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Abstract. As a generalization of Banaś-Fra̧czieck space, the space Xλ ,p that denotes R
2 en-

dowed with the norm
‖x‖λ ,p = max{λ |x1 |,‖x‖p}

for λ > 1 , p � 1 and x = (x1,x2) ∈ R
2 is well defined. In this note, the exact value of the the

James type constants JXλ ,p ,t(1) and von Neumann-Jordan constant CNJ (Xλ ,p) about this space
for p � 2 are investigated.

1. Introduction and preliminaries

Let X be a non-trivial Banach space, and SX denote the unit ball sphere of X .
It can be recalled that the modulus of convexity of a Banach space X is defined for
ε ∈ [0,2] in [1] as

δX(ε) = inf

{
1− ‖x+ y‖

2
,x,y ∈ SX ,‖x− y‖= ε

}
.

The function δX(ε) is continuous on [0,2) and strictly increasing on [ε0(X),2] , where
ε0(X) = sup{ε ∈ [0,2],δX(ε) = 0} is the characteristic of convexity of X .

Many geometric properties for a Banach space X is closely related with its mod-
ulus of convexity. For example, an important relationship between the James constant
which was defined by (see [2])

J(X) = sup{min(‖x+ y‖,‖x− y‖),x,y∈ SX}

and the modulus of convexity is the following formula (see [3])

J(X) = sup
{

ε ∈ (0,2) : δX (ε) � 1− ε
2

}
.
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Recently, Takahashi [4] introduced the James type constant

JX ,t(τ) = sup{μt(‖x+ τy‖,‖x− τy‖) : x,y ∈ SX},

where τ � 0, −∞ � t < +∞ . Here, we denote μt(a,b) = ( at+bt

2 )
1
t (t �= 0) and

μ0(a,b) = lim
t→0

μt(a,b) =
√

ab for two positive numbers a and b , respectively. Here

μt(a,b) is nondecreasing in t and μ−∞(a,b) = lim
t→−∞

μt(a,b) = min(a,b) . It is well

known that, J(X) = JX ,−∞(1) and Alonso-Llorens-Fuster’s constant T (X) (see [5]) is
equal to JX ,0(1) .

Let λ > 1, and Xλ ,p denote R
2 endowed with the norm

‖x‖λ ,p = max{λ |x1|,‖x‖p}

for λ > 1, p � 1 and x = (x1,x2) ∈ R
2 . We may say these Banach spaces to be Banaś-

Fra̧czieck type spaces because it can be reduced to a Banaś-Fra̧czieck space (see [6, 7])
by letting p = 2.

Another important constant of a Banach space X is the von Neumann-Jordan con-
stant (hereafter referred to as the NJ constant) that was introduced by Clarkson [2] as
the smallest constant C for which

1
C

� ‖x+ y‖2 +‖x− y‖2

2(‖x‖2 +‖y‖2)
� C

holds for all x,y ∈ X with (x,y) �= (0,0). An equivalent definition of the NJ constant is
found in [6, 10] as the following form:

CNJ(X) = sup

{‖x+ y‖2 +‖x− y‖2

2(‖x‖2 +‖y‖2)
: x ∈ SX ,y ∈ BX

}
.

In this note, the exact value of the James type constants JXλ ,p,t(1) for p � 2 and the von

Neumann-Jordan constant for p � 2 and λ > 1 such that (λ p − 1)p−2(λ 2 − 1)p � 1
about this space are investigated.

2. James type constants JXλ ,p,t(1)

Firstly, we give the exact value of the modulus of convexity for the space Xλ ,p
with p � 2.

LEMMA 2.1. If λ > 1 and p � 2 , then

δXλ ,p
(ε) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, 0 � ε � 2[1− 1
λ p ]

1
p ;

1−λ [1− ε p

2p ]
1
p , 2[1− 1

λ p ]
1
p � ε � 2λ

[1+λ p]
1
p
;

1− [1− ε p

2pλ p ]
1
p , 2λ

[1+λ p]
1
p

� ε � 2.
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Proof. (i) Let 0 � ε � 2[1− 1
λ p ]

1
p .

Taking x =
(

1
λ , [1− 1

λ p ]
1
p
)
,y =

(
1
λ ,−[1− 1

λ p ]
1
p
)
, we have ‖x‖λ ,p = ‖y‖λ ,p = 1,

‖x− y‖λ ,p � ε, and ‖ x+y
2 ‖λ ,p = 1, Hence δXλ ,p

(ε) = 0.

(ii) Let 2[1− 1
λ p ]

1
p � ε � 2λ

[1+λ p]
1
p

.

