
Journal of
Mathematical

Inequalities

Volume 10, Number 3 (2016), 603–622 doi:10.7153/jmi-10-49

REVERSED HARDY INEQUALITY FOR C–MONOTONE FUNCTIONS
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(Communicated by N. Elezović)

Abstract. In this paper, we will give general Hardy and reversed Hardy type inequalities for
a generalized class of monotone functions. Moreover we will give n -exponential convexity,
exponential convexity and related results for some functionals obtained from the differences of
these inequalities. At the end we will give mean value theorems and Cauchy means for these
functionals.

1. Introduction

The classical Hardy inequality for f � 0 and p > 1 is given as

(∫ ∞

0

(
1
x

∫ x

0
f (t)dt

)p

dx

)1/p

� p
p−1

(∫ ∞

0
f p(x)dx

)1/p

.

When f � 0 is a decreasing function, then the reversed Hardy inequality, given by
P.F.Renaud (1986) in [7],

∫ ∞

0

(
1
x

∫ x

0
f (t)dt

)p

dx � p
p−1

∫ ∞

0
f p(x)dx (1)

holds. In this paper we prove the reversed Hardy type inequalities for a more gen-
eral class of C -monotone functions by considering the inequalities given by Pečarić,
Perić and Persson in [5]. A function f is C -decreasing

(
C -increasing

)
, C � 1, if

f (x) � C f (y)
(
f (y) � C f (x)

)
whenever y � x, x,y ∈ (a,b) . Moreover, by construct-

ing some linear functionals and n -exponential convex functions related to the obtained
inequalities, we give refinements of the reversed Hardy type inequalities. Also we will
give mean value theorems and Cauchy means for these functionals.
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2. Main results

In this paper the terms positive, decreasing and increasing shall be interpreted as
nonnegative, nonincreasing and nondecreasing, respectively. We shall consider positive
real valued functions f ,g defined on an interval (a,b) , −∞ � a < b � +∞ . Moreover,
the function denoted by g will be monotone throughout the paper and we assume that
the function denoted by f is integrable with respect to the measure generated by g ,
i. e. that

∫ b
a f (x)dg(x) < +∞ for an increasing g and

∫ b
a f (x)d[−g(x)] < +∞ for a

decreasing g .
We start by considering the following results given in [1] and [5].

THEOREM 2.1. Let φ : [0,∞) → R be a convex function differentiable on (0,∞)
and such that φ(0) = 0 and let −∞ � a < b � ∞ .

(a) If f is C-decreasing and g is increasing, differentiable and such that g(a+0) =
0 , then

φ
(

C
∫ b

a
f (x)dg(x)

)
� C

∫ b

a
φ ′( f (x)g(x)

)
f (x)dg(x). (2)

(b) If f is C-increasing and g is increasing, differentiable and such that g(a+0) =
0 , then

φ
(

1
C

∫ b

a
f (x)dg(x)

)
� 1

C

∫ b

a
φ ′( f (x)g(x)

)
f (x)dg(x). (3)

(c) If f is C-increasing and g is decreasing, differentiable and such that g(b−0) =
0 , then

φ
(

C
∫ b

a
f (x)d[−g(x)]

)
� C

∫ b

a
φ ′( f (x)g(x)

)
f (x)d[−g(x)]. (4)

(d) If f is C-decreasing and g is decreasing, differentiable and such that g(b−0) =
0 , then

φ
(

1
C

∫ b

a
f (x)d[−g(x)]

)
� 1

C

∫ b

a
φ ′( f (x)g(x)

)
f (x)d[−g(x)]. (5)

(e) If the condition “φ is convex” is replaced by “φ is concave”, then all the in-
equalities (2)–(5) hold in reversed direction.

Now we will state our main result, which we will obtain from the above inequali-
ties.

THEOREM 2.2. Let φ : [0,∞) → R be a convex and differentiable function such
that φ(0) = 0 and let −∞ � a < b � ∞ . Let k : (a,b)→ [0,∞) be a positive integrable
function, K1(x) =

∫ b
x k(t)dt and K2(x) =

∫ x
a k(t)dt .
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(a) If f is C-decreasing and g is increasing, differentiable and such that g(a+0) =
0 , then∫ b

a
k(x)φ

(
C
∫ x

a
f (t)dg(t)

)
dx � C

∫ b

a
K1(x)φ ′( f (x)g(x)

)
f (x)dg(x). (6)

(b) If f is C-increasing and g is increasing, differentiable and such that g(a+0) =
0 , then∫ b

a
k(x)φ

(
1
C

∫ x

a
f (t)dg(t)

)
dx � 1

C

∫ b

a
K1(x)φ ′( f (x)g(x)

)
f (x)dg(x). (7)

(c) If f is C-increasing and g is decreasing, differentiable and such that g(b−0) =
0 , then∫ b

a
k(x)φ

(
C
∫ b

x
f (t)d[−g(t)]

)
dx � C

∫ b

a
K2(x)φ ′( f (x)g(x)

)
f (x)d[−g(x)].

(8)

(d) If f is C-decreasing and g is decreasing, differentiable and such that g(b−0) =
0 , then∫ b

a
k(x)φ

(
1
C

∫ b

x
f (t)d[−g(t)]

)
dx � 1

C

∫ b

a
K2(x)φ ′( f (x)g(x)

)
f (x)d[−g(x)].

(9)

(e) If the condition “φ is convex” is replaced by “φ is concave”, then all the in-
equalities (6)–(9) hold in reversed direction.

Proof.

(a) Under the given conditions, we have the following inequality by Theorem 2.1

φ
(

C
∫ t

a
f (x)dg(x)

)
� C

∫ t

a
φ ′( f (x)g(x)

)
f (x)dg(x).

Multiplying the above inequality with a positive function k , then integrating from
a to b and applying Fubini’s theorem on the integral on the R.H.S., we get∫ b

a
k(t)φ

(
C
∫ t

a
f (x)dg(x)

)
dt � C

∫ b

a
k(t)

∫ t

a
φ ′( f (x)g(x)

)
f (x)dg(x)dt.

Denote L = φ ′(0) . We have

∫ b

a

∫ t

a
k(t)φ ′( f (x)g(x)

)
f (x)dg(x)dt

=
∫ b

a

∫ t

a
k(t)
(

φ ′( f (x)g(x)
)−L

)
f (x)dg(x)dt +L

∫ b

a

∫ t

a
k(t) f (x)dg(x)dt.

