{ n
√
|G2n+2|/|G2n|}

is strictly decreasing when n � M, and

lim
n→+∞

n
√
|G2n+2|/|G2n| = 1.

Proof. Since n
√|G2n+2|/|G2n| = n

√
(22n+2−1)|B2n+2|/[(22n−1)|B2n|] , we first

discuss the monotonicity of the sequences

{ n
√

(22n+2−1)/(22n−1)} and { n
√
|B2n+2|/|B2n|}.

For n � 1, since

(n+1) ln
22n+2−1
22n−2

−n ln
22n+4−1
22n+2−1

= ln
22n+2−1
22n−1

+n ln
(22n+2−1)2

(22n−1)(22n+4−1)

> n ln
(22n+2−1)2

(22n−1)(22n+4−1)
> 0,

the sequence { n
√

(22n+2−1)/(22n−1)} is strictly decreasing.
For n � 1,

(n+1) ln
|B2n+2|
|B2n| −n ln

|B2n+4|
|B2n+2|

= ln
|B2n+2|2n+1

|B2n|n+1|B2n+4|n

= ln |B2n+2|− ln |B2n|+n

(
2ln |B2n+2|− ln |B2n|− ln |B2n+4|

)
.

There is an identity for B2n| (see [10])

ln |B2n| = 2n lnn+ cn+
lnn
2

+
ln(16π)

2
+ θ2n + ln(1+ ηn), (9)

where c = −2−2lnπ . By using (9) and straightford calculation, we derive

ln |B2n+2|− ln |B2n| =
(

2n− 1
2

)
ln

(
1+

1
n

)
+2ln(1+n)+ c+ θ2n+2

−θ2n + ln(1+ ηn+1)− ln(1+ ηn),

n(2ln |B2n+2|− ln |B2n|− ln |B2n+4|)
= n

[
(4n+5) ln(n+1)−

(
2n+

1
2

)
lnn−

(
2n+

9
2

)
ln(n+2)
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+(2θ2n+2−θ2n−θ2n+4)+2ln(1+ ηn+1)− ln(1+ ηn)− ln(1+ ηn+2)
]

= n

[(
2n+

1
2

)
ln(n+1)−

(
2n+

1
2

)
lnn−

(
2n+

9
2

)
ln

(
1+

1
n+1

)

+(2θ2n+2−θ2n−θ2n+4)+2ln(1+ ηn+1)− ln(1+ ηn)− ln(1+ ηn+2)
]

= 2n2 ln
1+ 1

n

1+ 1
n+1

+
n
2

ln

(
1+

1
n

)
− 9n

2
ln

(
1+

1
n+1

)
+n(2θ2n+2−θ2n

−θ2n+4)+2n ln(1+ ηn+1)−n ln(1+ ηn)−n ln(1+ ηn+2).

Noting that

1
22n < ηn <

3
22n ,

1
12n+1

< θn <
1

12n
,

we get

lim
n→∞

n(2ln |B2n+2|− ln |B2n|− ln |B2n+4|)

= lim
n→+∞

[
2n2 ln

1+ 1
n

1+ 1
n+1

+
n
2

ln

(
1+

1
n

)
− 9n

2
ln

(
1+

1
n+1

)]

= −2

and lim
n→∞

(ln |B2n+2|− ln |B2n|) = +∞ . Then we obtain

lim
n→∞

[
(n+1) ln

|B2n+2|
|B2n| −n ln

|B2n+4|
|B2n+2|

]
= +∞,

and there exists a positive integer M such that

(n+1) ln
|B2n+2|
|B2n| −n ln

|B2n+4|
|B2n+2| > 0, (n � M).

Then the sequence { n
√|B2n+2|/|B2n|}n�M is strictly decreasing. Hence the sequence

{ n
√|G2n+2|/|G2n|}n�M is strictly decreasing.

By means of (7), we derive

lim
n→+∞

n
√
|G2n+2|/|G2n| = 1. �

3. Conclusions

In this paper, we discuss the properties of Genocchi numbers {Gn}n�1 . We have
derived some results for {Gn}n�1 for the log-convexity of some sequences including
{|G2n|}n�1 , {|G2n|/n!}n�1 and {n|G2n|}n�1 . We have also investigated the mono-
tonicity of some sequences related to Genocchi numbers. In particular, we discuss the
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monotonicity of { n
√|G2n|} and { n+1

√|G2n+2|/ n
√|G2n|} . In the future, we will discuss

the properties of some sequences such as tangent numbers T (n,k) , arctangent numbers
t(n,k) and Salié integers S2n , which are defined by

(tan t)k

k!
=

∞

∑
n=k

T (n,k)
tn

n!
,

(arctant)k

k!
=

∞

∑
n=k

t(n,k)
tn

n!
,

cosh t
cost

=
∞

∑
n=0

S2n
t2n

(2n)!
.

For more details of T (n,k) , t(n,k) and S2n , see [6]. The investigation for the log-
behavior of the above sequences will be the future work.
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