
Journal of
Mathematical

Inequalities

Volume 10, Number 3 (2016), 737–749 doi:10.7153/jmi-10-60
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(Communicated by A. Meskhi)

Abstract. We discuss the Heisenberg uncertainty inequality for groups of the form K �Rn , K is
a separable unimodular locally compact group of type I. This inequality is also proved for Gabor
transform for several classes of groups of the form K �Rn .

1. Introduction

The uncertainty principle states that a non-zero function and its Fourier transform
cannot both be sharply localized. The most precise way of formulating this principle
quantitatively is the inequality known as Heisenberg uncertainty inequality. Let f be
any function in L2(R) . The Fourier transform of f is defined as

f̂ (ω) =
∫

R
f (x) e−2π iωx dx.

The following theorem gives the Heisenberg uncertainty inequality for the Fourier
transform on R :

THEOREM 1.1. For any f ∈ L2(R) , we have

‖ f‖2
2

4π
�

(∫
R

x2 | f (x)|2 dx

)1/2 (∫
R

ω2 | f̂ (ω)|2 dω
)1/2

, (1.1)

where ‖ · ‖2 denotes the L2 -norm.

For proof of the theorem, refer to [7]. Various uncertainty inequalities were pre-
sented in [3] and [4] on stratified Lie groups and groups of polynomial volume growth
respectively.

The representation of f as a function of x is usually called its time-representation,
while the representation of f̂ as a function of ω is called its frequency-representation.
The Fourier transform has been the most commonly used tool for analyzing frequency
properties of a given signal, but the problem with this tool is that after transformation,
the information about time is lost and it is hard to tell where a certain frequency occurs.
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To counter this problem, we can use joint time-frequency representation, i.e., Gabor
transform.

Let ψ ∈ L2(R) be a fixed non-zero function usually called a window function.
The Gabor transform of a function f ∈ L2(R) with respect to the window function ψ
is defined by

Gψ f : R× R̂ → C

such that

Gψ f (t,ω) =
∫

R
f (x) ψ(x− t) e−2π iωx dx,

for all (t,ω) ∈ R× R̂ . The following uncertainty inequality of Heisenberg-type has
been proved by Wilczok [15].

THEOREM 1.2. Let ψ be a window function. Then, for arbitrary f ∈ L2(R) , the
following inequality holds

‖ψ‖2 ‖ f‖2
2

4π
�

(∫
R

x2 | f (x)|2 dx

)1/2 (∫
R2

ω2 |Gψ f (t,ω)|2 dt dω
)1/2

. (1.2)

The continuous Gabor transform for second countable, non-abelian, unimodular
and type I groups has been defined by Farashahi and Kamyabi-Gol in [5].

In section 2, we shall state the Heisenberg uncertainty inequality for Fourier trans-
form on the groups of the form K � Rn , where K is a separable unimodular locally
compact group of type I and prove it for the semi-direct product K � Rn (where K is
a compact subgroup of the group of automorphisms of Rn ). In section 3, we shall
discuss continuous Gabor transform and prove Heisenberg uncertainty inequality for
Gabor transform on K �Rn (where K is a separable unimodular locally compact group
of type I) that satisfy the Heisenberg uncertainty inequality for Fourier transform. The
explicit forms of Heisenberg uncertainty inequality for Gabor transform are obtained
for K � Rn , K is a compact subgroup of Aut(Rn) ; Rn ×K , K is separable unimod-
ular locally compact group of type I; Heisenberg group Hn ; Thread-like nilpotent Lie
groups; 2-NPC nilpotent Lie groups and several classes of connected, simply connected
nilpotent Lie groups.

2. Extensions of Rn

Let G = K�Rn , where K is a separable unimodular locally compact group of type
I. For γ ∈ R̂n , let Gγ , Kγ denote the stabilizer subgroup of γ in G and K respectively
and let

Ǧγ = {ν ∈ Ĝγ : ν|Rn is a finite multiple of γ}.
Then for ν ∈ Ǧγ , the representation πν = indG

Gγ ν is irreducible and

Ĝ = ∪
R̂n/G

{πν : ν ∈ Ǧγ}.
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Since Rn is abelian, any ν ∈ Ǧγ is of the form ν = σ ⊗ γ , ν(kx) = σ(k)γ(x) , k ∈ Kγ ,
x ∈ Rn and σ ∈ K̂γ .

We consider the induced representations

πγ,σ = indG
Gγ (γ ⊗σ).

The Plancherel formula for G (for details, see [9]) takes the following form:

PROPOSITION 2.1. (Plancherel formula) For all f ∈ L2(G) , we have∫
G
| f (g)|2 dg =

∫
R̂n/G

∫
K̂γ
‖πγ,σ ( f )‖2

2 dμγ(σ) dμRn(γ).

We now state the Heisenberg uncertainty inequality for Fourier transform on G
which has been proved, in particular cases of Rn (see [7]); Heisenberg group (see [14],
[12] and [16]); Rn ×K (where K is a separable unimodular locally compact group of
type I), Euclidean motion group M(n) = SO(n) � Rn and several general classes of
nilpotent Lie groups which include thread-like nilpotent Lie groups, 2-NPC nilpotent
Lie groups and several low-dimensional nilpotent Lie groups (see [2]).

THEOREM 2.2. For any f ∈ L2(G) and a,b � 1 , we have

‖ f‖(
1
a + 1

b )
2 � C

(∫
K×Rn

‖x‖2a | f (k,x)|2 dx dk

) 1
2a

×
(∫

R̂n/G

∫
K̂γ
‖γ‖2b‖πγ,σ ( f )‖2

HS dμγ(σ) dμRn(γ)
) 1

2b

, (H)

where C is a constant.

