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Abstract. In this paper, we square operator α -geometric mean inequality as follows: If 0 <
m2

1 � A � M2
1 and 0 < m2

2 � B � M2
2 for some positive real numbers m1 < M1 and m2 < M2 ,

then for every unital positive linear map Φ and α ∈ [0,1] , the following inequality holds:

{Φ(A)�αΦ(B)}2 �
K

(
( m2

M1
)2,( M2

m1
)2,α

)−2
(G+g)2

4Gg
Φ2(A�αB)

where the generalized Kantorovich constant K
(
( m2

M1
)2,( M2

m1
)2,α

)
is defined by

K (m,M,α) =
mMα −Mmα

(α −1)(M−m)

(
α −1

α
Mα −mα

mMα −Mmα

)α

and G = M1(M−1
1 M2)2αM1 , g = m1(m−1

1 m2)2α m1.

1. Introduction

Let B(H ) denote the C∗ -algebra of all bounded linear operators on a complex
Hilbert space (H ,〈·, ·〉) with the identity I . Throughout the paper, a capital letter
means an operator in B(H ) . An operator A is called positive (in symbol: A � 0) if
〈Ax,x〉� 0 for all x∈H . We write A > 0 if it is a positive invertible operator. For self-
adjoint operators A,B∈B(H ) , we say B � A if B−A � 0, i.e., 〈Ax,x〉� 〈Bx,x〉 for all
x∈H . A linear map Φ : B(H )→B(K ) is called positive if A� 0 implies Φ(A) � 0.
If this implication holds for > instead of � , we say that Φ is strictly positive. Φ is
said to be unital if Φ(I) = I. For A,B > 0 and α ∈ [0,1] , the α -geometric mean A�αB

is defined by A�αB = A
1
2 (A− 1

2 BA− 1
2 )αA

1
2 .

Seo [7, Theorem 3] gave α -geometric mean inequality as follows:

THEOREM 1.1. Let Φ : B(H ) → B(K ) be a unital positive linear map and let
A and B be positive operators such that 0 < m2

1 � A � M2
1 and 0 < m2

2 � B � M2
2 for

some positive real numbers m1 < M1 and m2 < M2 . Then for α ∈ [0,1]

Φ(A)�α Φ(B) � K (m,M,α)−1 Φ(A�αB) (1.1)
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where we suppose ( m2
M1

)2 = m, (M2
m1

)2 = M and the generalized Kantorovich constant
K (m,M,α) [2, Definition 2.2] is defined by

K (m,M,α) =
mMα −Mmα

(α −1)(M−m)

(
α −1

α
Mα −mα

mMα −Mmα

)α

for any real number α ∈ R .

Squaring operator inequalities has been an active area of study in the past several
years; see for example, [5, 6, 3, 8]. The most successful one is that operatorKantorovich
inequality can be squared [6]. In this paper, we mainly follow this line of study, our
main result is a relation between (Φ(A)�α Φ(B))2 and Φ2(A�αB) .

2. Main results

The following is attributed to Ando which is a converse of (1.1).

LEMMA 2.1. [4] Let Φ be a unital positive linear map and A, B be positive
operators. Then for α ∈ [0,1]

Φ(A�αB) � Φ(A)�α Φ(B) . (2.1)

The next Lemma shows that t2 is order preserving in a certain sense:

LEMMA 2.2. [1, Theorem 6] Let 0 < m � A � M and A � B. Then

A2 � (M +m)2

4Mm
B2.

Now we give our main result.