Taking x =
(
[1− ε p

2p ]
1
p , ε

2

)
,y =

(
[1− ε p

2p ]
1
p ,− ε

2

)
, we have ‖x‖λ ,p = ‖y‖λ ,p = 1,

‖x− y‖λ ,p = ε, and ‖ x+y
2 ‖λ ,p = λ [1− ε p

2p ]
1
p . So δXλ ,p

(ε) � 1− λ [1− ε p

2p ]
1
p . On the

other hand, for any x,y ∈ SXλ ,p
such that ‖x− y‖λ ,p = ε , we have

(a) If ‖x− y‖p = ε , then

∥∥∥x+ y
2

∥∥∥
λ ,p

� λ
∥∥∥x+ y

2

∥∥∥
p
� λ

[
1− ε p

2p

] 1
p

holds by the following Clarkson’s inequality

‖x+ y‖p
p +‖x− y‖p

p � 2p−1(‖x‖p
p +‖y‖p

p) � 2p.

(b) If λ |x1− y1| = ε , then

|x1 + y1|p + ε p = |x1 + y1|p + λ p|x1 − y1|p � 2p−1λ p(|x1|p + |y1|p) � 2p,

and

‖x+ y‖p
p + λ pε p � 2p−‖x− y‖p

p + λ pε p � 2p− ε p

λ p + λ pε p � 2pλ p.

Hence ∥∥∥x+ y
2

∥∥∥
λ ,p

= max
{

λ
∣∣∣x1 + y1

2

∣∣∣,∥∥∥x+ y
2

∥∥∥
p

}
� λ

[
1− ε p

2p

] 1
p
.

Therefore

δX(ε) � 1−λ
[
1− ε p

2p

] 1
p
.

(iii) Let 2λ

[1+λ p]
1
p

� ε � 2.

For any x,y ∈ SXλ ,p
with ‖x− y‖λ ,p = ε , we have

‖x+ y‖2
p +

ε p

λ p � ‖x+ y‖p
p +‖x− y‖p

p � 2p,

and
(a) If ‖x− y‖p = ε ,

λ p|x1 + y1|p +
ε p

λ p � λ p‖x+ y‖p
p +

ε p

λ p � λ p(2p− ε p)+
ε p

λ p � 2p;

(b) If λ |x1− y1| = ε ,

λ p|x1 +y1|p+
ε p

λ p = λ p|x1+y1|p+ |x1−y1|p � (λ p−1)
2p

λ p +2p−1(|x1|p + |y1|p) � 2p.
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So, we have

δX(ε) � 1−
[
1− ε p

2pλ p

] 1
p
.

On the other hand, By taking x =
( ε

2λ , [1− ε p

2pλ p ]
1
p
)

and y =
(− ε

2λ , [1− ε p

2pλ p ]
1
p
)
, we

also have ‖x‖λ ,p = ‖y‖λ ,p = 1, ‖x−y‖λ ,p = ε and ‖ x+y
2 ‖λ ,p = [1− ε p

2pλ p ]
1
p , Therefore

δX(ε) � 1−
[
1− ε p

2pλ p

] 1
p
. �

To give the exact value of the James type constant JXλ ,p,t(1) , we need the following
Lemma.

LEMMA 2.2. For any Banach space X , we have (see [8])

JX ,t(1) = sup
{(εt +2t(1− δX(ε))t

2

) 1
t
,0 � ε � 2

}
,

where −∞ < t < +∞ , t �= 0 .

THEOREM 2.3. Let p � 2 , λ > 1 and Xλ ,p be the Banaś-Fra̧czieck type spaces.
(a) If t � p, then

JXλ ,p,t(1) = 21− 1
t

(
1+

(
1− 1

λ p

) t
p
) 1

t
; (2.1)

(b) If t < p and λ p � 1+ λ
t p

t−p , then

JXλ ,p,t(1) = 21− 1
t λ

(
1+ λ

t p
t−p

) 1
t − 1

p ; (2.2)

(c) If t < p and λ p � 1+ λ
t p

t−p , then (2.1) is also valid.

Proof. Let f1(ε) = εt+2t

2 , f2(ε) = εt+λ t(2p−ε p)
t
p

2 and f3(ε) =
εt+(2p− ε p

λ p )
t
p

2 . Then
by applying Lemma 2.1 and Lemma 2.2, we have

JXλ ,p,t(1) = max{α,β ,γ},

where α = max
{

f1(t)
1
t : 0 � ε � 2[1− 1

λ p ]
1
p

}
, β = max

{
f2(t)

1
t : 2[1− 1

λ p ]
1
p � ε �

2λ

[1+λ p]
1
p

}
, and γ = max

{
f3(t)

1
t : 2λ

[1+λ p]
1
p

� ε � 2
}
. Since (2.1) is obvious for t = p ,

so we only need consider the following cases.