(10)
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Since the functions under the integrals on the R.H.S. are positive, we can apply
Fubini’s theorem. Furthermore, since the second integral on the R.H.S. is finite,
we can change the order of integration in the integral on the L.H.S. Therefore,∫ b

a
k(t)φ

(
C
∫ t

a
f (x)dg(x)

)
dt � C

∫ b

a
φ ′( f (x)g(x)

)
f (x)

(∫ b

x
k(t)dt

)
dg(x),

i.e. (6) holds.
Similarly, we can prove the inequality given in (b) .

(c) Under the given conditions, we have the following inequality by Theorem 2.1

φ
(

C
∫ b

t
f (x)d[−g(x)]

)
� C

∫ b

t
φ ′( f (x)g(x)

)
f (x)d[−g(x)].

Multiplying the above inequality with a positive function k , then integrating from
a to b and changing the order of integration in the integral on the R.H.S., we get∫ b

a
k(t)φ

(
C
∫ b

t
f (x)d[−g(x)]

)
dt � C

∫ b

a
k(t)

∫ b

t
φ ′( f (x)g(x)

)
f (x)d[−g(x)]dt

= C
∫ b

a
φ ′( f (x)g(x)

)
f (x)

(∫ x

a
k(t)dt

)
d[−g(x)]

i.e. (8) holds.
Similarly, we can prove the inequality given in (d) . �

REMARK 2.3. If the function φ in Theorem 2.2 is monotone (i. e., φ ′ is of the
same sign everywhere), then we can apply Fubini’s theorem directly to the integral on
the L.H.S of (10) . In that case we do not need integrability of the function k and
differentiability of φ at 0 .

REMARK 2.4. The function φ in Theorems 2.1 and 2.2 can be restricted to a
compact interval [0,c] if the functions f and g satisfy certain additional conditions.
For example, if f and g satisfy the assumptions in part (a) of Theorems 2.1 and 2.2
and, additionally,

∫ b
a f (x)dg(x) � c/C , then

0 � f (x)g(x) =
∫ x

a
f (x)dg(t) � C

∫ x

a
f (t)dg(t) � C

∫ b

a
f (t)dg(t) � c.

Furthermore, C
∫ x
a f (t)dg(t) � C

∫ b
a f (t)dg(t) � c , so the expression on the L.H.S. and

R.H.S. of (2) and (6) are well defined for a function φ defined on the interval [0,c] .
Similarly, if f and g satisfy the assumptions in part (b) of Theorems 2.1 and 2.2

and, additionally, f (b−0)g(b−0) � c/C , then f (x)g(x) � C f (b−0)g(b−0) � c for
every x ∈ (a,b) and

1
C

∫ x

a
f (t)dg(t) � 1

C

∫ b

a
f (t)dg(t) �

∫ b

a
f (b−0)dg(t) = f (b−0)g(b−0) � c,
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so the expression on the L.H.S. and R.H.S. of (3) and (7) are well defined for a function
φ defined on the interval [0,c] . An analogous argument shows that the same holds
for functions f and g satisfying the assumptions in part (c) (respectively, part (d)) of
Theorems 2.1 and 2.2 and, additionally,

∫ b
a f (x)d[−g(x)] � c/C (respectively, f (a +

0)g(a+0) � c/C ).
From the proofs of Theorem 2.1 (see [5]) and Theorem 2.2 it is clear that they are

still valid in this case (i. e. for φ defined on [0,c]), as are the corollaries that we will
derive from these theorems.

COROLLARY 2.5. Let −∞ � a < b � ∞ , p � 1 , k : (a,b) → [0,∞) , K1(x) =∫ b
x k(t)dt and K2(x) =

∫ x
a k(t)dt .

(a) If f is C-decreasing and g is increasing, differentiable and such that g(a+0) =
0 , then ∫ b

a
k(x)

(∫ x

a
f (t)d[g(t)]

)p

dx � C1−p
∫ b

a
K1(x) f p(x)d[gp(x)]. (11)

(b) If f is C-increasing and g is increasing, differentiable and such that g(a+0) =
0 , then ∫ b

a
k(x)

(∫ x

a
f (t)d[g(t)]

)p

dx � Cp−1
∫ b

a
K1(x) f p(x)d[gp(x)]. (12)

(c) If f is C-increasing and g is decreasing, differentiable and such that g(b−0) =
0 , then∫ b

a
k(x)

(∫ b

x
f (t)d[−g(t)]

)p

dx � C1−p
∫ b

a
K2(x) f p(x)d[−gp(x)]. (13)

(d) If f is C-decreasing and g is decreasing, differentiable and such that g(b−0) =
0 , then∫ b

a
k(x)

(∫ b

x
f (t)d[−g(t)]

)p

dx � Cp−1
∫ b

a
K2(x) f p(x)d[−gp(x)]. (14)

(e) If the condition “ p � 1” is replaced by “0 < p � 1”, then all the inequalities
(11)–(14) hold in reversed direction.

Proof. Applying Theorem 2.2 (a)–(d) for φ(x) = xp and taking into account
Remark 2.3 we get (11)–(14) . �

COROLLARY 2.6. Let −∞ < a < b � ∞ and p > 1 .

(a) If f is C-decreasing, then∫ b

a

1
(x−a)p

(∫ x

a
f (t)dt

)p

dx � pC1−p

p−1

∫ b

a

[
1−
(

x−a
b−a

)p−1]
f p(x)dx. (15)
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(b) If f is C-increasing then∫ b

a

1
(x−a)p

(∫ x

a
f (t)dt

)p

dx � pCp−1

(p−1)

∫ b

a

[
1−
(

x−a
b−a

)p−1]
f p(x)dx. (16)

(c) If the condition “ p > 1” is replaced by “0 < p < 1”, then inequalities (15) and
(16) hold in reversed direction.

Proof. Take k(x) = (x−a)−p and g(x) = x−a in (11) and (12) . By considering
Remark 2.3 we get (15) and (16) , respectively. �

REMARK 2.7. If we take a = 0, b = ∞ and C = 1 in (15) , then we get the
reversed Hardy inequality (1) .

