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NEW INEQUALITIES OF THE HERMITE-HADAMARD TYPE FOR
n-TIME DIFFERENTIABLE FUNCTIONS WHICH ARE QUASICONVEX

CETIN YILDIZ

(Communicated by M. Klari¢i¢ Bakula)

Abstract. In this paper, by using an integral identity and the Holder integral inequality we es-
tablish several new inequalities for n-time differentiable mappings that are connected with the
Hermite-Hadamard inequality.

1. Inroduction

On November 22, 1881, Hermite (1822-1901) sent a letter to the Journal Mathesis.
This letter was published in Mathesis 3 (1883, p. 82) and a well-known inequality,
nowadays called the Hermite-Hadamard inequality, was presented there.
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where f: 1 CR — R is a convex function on the interval / of a real numbers and
a,b € I with a < b. If the function f is concave, the inequality in (1.1) is reversed.

The inequalities in (1.1) have become an important cornerstone in mathematical
anlysis and optimization. Many uses of these inequalities have been discovered in a
variety of settings. Moreover, many inequalities of special means can be obtained for a
particular choice of the function f. Due to the rich geometrical significance of Hermite-
Hadamard inequlity, there is growing literature providing its new proofs, extensions,
refinements and generalizations, see for example ([1], [5], [9]-[14], [16]-[19]) and the
references therein.

N

DEFINITION 1. A function f : [a,b] C R — R is said to be convex if whenever
X,y € [a,b] and 7 € [0, 1], the following inequality holds:

flex+(1=1)y) <tf(x)+(1—=1)f(y).
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We say that f is concave if (—f) is convex. This definition has its origins in
Jensen’s results from [8] and has opened up the most extended, useful and multi-
disciplinary domain of mathematics, namely, convex analysis. Convex curves and con-
vex bodies have appeared in mathematical literature since antiquity and there are many
important results related to them.

We recall that the notion of quasiconvex functions generalizes the notion of convex
functions.

DEFINITION 2. A function f : [a,b] C R — R is said to be quasiconvex on [a,b]
if
flex+(1=1)y) < max{f(x),f(y)},
forall x, y € [a,b] and ¢ € [0,1].

Clearly, any convex function is quasiconvex. Furthermore, there exist quasiconvex
functions which are not convex (see [7], [15]).
For example, consider the following:
Let f: Rt — R,
f(x) =Inx, xe R".
This function is quasiconvex. However f is not a convex function.

In [1], Alomari et. al. proved the following theorem for quasiconvex functions:

THEOREM 1. Let f:1 C R — R be twice differentiable mapping on I°, a,b € 1
with a < b and " integrable on |a,b]. If |f"|? is a quasiconvex function on |a,b],
q > 1, then the following inequality holds:

fla+f®) 1 °
2 _b—a/u S(x)dx| <

In [18], Wang et. al. proved the following lemma:

(b—
12

_—

)2
[max {|f"(a)|, (1.2)

@)}

LEMMA 1. ForneN, let f:I CR — R be n-time differentiable. If a,b € I with
a<b and f" € Lla,b], then

fla)+ k—1
2 T a/ f(x) (k+1) ~—(a=b) 1M (p)
- %/0 (1-0)" (2f+"—2)f< l(ta+ (1—1)b)dt,

where an empty sum is understood to be nil.

For other recent results concerning the n-time differentiable functions see [2]-[4],
[6], [9], [12], [18] where further references are given.

The main purpose of the present paper is to establish several new inequalities for
n-time differantiable mappings that are connected with the Hermite-Hadamard inequal-
ity. Also, some applications for special means of real numbers are provided.
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2. Main results

THEOREM 2. For n =2, let f:[a,b] CR — R be n-time differentiable and 0 <

a<b. If f" € Lla,b] and )f ) is quasiconvex on [a,b], for q > 1, then the following
inequality holds:

’f (@) + 2.1

O L [ - 3 A a0 0)
< (bz_n?)n (nqq—_11>15 (nq“ 25?;22)“1)5 [max {| ) @)[" |77 )|} P

q
Proof. Since ’ f(")’ is quasi-convex on [a,b], for ¢ > 1, from Lemma 1 and the
Holder integral inequality, it follows that

'f(a)2 e (k+11) (a— b)) ()
<Ay ‘(1_,>nf1<zt+n—z> \f<"><m+<1—z>b>|dr
Lo ([ _t><2‘3f’d;)1_%’ ([ ren-22|/ e —t>b>)th)é
< %(/Olu—z)wdt)l’l’ (/01<2z+n—2>qdr)’l’

<[ar{[ ool o]}

Q=

S () (e A o )]

This completes the proof. [

COROLLARY 1. Under conditions of Theorem 2, if we choose n =2, then

’f(a);f Cb— a/ U

(b—a)? [ q—1 _;mx N il
() @l rory

(b—a)

—1 17% 1
< B (%) [max{|f (@)|?,

®)|}]7.
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THEOREM 3. For n > 2, let f:[a,b] CR — R be n-time differentiable and 0 <

a<b. If f) € L[a,b] and ‘f(") ‘s quasiconvex on |a,b|, then the following inequality

holds:
'f(a) ;f(b) - bia/abf(x)dx_gz{/{clll)! (=)0 ) ¢
(b-ay( 1\
s 2n! (q(n—l)—l—l)
21 2g—1 17%
(g—1) |neT —(n—2)4T 1
. {2(2q—1) ] max{[7" @[ @) ]

where p = % and p > 1.