Case I. If t > p . Then we can get 2λ
t

t−p

(1+λ
t p

t−p )
1
p

� 2λ

[1+λ p]
1
p

. From f ′2(ε)= 1
2 tε

p−1[εt−p

− λ t(2p − ε p)
t−p
p ] > 0 if and only if ε � 2λ

t
t−p

(1+λ
t p

t−p )
1
p

, we have f ′2(ε) < 0 on 2[1−
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1
λ p ]

1
p � ε � 2λ

[1+λ p]
1
p
. Similarly, we also have f ′3(ε) � 0 on 2λ

[1+λ p]
1
p

� ε � 2 by apply-

ing f ′3(ε) = 1
2 tε p−1[εt−p −λ−p(2p − ε p

λ p )
t−p
p ] and 2λ

−p
t−p

(1+λ
−t p
t−p )

1
p

� 2λ

[1+λ p]
1
p

. Hence, we

can get α = β = γ = 21− 1
t
(
1+(1− 1

λ p )
t
p
) 1

t . Therefore, (2.1) is valid.

Case II. If 0 < t < p and λ p � 1+λ
t p

t−p , then 2λ
t

t−p

(1+λ
t p

t−p )
1
p
∈

[
2[1− 1

λ p ]
1
p , 2λ

[1+λ p]
1
p

]

and f2 gets its maximum at 2λ
t

t−p

(1+λ
t p

t−p )
1
p

. So β = 21− 1
t λ

(
1 + λ

t p
t−p

) 1
t − 1

p � f2(2[1−
1

λ p ]
1
p )

1
t = α . Similarly, we also have γ = 21− 1

t λ
(
1+ λ

t p
t−p

) 1
t − 1

p . Therefore, (2.2) is
valid.

Case III. If 0 < t < p and λ p > 1 + λ
t p

t−p , then f2 and f3 get its maximum at

2(1− 1
λ p )

1
p and 2, respectively. Hence, we have α = β = γ = 21− 1

t
(
1+(1− 1

λ p )
t
p
) 1

t

by t > 0. So (2.1) is also valid.

Case IV. If t < 0 and λ p � 1+λ
t p

t−p , then 2λ
t

t−p

(1+λ
t p

t−p )
1
p
∈

[
2[1− 1

λ p ]
1
p , 2λ

[1+λ p]
1
p

]
and

f2 gets its minimum at 2λ
t

t−p

(1+λ
t p

t−p )
1
p

. So β = 21− 1
t λ

(
1+λ

t p
t−p

) 1
t − 1

p � f2(2[1− 1
λ p ]

1
p )

1
t =

α . Similarly, we also have γ = 21− 1
t λ

(
1+ λ

t p
t−p

) 1
t − 1

p .

Case V. If t < 0 and λ p > 1+ λ
t p

t−p , then f2 and f3 get its minimum at 2(1−
1

λ p )
1
p and 2, respectively. Hence, we also have α = β = γ = 21− 1

t
(
1+(1− 1

λ p )
t
p
) 1

t

by t < 0. �
REMARK 2.4. By applying the following formula (see [8])

JX ,0(1) = sup{
√

2ε(1− δX(ε) : 0 � ε � 2}

and Lemma 2.1, we also have

COROLLARY 2.5. Let p � 2 , λ > 1 .

(1) If λ > 2
1
p , then JXλ ,p,0(1) = 2(1− 1

λ p )
1
2p .

(2) If λ � 2
1
p , then JXλ ,p,0(1) = 21− 1

p
√

λ .

3. Von Neumann-Jordan constant

In [7], we have the following result

THEOREM 3.1. Let λ � 1 and R
2
λ is the Banaś-Fra̧czieck space. Then,

CNJ(R2
λ ) = 2− 1

λ 2 .

Now we give a generalization as follow
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THEOREM 3.2. Let p � 2 and λ > 1 such that (λ p−1)p−2(λ 2−1)p � 1 , then

CNJ(Xλ ,p) = 1+
(
1− 1

λ p

) 2
p
.

In order to prove this theorem, first we give the following Lemma.

LEMMA 3.1. If λ � 1 , p � 2 such that (λ p−1)p−2(λ 2−1)p � 1 , and |x1|� 1
λ ,

|y1| � 1
λ , then λ p � 2 and

(λ 2−1)|x1y1|+(1−|x1|p)
1
p (1−|y1|p)

1
p � λ 2−1

λ 2 +
(
1− 1

λ p

) 2
p
. (3.1)

Proof. From (λ p −1)p−2(λ 2 −1)p � 1, we have λ p � 2. Now we may assume

that 0 � x1 � 1
λ and 0 � y1 � 1

λ . Taking h(x) = (λ 2−1)x2 +(1−xp)
2
p for x ∈ [0, 1

λ ] ,
we have

h′(x) = 2xp−1[(λ 2−1)x2−p− (1− xp)
2−p

p ] � 0

by xp � 1
λ p and (λ p−1)p−2(λ 2−1)p � 1. Hence for x ∈ [0, 1

λ ] , we have

h(x) � λ 2−1
λ 2 +

(
1− 1

λ p

) 2
p
.