As a special case, we consider C -monotone functions with respect to the power
functions (see [1],[5]). For C1,C2 � 1, −∞ < α1 � α2 < ∞ , we say that f ∈ Qα1(C1)
if f (x)x−α1 is C1 -increasing and f ∈ Qα2(C2) if f (x)x−α2 is C2 -decreasing.

THEOREM 2.8. Let p � 1 , k : (a,b) → [0,∞) , K1(x) =
∫ b
x k(t)dt and K2(x) =∫ x

a k(t)dt .

(a) If f ∈ Qα1(C) , b = ∞ and α > α1 , then the following inequality holds∫ ∞

a
k(x)

(∫ ∞

x
f (t)t−α dt

t

)p

dx � p
[
C(α −α1)

]1−p
∫ ∞

a
K2(x) f p(x)x−pα dx

x
.

(17)

(b) If f ∈ Qα2(C) , a = 0 and α2 > α , then the following inequality holds∫ b

0
k(x)

(∫ x

0
f (t)t−α dt

t

)p

dx � p
[
C(α2 −α)

]1−p
∫ b

0
K1(x) f p(x)x−pα dx

x
.

(18)

Proof.

(a) Since f ∈ Qα1(C) , by making substitutions f → f (x)x−α1 and taking g(x) =
xα1−α in (13) , we get (17) .

(b) Since f ∈ Qα2(C) , by making substitutions f → f (x)x−α2 and taking g(x) =
xα2−α in (11) , we get (18) . �

3. Associated linear functionals and exponential convexity

The differences of the R.H.S. and L.H.S. of the inequalities from the previous
section are linear with respect to the convex function ϕ . We will use this property to
construct new families of exponentially convex functions and to derive some related
results.
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For the sake of simplicity and to avoid many notions, we introduce the following
definitions:
(M1) Under the assumptions of Theorem 2.1(a), we define linear functional as

Ω1(φ) = φ
(

C
∫ b

a
f (x)dg(x)

)
−C

∫ b

a
φ ′( f (x)g(x)

)
f (x)dg(x).

(M2) Under the assumptions of Theorem 2.1(b), we define linear functional as

Ω2(φ) =
1
C

∫ b

a
φ ′( f (x)g(x)

)
f (x)dg(x)−φ

(
1
C

∫ b

a
f (x)dg(x)

)
.

(M3) Under the assumptions of Theorem 2.1(c), we define linear functional as

Ω3(φ) = φ
(

C
∫ b

a
f (x)d[−g(x)]

)
−C

∫ b

a
φ ′( f (x)g(x)

)
f (x)d[−g(x)].

(M4) Under the assumptions of Theorem 2.1(d), we define linear functional as

Ω4(φ) =
1
C

∫ b

a
φ ′( f (x)g(x)

)
f (x)d[−g(x)]−φ

(
1
C

∫ b

a
f (x)d[−g(x)]

)
.

(M5) Under the assumptions of Theorem 2.2(a), we define linear functional as

Ω5(φ) =
∫ b

a
k(x)φ

(
C
∫ x

a
f (t)dg(t)

)
dx−C

∫ b

a
K1(x)φ ′( f (x)g(x)

)
f (x)dg(x).

(M6) Under the assumptions of Theorem 2.2(b), we define linear functional as

Ω6(φ) =
1
C

∫ b

a
K1(x)φ ′( f (x)g(x)

)
f (x)dg(x)−

∫ b

a
k(x)φ

(
1
C

∫ x

a
f (t)dg(t)

)
dx.

(M7) Under the assumptions of Theorem 2.2(c), we define linear functional as

Ω7(φ) =
∫ b

a
k(x)φ

(
C
∫ b

x
f (t)d[−g(t)]

)
dx−C

∫ b

a
K2(x)φ ′( f (x)g(x)

)
f (x)d[−g(x)].

(M8) Under the assumptions of Theorem 2.2(d), we define linear functional as

Ω8(φ) =
1
C

∫ b

a
K2(x)φ ′( f (x)g(x)

)
f (x)d[−g(x)]−

∫ b

a
k(x)φ

(
1
C

∫ b

x
f (t)d[−g(t)]

)
dx.

REMARK 3.1. Under the assumptions of Theorem 2.1 and Theorem 2.2 a convex
function φ and the linear functionals Ωk for k = 1, . . . ,8 satisfy Ωk(φ) � 0.

Now we are ready to investigate the properties of functionals as defined above,
regarding n -exponential and exponential convexity.

We start this part of the section by giving some definitions and notions which
are used frequently in the results. Throughout this section I is an interval in R . The
following results for n -exponentially convex functions are cited from [4].
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DEFINITION 1. A function f : I → R is n -exponentially convex in the Jensen
sense on I if

n

∑
i, j=1

ξiξ j f

(
xi + x j

2

)
� 0

holds for all choices ξi ∈ R and every xi ∈ I , i = 1, ...,n .
A function f : I −→ R is n -exponentially convex if it is n -exponentially convex

in the Jensen sense and continuous on I .

REMARK 3.2. It is clear from the definition that 1-exponentially convex func-
tions in the Jensen sense are, in fact, non-negative functions. Also, n -exponentially
convex functions in the Jensen sense are k -exponentially convex in the Jensen sense
for every k ∈ N, k � n .

By using some linear algebra and the definition of a positive semi-definite matrix,
we have the following proposition.

PROPOSITION 3.3. If f is n-exponentially convex in the Jensen sense then for
any xi ∈ I , i = 1, ...,n, the matrix[

f

(
xi + x j

2

)]k

i, j=1

is positive semi-definite for all k ∈ N, k � n. In particular,

det

[
f

(
xi + x j

2

)]k

i, j=1

� 0

for all k ∈ N, k � n.

DEFINITION 2. A function f : I → R is exponentially convex in the Jensen sense
on I if it is n -exponentially convex in the Jensen sense for all n ∈ N . Moreover, a
function f : I → R is exponentially convex if it is exponentially convex in the Jensen
sense and continuous on I .