Proof. From Lemma 1 and the Holder integral inequality, we obtain

f@+ B
‘ 2 Cb— a/ J ) k+1) S(a—b)k W (b)
< (bz—né'l) /01(1—1)n—1(2t+n—2) ‘f(n)(m‘F(l—t)b)’dt

<O ([ersn-2ta ) (f a=nmen] s —r>b>\"dt)‘l’

Since ) i ! is quasiconvex on [a,b], for g > 1, then

2 b—al, f(x)dx_ 2(k+1)!

< (bz—n?)" (/01(2t+n—2)qqldt>
{

'f(a)—l—f(b)_ 1 b § k-1 (—b)kf(k)(b)

1-1
2g—1 2ql:| q

(a2
202 1)

X

which completes the proof. [J
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COROLLARY 2. Ifwe choose n =2 in the inequality (2.2), then we have

UCE= (L RS
—a 2 _ q_l é 1/ /! 7
<852 <(q+(f)(2;)—1)ql> [max {[f" (@)[", |7 ®)|"}]7 -

THEOREM 4. Let f: [a,b] CR — R be n-time differentiable for n > 1 and 0 <
a<b<oo If f") € Lia,b] and ’ JQ)

is quasiconvex on |a,b), for ¢ > 1, then

a n—1 5
a =1 !
(b—a)" p(n—2)+2 % . q , q %
S 2n(n—2)!([p(n—l)+l}[p(n—1)+2]) [max{’f()(g) »f()(b)‘ H

1,1 _
where l—7—|—t—1—1andp>1.

q
Proof. Since ) f(")) is quasi-convex on [a,b], for ¢ > 1, from Lemma | and the
Holder integral inequality, it follows that

fla)+ 1
2 b a/ f k+1)( a=b)'f0()

(bz_n‘!l) /0 (1—0)" Y2t +n—-2) )f(n)(ta+(1_t)b)‘dt

< (bz_,;)n (/01(1 —t)p("l)(Zt—i-n—Z)dt)p

x (/01(2t+n—2) ’f(”)(ta+(1 —z)b)‘th)é

< (bz—nc!z)” (/01(1 —t)p("l)(Zt—i-n—Z)dt)p

([ ) sl o))

~ s (et ) (e

On the other hand, we have

s (DI —2)42]
Jy ot Ve 2= R

=21

q

b

_—=

soef)]

This completes the proof. [l
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COROLLARY 3. In Theorem 4, if we choose n =2, we obtain the following in-
equality:

LOESCRTY N

(b—a)? 2 5 o
4 ((P+1)(p+2)> [max {|f"(a)|",|f"()|"}] 7.

THEOREM 5. Let f:]a,b] CR — R be n-time differentiable for n > 1 and 0 <
a<b<oo If f® € Lia,b] and | ™|’

L

<=

<

is quasiconvex on |a,b), for ¢ > 1, then

' fla 2.4)

2 b a/f k+1) TERV I

S (bz_n?)n (q(n —lz) +2);

W2 (n42p+2)(n—2)P1\ »
( 4(;+’f)fp+2) ) mx{

<=

q

@),

q
o)}
1 1 _
where stg= land p>1.

Proof. From Lemma 1 and the Holder integral inequality, we have

2 b a/ f k+1)( a=b)'f0()

T')/o (1—1)"" 2t +n—2)

< (bz_rj)n (/Ol(l—t)(Zt—i-n—Z)pdt); (/01(1_1)"4—2q+1

ol

(")(m+ (1 —t)b))dt

£ (ta+(1-1)b) )qdz) : .

Since

is quasiconvex on [a,b], for g > 1, then we get

n 1
'f 2 b a/f I;<+1) (a= Y9 )

< (bz_n?" (/01(1 —t)(2t+n—2)pdt> ’

X (/01(1 —t)"qzqﬂdt) [max{

Q=

o)

"),
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- (bz_nt!l)n (q(n —12) +2);

P2 (n 2PN 4
() {0

This completes the proof. [

q

)

=

)

THEOREM 6. For n =2, let f:[a,b] CR — R be n-time differentiable and 0 <
a<b. If f € Lla,b] and )f(") )q is quasiconvex on [a,b], for q > 1, then the following
inequality holds:

‘f(a) 0s)

f<"><b>r}ﬁ-

2

< (bz—né!l)n <ZI— i) [max{‘f(n)(a)

Proof. From Lemma 1 and using the well known power-mean integral inequality,
we have

q

)

f@)+ O
‘ 2 b a/ S (k+1) ( —b)* 0 (b)
S (bz_nczl)n /Ol(l_t)n_l(”ﬂﬂ) )f(n)(m—i—(l—t)b)‘dt

< (bz_nc!l)n (/()l(l_t)n—l(zt_'_n_z)dt)l;
x (/()l(l—t)n1(2t+n—2) ’f(n)(ta‘f'(l—[)b)‘th)%

Since )f(") !

is quasiconvex on [a,b], for ¢ > 1, then we obtain

fla)+ -1

=g

< (bz_n?)n (/01(1 —t)”‘1(2t+n—2)dt)

1

x (/01(1 —t)"1(2t+n—2)dt> ’ [max{‘f(”)(a)

= O () [ {0 [}

which completes the proof. [J

q

o))
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COROLLARY 4. Under conditions of Theorem 6, if we choose q = 1, then we

obtain

a b n—1 _
a k=1

)
< b-ar (”_ 1) {max{‘ﬂ")(a)

2n! n+1 f(”)(b)‘H '

)

REMARK 1. Under conditions of Theorem 6, if we choose n =2, then we obtain

inequality (1.2).
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