THEOREM 2.3. Let Φ : B(H ) → B(K ) be a positive linear map and let A and
B be positive operators such that 0 < m2

1 � A � M2
1 and 0 < m2

2 � B � M2
2 for some

positive real numbers m1 < M1 and m2 < M2 . Then for α ∈ [0,1]

(Φ(A)�α Φ(B))2 � β Φ2(A�αB) (2.2)

where

β :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

K
(
( m2

M1
)2,( M2

m1
)2,α

)−2
(G+g)2

4Gg if g � t0

K
(
( m2

M1
)2,( M2

m1
)2,α

)−1
(G+g)−G

g if g � t0,

(2.3)

G = M1(M−1
1 M2)2αM1 , g = m1(m−1

1 m2)2αm1 and the generalized Kantorovich con-
stant K (m,M,α) [2, Definition 2.2] is defined by

K (m,M,α) =
mMα −Mmα

(α −1)(M−m)

(
α −1

α
Mα −mα

mMα −Mmα

)α

for any real number α ∈ R .
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Proof. Let

G := M1(M−1
1 M2)2αM1, g := m1(m−1

1 m2)2αm1.

It follows from the order-preserving property of the operator α -geometric mean and

m2
1 � A � M2

1 and m2
2 � B � M2

2

that

g � A�αB � G (2.4)

whence

g � Φ(A�αB) � G, (2.5)

g � Φ(A)�α Φ(B) � G. (2.6)

Theorem 1.1 and inequality (2.1) yield that

Φ(A�αB) � Φ(A)�α Φ(B) � K(m,M,α)−1Φ(A�αB). (2.7)

By (2.5) we have

(G−Φ(A�αB))(Φ(A�αB)−g) � 0

Hence,

(Φ(A�αB))2 � (G+g)Φ(A�αB)−Gg. (2.8)

In the same way, by (2.6) we also have

(Φ(A)�α Φ(B))2 � (G+g)(Φ(A)�α Φ(B))−Gg. (2.9)

Employing (2.7) and (2.9) we have

0 � (Φ(A�αB))−1(Φ(A)�α Φ(B))2(Φ(A�αB))−1

� Φ(A�αB)−1{(G+g)(Φ(A)�αΦ(B))−Gg}Φ(A�αB)−1

� {K(m,M,α)−1(G+g)Φ(A�αB)−Gg}Φ(A�αB)−2.

(2.10)

Consider the real function f (t) on (0,∞) defined as

f (t) :=
K(m,M,α)−1(G+g)t−Gg

t2
. (2.11)

Then we can conclude from (2.8), (2.9), (2.10) and (2.11) that

(Φ(A�αB))−1(Φ(A�αB))2(Φ(A�αB))−1 � maxg�t�G f (t). (2.12)
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Notice that
f (g) � f (G)

and

f ′(t) =
2Gg−K(m,M,α)−1(G+g)t

t3
. (2.13)

The function f (t) has only one stationary (= maximum) point at

t0 :=
2Gg

K(m,M,α)−1(g+G)
(2.14)

with the maximum value

f (t0) =
K

(
( m2

M1
)2,(M2

m1
)2,α

)−2
(G+g)2

4Gg
. (2.15)

Therefore we can conclude that

max
g�t�G

f (t) �
{

f (t0) if g � t0
f (g) if g � t0.

Clearly

f (g) =
K

(
( m2

M1
)2,(M2

m1
)2,α

)−1
(G+g)−G

g
. (2.16)

This completes the proof of Theorem 2.3 �
An immediate consequence of Theorem 2.3 reads as follows. It can be also de-

duced from Lemma 2.1 and Lemma 2.2.

COROLLARY 2.4. Under the same conditions as in Theorem 2.3,

{Φ(A)�α Φ(B)}2 �
K

(
( m2

M1
)2,(M2

m1
)2,α

)−2
(G+g)2

4Gg
Φ2(A�αB) (2.17)

REMARK 2.5. It is easy to know that the coefficient

K
(
( m2

M1
)2,(M2

m1
)2,α

)−1
(G+g)

2
√

Gg

in (2.17) is larger than

K

(
(
m2

M1
)2,(

M2

m1
)2,α

)−1

in (1.1). However, we give the relation between (Φ(A)�α Φ(B))2 and Φ2(A�αB) .
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