REMARK 3.4. A function f : I → R is log-convex in the Jensen sense, i. e.

f

(
x1 + x2

2

)2

� f (x1) f (x2), for all x1,x2 ∈ I, (19)

if and only if

ξ 2
1 f (x1)+2ξ1ξ2 f

(
x1 + x2

2

)
+ ξ 2

2 f (x2) � 0
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holds for every ξ1,ξ2 ∈R and x1,x2 ∈ I , i. e, if and only if f is 2-exponentially convex
in the Jensen sensse. By induction from (19) we have

f

(
1
2k x1 +

(
1− 1

2k

)
x2

)
� f (x1)

1
2k f (x2)

1− 1
2k .

Therefore, if f is continuous and f (x1) = 0 for some x1 ∈ I , then from the last in-
equality and non-negativity of f (see Remark 3.2) we get f (x2) = limk→∞ f ( 1

2k x1 +
(1− 1

2k )x2) = 0 for all x2 ∈ I . Hence, a 2-exponentially convex function is either
identically equal to zero or it is strictly positive and log-convex.

The following lemma is equivalent to the definition of convex functions [6, page
2].

LEMMA 3.5. A function f : I → R is convex if and only if the inequality

(x3− x2) f (x1)+ (x1− x3) f (x2)+ (x2− x1) f (x3) � 0

holds for all x1,x2,x3 ∈ I such that x1 < x2 < x3 .

We will also need the following result (see e.g. [6]).

LEMMA 3.6. If Φ is a convex function on an interval I and if x1 � y1, x2 �
y2, x1 �= x2, y1 �= y2 , then the following inequality is valid:

Φ(x2)−Φ(x1)
x2− x1

� Φ(y2)−Φ(y1)
y2− y1

. (20)

If the function Φ is concave then the sign of the above inequality is reversed.

Divided differences are found to be very handy and interesting when we have to
operate with different functions having different degree of smoothness. Let f : I → R

be a function, I an interval in R . Then for distinct points ui ∈ I , i = 0,1,2, the divided
differences of the first and second order are defined as follows:

[ui; f ] = f (ui) (i = 0,1,2) ,

[ui,ui+1; f ] =
f (ui+1)− f (ui)

ui+1−ui
(i = 0,1) ,

[u0,u1,u2; f ] =
[u1,u2; f ]− [u0,u1; f ]

u2−u0
. (21)

The values of the divided differences are independent of the order of the points
u0,u1,u2 and may be extended to include the cases when some or all points are equal,
that is

[u0,u0; f ] = lim
u1→u0

[u0,u1; f ] = f ′(u0),

provided that f ′ exists.
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Now, passing through the limit u1 → u0 and replacing u2 by u in (21) , we have
[6, p. 16]

[u0,u0,u; f ] = lim
u1→u0

[u0,u1,u; f ] =
f (u)− f (u0)− f

′
(u0)(u−u0)

(u−u0)
2 , u �= u0,

provided that f ′ exists. Also passing to the limit ui → u (i = 0,1,2) in (21) , we have

[u,u,u; f ] = lim
ui→u

[u0,u1,u2; f ] =
f
′′
(u)
2

,

provided that f ′′ exists.

REMARK 3.7. One can note that if for all distinct u0,u1 ∈ I , [u0,u1; f ] � 0 then
f is increasing on I and if for all distinct u0,u1,u2 ∈ I , [u0,u1,u2; f ] � 0 then f is
convex on I .

In order to obtain our main results regarding the exponential convexity, we define
several families of functions with certain properties. Let J ⊆ R be an interval and let

En = {φt : [0,∞) → R : t ∈ J, t �→ [u0,u1,u2;φt ] is n-exponentially convex on J

in the Jensen sense for every u0 �= u1 �= u2 �= u0 ∈ [0,∞)}
for n ∈ N and E∞ be defined analogously using exponentially convex functions in the
Jensen sense instead of n -exponentially convex functions in the Jensen sense.

THEOREM 3.8. Let Ωk be linear functionals defined as in (Mk) for k = 1, ...,8
associated with a family En . Then t �→ Ωk(φt) is an n-exponentially convex function
in the Jensen sense on J . If the function t �→ Ωk(φt) is continuous on J , then it is
n-exponentially convex on J .

Proof. We prove n -exponential convexity in the Jensen sense of the function t �→
Ωk(φt) , for k = 1, ...,8. For ξi ∈ R and ti ∈ J , i = 1, ...,n , and the family of functions
En , define the function

h(u) =
n

∑
i, j=1

ξiξ jφ ti+t j
2

(u). (22)

We have

[u0,u1,u2;h] =
n

∑
i, j=1

ξiξ j[u0,u1,u2;φ ti+t j
2

].

Since the function t �→ [u0,u1,u2;φt ] is n -exponentially convex in the Jensen sense on
J , the right-hand side of the above expression is non-negative which implies that h(u)
is convex on I (see Remark 3.7).

Hence, taking into account the assumption (Mk) with Remark 3.1, we have

Ωk(h) � 0, for k = 1, ...,8,
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that is,
n

∑
i, j=1

ξiξ jΩk

(
φ ti+t j

2

)
� 0.

Therefore, we conclude that the functions t �→ Ωk(φt ) , k = 1, ...,8, are n -exponentially
convex in the Jensen sense on J .

If the function t �→ Ωk(φt) is also continuous on J , then t �→ Ωk(φt ) is n -expo-
nentially convex by definition for k = 1, ...,8. �

The following corollary is an immediate consequence of the above theorem.

COROLLARY 3.9. Let Ωk be linear functionals defined as in (Mk) for k = 1, ...,8
associated with a family E∞ . Then t �→ Ωk(φt ) is an exponentially convex function in
the Jensen sense on J . If t �→ Ωk(φt) is continuous on J then it is exponentially convex
on J .

Proof. Follows from the previous theorem. �

COROLLARY 3.10. Let Ωk be linear functionals defined as in (Mk) for k =
1, ...,8 associated with a family E2 . Then the following statements hold:

(i) If the function t �→ Ωk(φt) is continuous on J then, for r,s,t ∈ J such that r <
s < t , we have

(Ωk(φs))t−r � (Ωk(φr))t−s(Ωk(φt))s−r. (23)

(ii) If the function t �→ Ωk(φt) is strictly positive and differentiable on J , then for all
t,r,u,v ∈ J such that t � u, r � v, we have

B(t,r;Ωk,E2) � B(u,v;Ωk,E2), k = 1, ...,4,

where

B(t,r;Ωk,E2) =

⎧⎪⎪⎨⎪⎪⎩
(

Ωk(φt)
Ωk(φr)

) 1
t−r

, t �= r,

exp

(
d
dt (Ωk(φt))

Ωk(φt)

)
, t = r.