Let F(x,y) = (λ 2 −1)xy+(1− xp)
1
p (1− yp)

1
p . If (x0,y0) ∈ (0, 1

λ )× (0, 1
λ ) such that

Fx(x0,y0) = Fy(x0,y0) = 0, then x0 = y0 . So

F(x0,y0) = h(x0) � λ 2−1
λ 2 +

(
1− 1

λ p

) 2
p
. (3.2)

Next, letting g(x) = λ 2−1
λ x+(1− 1

λ p )
1
p (1− xp)

1
p , then for x ∈ [0, 1

λ ] we have

g′(x) =
λ 2−1

λ
−

[
1− 1

λ p

] 1
p (x−p−1)

1
p−1

� λ 2−1
λ

−
(
1− 1

λ p

) 1
p
(λ p−1)

1
p−1

=
λ 2−1

λ
− 1

λ
(λ p−1)

2
p−1 � 0

by λ p � 2. Hence

g(x1) � g
( 1

λ

)
=

λ 2−1
λ 2 +

(
1− 1

λ p

) 2
p
.

Therefore for x,y ∈ [0, 1
λ ] ,

max{F(x,0),F(0,y)} � 1 � λ 2−1
λ 2 +

(
1− 1

λ p

) 2
p
, (3.3)
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and

max
{

F
(
x,

1
λ

)
,F

( 1
λ

,y
)}

� λ 2 −1
λ 2 +

(
1− 1

λ p

) 2
p
. (3.4)

From (3.2)–(3.4), we get F(x,y) � λ 2−1
λ 2 +(1− 1

λ p )
2
p on [0, 1

λ ]× [0, 1
λ ], and hence (3.1)

is valid. �
Proof of Theorem 3.2. Assume that λ > 1 such that (λ p − 1)p−2(λ 2 − 1)p � 1.

Note that ex(BX) = {(z1,z2) : |z1|p + |z2|p = 1, |z1| � 1
λ }.

Now we prove that

‖x+ τy‖2 +‖x− τy‖2

2(1+ τ2)
� 1+

(
1− 1

λ p

) 2
p
. (3.5)

holds for any x,y ∈ ex(BX ) and any τ ∈ [0,1].
Letting x = (x1,x2) , y = (y1,y2) , then we have the following three cases.
I a). If ‖x+ τy‖p � |λ (x1 + τy1)| and ‖x− τy‖p � |λ (x1− τy1)| , then

‖x+ τy‖2 +‖x− τy‖2 = λ 2[(x1 + τy1)2 +(x1− τy1)2]
= 2λ 2(x2

1 + τ2y2
1) � 2(1+ τ2). (3.6)

I b). If ‖x+ τy‖p > |λ (x1 + τy1)| and ‖x− τy‖p > |λ (x1 − τy1)| , then

‖x+ τy‖2 +‖x− τy‖2 = ‖x+ τy‖2
p +‖x− τy‖2

p

� 21− 2
p [(1+ τ)p +(1− τ)p)]

2
p

� 22− 2
p (1+ τ2) (3.7)

by Hölder and Hanner’s inequality.
I c). If ‖x+ τy‖p � |λ (x1 + τy1)| and ‖x− τy‖p > |λ (x1− τy1)| , or ‖x+ τy‖p >

|λ (x1 + τy1)| and ‖x− τy‖p � |λ (x1− τy1)| , then

‖x+ τy‖2 +‖x− τy‖2 � λ 2(x1 ± τy1)2 +(x1∓ τy1)2 +(x2∓ τy2)2

� 1+ τ2 + x2
1 + x2

2 + τ2(y2
1 + y2

2)+2τ(λ 2−1)|x1y1|
+2τ[1−|x1|p]

1
p [1−|y1|p]

1
p

�
(
1+

1
λ 2 +

(
1− 1

λ p

) 2
p
)
(1+ τ2)

+2τ
(λ 2−1

λ 2 +
(
1− 1

λ p

) 2
p
)
, (3.8)

holds by Lemma 3.1 and x2
1 +(1−|x1|p)

2
p � 1

λ 2 +(1− 1
λ p )

2
p for 0 � |x1| � 1

λ . Hence,

(3.6)–(3.8) imply (3.5). Hence we have CNJ(Xλ ,p) � 1+(1− 1
λ p )

2
p . On the other hand,

if taking x = ( 1
λ , (1− 1

λ p )
1
p ),y = ( 1

λ ,−(1− 1
λ p )

1
p ) , we have

CNJ(Xλ ,p) � ‖x+ y‖2 +‖x− y‖2

4
= 1+

(
1− 1

λ p

) 2
p
.
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which completes the proof of Theorem 3.2. �
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