(24)

Proof. (i) By Theorem 3.8 the mapping t �→ Ωk(φt) is 2-exponentially convex.
Hence, by Remark 3.4, this mapping is either identically equal to zero, in which case in-
equality (23) has zero on both sides, or it is strictly positive and log-convex. Therefore,
for r,s, t ∈ J such that r < s < t with f (t) = logΩk(φt) in Lemma 3.5 gives

(t− s) logΩk(φr)+ (r− t) logΩk(φs)+ (s− r) logΩk(φt ) � 0.

This is equivalent to inequality (23).
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(ii) By (i), the function t �→ Φk( ft) is log-convex on J , which means that the
function t �→ logΦk( ft ) is convex on J . Hence, by using Lemma 3.6 with t � u , r � v ,
t �= r , u �= v , we obtain

logΩk(φt )− logΩk(φr)
t− r

� logΩk(φu)− logΩk(φv)
u− v

, (25)

that is,

B(t,r;Ωk,E2) � B(u,v;Ωk,E2).

Finally, if t = r � u , by taking the limit limr−→t , we have

B(t,t;Ωk,E2) � B(u,v;Ωk,E2).

Other possible cases are treated similarly. �

REMARK 3.11. The results given in Theorem 3.8 (respectively, Corollary 3.9;
Corollary 3.10) hold when two of the points u0,u1,u2 ∈ [0,∞) coincide, that is to say
when the family En (respectively, E∞ ; E2 ) is replaced with a family (φt)t∈J of dif-
ferentiable functions φt such that for every u0 �= u1 the function t �→ [u0,u0,u1;φt ] is
n -exponentially convex (respectively, exponentially convex; 2-exponentially convex)
in the Jensen sense. Moreover, the above results also hold when all three points co-
incide, i.e. for a family of twice differentiable functions φt such that the mapping
t �→ [u0,u0,u0;φt ] = φ ′′

t (u0)/2 satisfies analogous properties. These results can be
proved easily as before by using the extension of the divided differences to the case
when some or all of the points u0,u1,u2 are equal.

In particular, if the functions φt are twice differentiable, then the families En can
be defined as

En = {φt : [0,∞) → R : t ∈ J, t �→ d2

dx2 φt(x) is n-exponentially convex on J

in the Jensen sense for every x ∈ [0,∞)}.

In order to obtain refinements of the reversed Hardy inequality for C -monotone
functions, we consider the following example of our interest and apply it to the func-
tionals Ωk , k = 5, ...,8. Let a family of functions φp : [0,∞) → R, p > 0, be defined
by

φp(x) =

{
xp

p(p−1) , p > 0, p �= 1
x logx, p = 1,

(26)

with 0 log0 = 0. Then φ ′′
p (x) = xp−2 , so φp is convex. The following Corollary is an

immediate consequence of Corollary 3.10.
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COROLLARY 3.12. Let a,b, f ,g,k,K1 and K2 be as in Corollary 2.5. Then, for
p < q < r (p,q,r ∈ R

+\{1}) the following inequalities hold:

(a)

[∫ b
a k(x)(C

∫ x
a f (t)dg(t))qdx−C

∫ b
a K1(x) f q(x)dgq(x)

q(q−1)

]r−p

�
[∫ b

a k(x)(C
∫ x
a f (t)dg(t))pdx−C

∫ b
a K1(x) f p(x)dgp(x)

p(p−1)

]r−q

×
[∫ b

a k(x)(C
∫ x
a f (t)dg(t))rdx−C

∫ b
a K1(x) f r(x)dgr(x)

r(r−1)

]q−p

, (27)

(b)

[
1
C

∫ b
a K1(x) f q(x)dgq(x)− 1

Cq

∫ b
a k(x)(C

∫ x
a f (t)dg(t))qdx

q(q−1)

]r−p

�
[

1
C

∫ b
a K1(x) f p(x)dgp(x)− 1

Cp

∫ b
a k(x)(C

∫ x
a f (t)dg(t))pdx

p(p−1)

]r−q

×
[

1
C

∫ b
a K1(x) f r(x)dgr(x)− 1

Cr

∫ b
a k(x)(C

∫ x
a f (t)dg(t))rdx

r(r−1)

]q−p

, (28)

(c)

[∫ b
a k(x)(C

∫ b
x f (t)d[−g(t)])qdx−C

∫ b
a K2(x) f q(x)d[−gq(x)]

q(q−1)

]r−p

�
[∫ b

a k(x)(C
∫ b
x f (t)d[−g(t)])pdx−C

∫ b
a K2(x) f p(x)d[−gp(x)]

p(p−1)

]r−q

×
[∫ b

a k(x)(C
∫ b
x x f (t)d[−g(t)])rdx−C

∫ b
a K2(x) f r(x)d[−gr(x)]

r(r−1)

]q−p

, (29)

(d)

[
1
C

∫ b
a K2(x) f q(x)d[−gq(x)]− 1

Cq

∫ b
a k(x)(C

∫ b
x f (t)d[−g(t)])qdx

q(q−1)

]r−p

�
[

1
C

∫ b
a K2(x) f p(x)d[−gp(x)]− 1

Cp

∫ b
a k(x)(C

∫ b
x f (t)d[−g(t)])pdx

p(p−1)

]r−q

×
[

1
C

∫ b
a K2(x) f r(x)d[−gr(x)]− 1

Cr

∫ b
a k(x)(C

∫ x
a f (t)d[−g(t)])rdx

r(r−1)

]q−p

. (30)

Proof. Notice that φ ′′
p (x) = xp−2 = e(p−2) logx and the mapping p �→ e(p−2) logx is
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n -exponentially convex for every n ∈ N since

n

∑
i, j=1

ξiξ je

( pi+p j
2 −2

)
logx =

( n

∑
i=1

ξie
pi−2

2 logx
)2

� 0.

Therefore, by Theorem 3.8 and Remark 3.11, the mapping p �→ Ωk(φp) is n -exponen-
tially convex in the Jensen sense. In, particular, it is 2-exponentially convex and it is
straightforward to check that it is continuous, so inequalities (27)–(30) follow from
Corollary 3.10(i). �

COROLLARY 3.13. Let a,b,k,K1 and K2 be as in Theorem 2.8. Then, for p <
q < r (p,q,r ∈ R

+\{1}) , the following holds:
(a) If f ∈ Qα1(C) , b = ∞ and α > α1 , then[[

C(α −α1)
]q ∫ ∞

a k(x)(
∫ ∞
x f (t)t−α dt

t )qdx−qC(α −α1)
∫ ∞
a K2(x) f q(x)x−qα dx

x

q(q−1)

]r−p

�
[[

C(α −α1)
]p ∫ ∞

a k(x)(
∫ ∞
x f (t)t−α dt

t )pdx− pC(α −α1)
∫ ∞
a K2(x) f p(x)x−pα dx

x

p(p−1)

]r−q

×
[[

C(α −α1)
]r ∫ ∞

a k(x)(
∫ ∞
x f (t)t−α dt

t )rdx− rC(α −α1)
∫ ∞
a K2(x) f r(x)x−rα dx

x

r(r−1)

]q−p

.

(b) If f ∈ Qα2(C) , a = 0 and α2 > α , then[[
C(α2 −α)

]q ∫ b
0 k(x)(

∫ x
0 f (t)t−α dt

t )qdx−qC(α2−α)
∫ b
0 K1(x) f q(x)x−qα dx

x

q(q−1)

]r−p

�
[[

C(α2 −α)
]p ∫ b

0 k(x)(
∫ x
0 f (t)t−α dt

t )pdx− pC(α2−α)
∫ b
0 K1(x) f p(x)x−pα dx

x

p(p−1)

]r−q

×
[[

C(α2 −α)
]r ∫ b

0 k(x)(
∫ x
0 f (t)t−α dt

t )rdx− rC(α2−α)
∫ b
0 K1(x) f r(x)x−rα dx

x

r(r−1)

]q−p

.

Proof. (a) It follows from Corollary 3.12(c) by making substitutions f → f (t)t−α1

and taking g(t) = tα1−α in (29) .
(b) It follows from Corollary 3.12(a) by making substitutions f → f (t)t−α2 and

taking g(t) = tα2−α in (27) . �

4. Mean value results

In this section we assume that the assumptions of Remark 2.4 are satisfied, so
Ωk(φ) are well defined for φ ∈C2[0,c] . We will first state and prove a Lagrange type
mean value theorem for the linear functionals Ωk , k = 1, ...,8 defined by (M1)− (M8) .
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THEOREM 4.1. Let Ωk , k = 1, ...,8 be the linear functionals defined by (M1)−
(M8) and φ ∈C2[0,c] , c > 0 , such that φ(0) = 0 . Then there exists ξk ∈ [0,c] such
that

Ωk(φ) =
φ ′′(ξk)

2
Ωk(x2). (31)

Proof. Fix k = 1, ...,8. Since φ ′′ is continuous on [0,c] , it attains its maximum
and minimum value on [0,c] . Let us consider

m = min
x∈[0,c]

{φ ′′(x)} and M = max
x∈[0,c]

{φ ′′(x)}.

Let us consider functions F1,F2 : [0,c] → R defined by

F1(x) = M
x2

2
−φ(x) and F2(x) = φ(x)−m

x2

2
.

Then
F ′′

1 (x) = M−φ ′′(x) � 0 and F ′′
2 (x) = φ ′′(x)−m � 0,

so F1,F2 are convex functions and it holds F1(0) = F2(0) = 0. Hence, from Theorem
2.1 and 2.2 with F1 and F2 respectively, we have

Ωk(φ) � M
2

Ωk(x2) and Ωk(φ) � m
2

Ωk(x2),

i.e., by combining these two inequalities, we have

m
2

Ωk(x2) � Ωk(φ) � M
2

Ωk(x2).

If Ωk(x2) = 0 then Ωk(φ) = 0 and (31) holds for all ξk ∈ [0,c] . Otherwise

m � 2Ωk(φ)
Ωk(x2)

� M.

Since φ ′′(x) is continuous, there exists ξk ∈ [0,c] such that (31) holds and the proof is
complete. �

Next, we will state and prove a Cauchy type mean value theorem for the linear
functionals Ωk .

THEOREM 4.2. Let Ωk , k = 1, ...,8 be linear functionals defined by (M1)− (M8)
and φ ,ψ ∈C2[0,c] , c > 0 , be such that Ωk(ψ) �= 0 and φ(0) = ψ(0) = 0 . Then there
exists ξk ∈ [0,c] such that either the following identity

Ωk(φ)
Ωk(ψ)

=
φ ′′(ξk)
ψ ′′(ξk)

(32)

holds or φ ′′(ξk) = ψ ′′(ξk) = 0 .



618 S. I. BUTT, J. PEČARIĆ AND M. PRALJAK

Proof. Fix 1 � k � 8 and let L ∈C2[0,c] be given by

L = v1φ − v2ψ ,

where v1 = Ωk(ψ) and v2 = Ωk(φ) . Now, using Theorem 4.1 for the function L , we
have (

v1
φ ′′(ξk)

2
− v2

ψ ′′(ξk)
2

)
Ωk(x2) = 0. (33)

Since Ωk(x2) �= 0 (otherwise we have a contradiction with Ωk(ψ) �= 0 by Theorem
4.1), either φ ′′(ξk) = ψ ′′(ξk) = 0 or (33) yields (32) . �

Theorem 4.2 can be used in construction of Cauchy means. Suppose that φ ′′/ψ ′′
has inverse. Then (32) gives

ξk =
(

φ ′′

ψ ′′

)−1(Ωk(φ)
Ωk(ψ)

)
, (34)

where ξk ∈ [0,c] . We conclude that the expression on the R.H.S. of the above expres-
sion is a Cauchy type mean of the interval [0,c] . For the family of functions φp given
by (26) and r, l ∈ R

+ , the mapping φ ′′
l (x)/φ ′′

r (x) = xl−r has an inverse and we denote
the Cauchy means

Mk
l,r =

(
Ωk(φl)
Ωk(φr)

) 1
l−r

, r �= l. (35)

Since Ωk(φp) and the Cauchy means Mk
l,r for k = 1, ...,4 for the class of functions

defined in (26) were given explicitly in [1], we will give them here only for k = 5, ...,8.
But, before doing this, we will introduce some notations for our convenience. Let us
denote

Hp(a,b,K, f ,g) =
(∫ b

a
K(x) f p(x)d[gp(x)]

)1/p

,

H̃p(a,b,K, f ,g) =
(∫ b

a
K(x) f p(x)d[−gp(x)]

)1/p

,

Rn
l (K, f ,g) =

∫ b

a
K(x)

(
1
l

+ ln
(
f (x)g(x)

))n

f l(x)d
[
gl(x)

]
and

R̃n
l (K, f ,g) =

∫ b

a
K(x)

(
1
l

+ ln
(
f (x)g(x)

))n

f l(x)d
[−gl(x)

]
We will first give the expressions for Ωk(φp) , k = 5, ...,8.

Ω5(φp) =

{
Cp

p(p−1)
∫ b
a k(x)Hp

1 (a,x,1, f ,g)dx−CHp
p(a,b,K1, f ,g), p > 0, p �= 1

C
∫ b
a k(x)H1

1 (a,x,1, f ,g) ln[CH1
1 (a,x,1, f ,g)]dx−CR1

1(K1, f ,g), p = 1.

Ω6(φp)=

⎧⎨⎩
1
C
∫ b
a Hp

p (a,b,K1, f ,g)− 1
Cp
∫ b
a k(x)Hp

1 (a,x,1, f ,g)dx
p(p−1) , p > 0, p �= 1

1
CR1

1(K1, f ,g)− 1
C

∫ b
a (k(x)H1

1 (a,x,1, f ,g) ln[CH1
1 (a,x,1, f ,g)])dx, p = 1.
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Ω7(φp)=

⎧⎨⎩
Cp ∫ b

a k(x)H̃ p
1 (x,b,1, f ,g)dx−CH̃p

p (a,b,K2, f ,g)
p(p−1) , p > 0, p �= 1

C
∫ b
a (k(x)H̃1

1 (x,b,1, f ,g) ln[CH̃1
1 (x,b,1, f ,g)])dx−CR̃1

1(K2, f ,g), p = 1.

Ω8(φp)=

⎧⎨⎩
1
C
∫ b
a H̃ p

p (a,b,K2, f ,g)− 1
Cp
∫ b
a k(x)H̃ p

1 (x,b,1, f ,g)dx
p(p−1) , p > 0, p �= 1

1
C R̃1

1(K2, f ,g)− 1
C

∫ b
a (k(x)H̃1

1 (x,b,1, f ,g) ln[CH̃1
1 (x,b,1, f ,g)])dx, p = 1.

These expressions for Ωk(φp) inserted in (35) give the Cauchy means for l �= r . Also,
we have continuous extensions of the Cauchy means in other cases. Therefore, by limit,
we have the following

M5
r,r =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
exp

(
1−2r

r(r−1) +
∫ b
a [k(x)CrHr

1(a,x,1,h,g) ln(CH1
1 (a,x,1,h,g))]dx−CR1

r (K1,h,g)
(
∫ b
a k(x)CrHr

1(a,x,1,h,g)dx−CHr
r (a,b,K1,h,g))

)
, r �= 1,

exp

(
−1+

∫ b
a [k(x)CH1

1 (a,x,1,h,g)(ln(CH1
1 (a,x,1,h,g)))2]dx+CH1

1 (a,b,K1,h,g)−CR2
1(K1,h,g)

2(
∫ b
a [CH1

1 (a,x,1,h,g) ln(CH1
1 (a,x,1,h,g))]dx−CR1

1(K1,h,g))

)
,

r = 1.

M6
r,r =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
exp

(
1−2r

r(r−1)+
1
C R1

r (K1,h,g)−∫ b
a [k(x) 1

Cr Hr
1(a,x,1,h,g) ln( 1

C H1
1 (a,x,1,h,g))]dx

( 1
C Hr

r (a,b,K1,h,g)−∫ b
a k(x) 1

Cr Hr
1(a,x,1,h,g)dx)

)
, r �= 1,

exp

(
−1+− 1

C H1
1 (a,b,K1,h,g)+ 1

C R2
1(K1,h,g)−∫ b

a [k(x) 1
C H1

1 (a,x,1,h,g)(ln( 1
C H1

1 (a,x,1,h,g)))2]dx

2( 1
C R1

1(K1,h,g)−∫ b
a [ 1

C H1
1 (a,x,1,h,g) ln( 1

C H1
1 (a,x,1,h,g))]dx)

)
,

r = 1.

M7
r,r =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
exp

(
1−2r

r(r−1) +
∫ b
a [k(x)CrH̃r

1(x,b,1,h,g) ln(CH̃1
1 (x,b,1,h,g))]dx−CR̃1

r (K2,h,g)
(
∫ b
a k(x)CrH̃r

1(x,b,1,h,g)dx−CH̃r
r (a,b,K2,h,g))

)
, r �= 1,

exp

(
−1+

∫ b
a [k(x)CH̃1

1 (x,b,1,h,g)(ln(CH̃1
1 (x,b,1,h,g)))2]dx+CH̃1

1 (a,b,K2,h,g)−CR̃2
1(K2,h,g)

2(
∫ b
a [CH̃1

1 (x,b,1,h,g) ln(CH̃1
1 (x,b,1,h,g))]dx−CR̃1

1(K2,h,g))

)
,

r = 1.

M8
r,r =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
exp

(
1−2r

r(r−1)+
1
C R̃1

r (K2,h,g)−∫ b
a [k(x) 1

Cr H̃r
1(x,b,1,h,g) ln( 1

C H̃1
1 (x,b,1,h,g))]dx

( 1
C H̃r

r (a,b,K2,h,g)−∫ b
a k(x) 1

Cr H̃r
1(x,b,1,h,g)dx)

)
, r �= 1,

exp

(
−1+− 1

C H̃1
1 (a,b,K2,h,g)+ 1

C R̃2
1(K2,h,g)−∫ b

a [k(x) 1
C H̃1

1 (x,b,1,h,g)(ln( 1
C H̃1

1 (x,b,1,h,g)))2]dx

2( 1
C R̃1

1(K2,h,g)−∫ b
a [ 1

C H̃1
1 (x,b,1,h,g) ln( 1

C H̃1
1 (x,b,1,h,g))]dx)

)
,

r = 1.

By Corollary 3.10(ii) , the means Mk
l,r given by (35) are monotonic, i.e. for

r, l,u,v ∈ R
+ such that l � v, r � u we have

Mk
l,r � Mk

v,u, k = 5, ...,8.

The monotonicity of the Cauchy means for k = 1, ...,4 was proven in [1].

5. Further Examples

In the earlier sections we applied Theorem 3.8 to the family of functions φp given
by (26) and constructed exponentially convex functions. By using properties of ex-
ponentially convex functions, we refined the reverse Hardy inequality and constructed
Cauchy means. In this section, we apply Theorem 3.8 to other families of convex func-
tions to get other exponentially convex functions and Cauchy means.
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EXAMPLE 5.1. Consider the family of functions

ϒ1 = {λl : [0,∞) → R : l ∈ R}

defined by

λl(x) =

{
elx−1

l2
, l �= 0 ,

x2

2 , l = 0 .

Notice that λl(0) = 0 and the mapping l �→ d2λl
dx2 (x) = elx is exponentially convex (see

the proof of Corollary 3.12). By Corollary 3.9 and Remark 3.11 the mapping l �→
Ωk(λl) , k = 1, ...,8, is exponentially convex in the Jensen sense. It is easy to verify
that this mapping is continuous so it is exponentially convex.

For this family of functions, B(l,r;Ωk,ϒ1) , k = 1, ...,8, from (24) is equal to

B(l,r;Ωk,ϒ1) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
Ωk(λl)
Ωk(λr)

) 1
l−r

, l �= r ,

exp
(

Ωk(id·λl)
Ωk(λl)

− 2
l

)
, l = r �= 0 ,

exp
(

Ωk(id·λ0))
3Ωk(λ0))

)
, l = r = 0 ,

where id is the identity function. Also, by Corollary 3.10, it is monotonic in the param-
eters l and r . Applying Theorem 4.2 for φ = λl and ψ = λr we see that there exists
ξk , k = 1, ...,8, such that

e(l−r)ξk =
Ωk(λl)
Ωk(λr)

.

Therefore
Mk

l,r(ϒ1) = logB(l,r;Ωk,ϒ1)

is a Cauchy mean.

EXAMPLE 5.2. Consider the family of functions

ϒ2 = {ωl : [0,∞) → R : l > 0}

defined by

ωl(x) =

⎧⎨⎩
l−x−1
log2 l

, l �= 1 ,

x2

2 , l = 1 .

Notice that ωl(0) = 0 and the mapping l �→ d2ωl
dx2 (x) = l−x = 1

Γ(x)
∫ ∞
0 e−lttx−1 dt is the

Laplace transform of a non-negative function (see [8]). For ξi ∈ R and li > 0 we have

n

∑
i, j=1

ξiξ j

(
li + l j

2

)−x

=
1

Γ(x)

∫ ∞

0

(
n

∑
i=1

ξie
−li
2 t

)2

tx−1dt � 0,
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so the mapping l �→ d2ωl
dx2 (x) is exponentially convex on (0,∞) (see [3]). By Corollary

3.9 and Remark 3.11 the mapping l �→ Ωk(ωl) , k = 1, ...,8, is exponentially convex in
the Jensen sense. It is easy to verify that this mapping is continuous, so it is exponen-
tially convex.

For this family of functions, B(l,r;Ωk,ϒ2) , k = 1, ...,8, from (24) is equal to

B(l,r;Ωk,ϒ2) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
Ωk(ωl)
Ωk(ωr)

) 1
l−r

, l �= r ,

exp
(
−Ωk(id·ωl)

lΩk(ωl)
− 2

l log l

)
, l = r �= 1 ,

exp
(
−Ωk(id·ω1))

3Ωk(ω1))

)
, l = r = 1 ,

where id is the identity function. Also, by Corollary 3.10, it is monotonic in the param-
eters l and r . Applying Theorem 4.2 for φ = ωl and ψ = ωr we see that there exists
ξk , k = 1, ...,8, such that (

l
r

)−ξk

=
Ωk(ωl)
Ωk(ωr)

.

Therefore
Mk

l,r(ϒ2) = −L(l,r) logB(l,r;Ωk,ϒ2)

is a Cauchy mean, where L(l,r) is the logarithmic mean defined by

L(l,r) =

{ l−r
log l−logr , l �= r ,

l , l = r .

EXAMPLE 5.3. Consider the family of functions

ϒ3 = {μl : [0,∞) → R : l > 0}
defined by

μl(x) =
e−x

√
l −1
l

.

Notice that μl(0) = 0 and the mapping l �→ d2μl
dx2 (x) = e−x

√
l = x

2
√

π
∫ ∞
0

e−lt e−x2/4t

t
√

t
dt is

also the Laplace transform of a non-negative function (see [8]). Analogously as in

Example 5.2, we can show that the mapping l �→ d2μl
dx2 (x) is exponentially convex in

the Jensen sense and, by Corollary 3.9 and Remark 3.11, the mapping l �→ Ωk(μl) ,
k = 1, ...,8, is exponentially convex in the Jensen sense. It is easy to verify that this
mapping is continuous so it is exponentially convex.

For this family of functions, B(l,r;Ωk,ϒ3) , k = 1, ...,8, from (24) is equal to

B(l,r;Ωk,ϒ3) =

⎧⎪⎪⎨⎪⎪⎩
(

Ωk(μl)
Ωk(μr)

) 1
l−r

, l �= r ,

exp
(
− Ωk(id·μl)

2
√

lΩk(μl)
− 1

l

)
, l = r ,
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where id is the identity function. Also, by Corollary 3.10, it is monotonic in the param-
eters l and r . Applying Theorem 4.2 for φ = μl and ψ = μr we see that there exists
ξk , k = 1, ...,8, such that

e−ξk(
√

l−√
r) =

Ωk(μl)
Ωk(μr)

.

Therefore
Mk

l,r(ϒ3) = −(
√

l +
√

r) logB(l,r;Ωk,ϒ3)

is a Cauchy mean.
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