We do not know whether the inequality (H) is true for K � Rn , however we now
prove the Heisenberg uncertainty inequality for Fourier transform when K is a compact
subgroup of Aut(Rn) .

Let G be the semi-direct product K � Rn , where K is a compact subgroup of
Aut(Rn) . The Haar measure on G is dg = dν(k) dx , where dν(k) denotes the nor-
malized Haar measure of K and dx denotes the Lebesgue measure on Rn . We shall
now give more explicit description of the unitary dual space of the group G in this case
which can be determined by Mackey’s theory. For more details, refer to [10].

Let � be a non-zero real linear form on Rn and let χ� be the unit character of Rn

defined by χ�(x) = ei〈l,x〉 . The natural action g · � of G on the dual vector space of Rn

is given by

〈g · �,x〉= 〈�,g−1xg〉,

for g ∈ G and x ∈ Rn . Therefore, if g acts on R̂n by

g · χ�(x) := χ�(g−1xg),
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we get g · χ� = χg·� . Define

K� = {k ∈ K : k · χ� = χ�}.

Then, the subgroup K� � Rn is the stabilizer of χ� in G . We take the normalized Haar
measure dν� on K� and a normalized K -invariant measure dν̇� on K/K� so that

∫
K

ξ (k) dν(k) =
∫

K/K�

∫
K�

ξ (kk′) dν�(k′) dν̇�(kK�).

Regarding the action of K on R̂n which is isomorphic to Rn , we set by d � the
image of the Lebesgue measure on Rn/K by the canonical projection Rn 
 � �→ � :=
K.� ∈ Rn/K such that

∫
Rn

ϕ(�) d� =
∫

Rn/K

∫
K

ϕ(k.�) dν(k) d �.

Let σ be an irreducible unitary representation of K� and H�,σ be the completion
of the vector space of all continuous mapping ξ : K → Hσ which satisfies ξ (ks) =
σ(s)∗(ξ (k)) for k ∈ K and s ∈ K� with respect to the norm

‖ξ‖2 =
(∫

K
‖ξ (k)‖2

Hσ dν(k)
)1/2

.

The induced representation

π�,σ := indG
K��Rn(σ ⊗ χ�),

realized on the Hilbert space H�,σ by

π�,σ (k,x)ξ (s) = ei〈�,s−1xs〉ξ (k−1s) = ei〈s.�,x〉ξ (k−1s),

for ξ ∈H�,σ , (k,x)∈G and s∈K , is an irreducible representation of G . Furthermore,
every infinite dimensional irreducible unitary representation of G is equivalent to some
representation π�,σ .

The Plancherel formula [6, Theorem 7.44] can be stated in this particular case as
follows:

PROPOSITION 2.3. (Plancherel formula) Let f ∈ L1(G)∩L2(G) , then∫
K×Rn

| f (k,x)|2 dx dk =
∫

Rn/K
∑

σ∈K̂�

‖π�,σ( f )‖2
HS d �. (2.1)

The proof of the following Heisenberg uncertainty inequality for Fourier transform
on G is similar in nature to that for the Euclidean motion group which has been proved
in [2], so we only outline the proof.
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THEOREM 2.4. For any f ∈ L2(G) and a,b � 1 , we have

‖ f‖(
1
a + 1

b )
2 � C

(∫
K×Rn

‖x‖2a | f (k,x)|2 dx dk

) 1
2a

×
⎛
⎝∫

Rn/K
∑

σ∈K̂�

‖�‖2b‖π�,σ ( f )‖2
HS d �

⎞
⎠

1
2b

, (2.2)

where C is a constant.

Proof. As in [2], it suffices to prove the inequality (2.2) for functions in S (G) ,
the space of C∞ -functions which are rapidly decreasing on G .

Let f ∈ S (G) . Proceeding as in [2, Theorem 3.2]), we obtain

‖ f‖1+ 1
a

2

2
�

(∫
K×Rn

‖x‖2a | f (k,x)|2 dx dk

) 1
2a

⎛
⎝∫

Rn/K
∑

σ∈K̂�

∥∥∥∥π�,σ

(
∂ f
∂x1

)∥∥∥∥2

HS
d �

⎞
⎠1/2

.

(2.3)

For each non-zero linear form � on Rn and each irreducible unitary representation σ
of K� , consider the representation π�,σ realized on the Hilbert space H�,σ as

π�,σ (k,x)ξ (s) = ei〈�,s−1xs〉ξ (k−1s) = ei〈s.�,x〉ξ (k−1s),

for ξ ∈H�,σ , (k,x)∈G and s∈K . For h∈R and x=(x1,x2, . . . ,xn) , e1=(1,0,0, . . . ,0)
∈ Rn , we can write

π�,σ (k,x1 −h,x2, . . . ,xn)∗ξ (s) = eih〈�,s−1e1s〉 π�,σ (k,x1,x2, . . . ,xn)∗ξ (s).

Since f ∈ S (G) , we observe that

π�,σ

(
∂ f
∂x1

)
ξ (s) = i〈�,s−1e1s〉 π�,σ ( f )ξ (s).

Since s �→ s−1e1s is a continuous map from K to Rn , so {s−1e1s : s ∈ K} is bounded.
For any orthonormal basis {ξ j} of H�,σ , we have∥∥∥∥π�,σ

(
∂ f
∂x1

)∥∥∥∥2

HS
= ∑

j

∫
K
|i〈�,s−1e1s〉 π�,σ ( f )ξ j(s)|2 ds

� const. ‖�‖2∑
j

∫
K
|π�,σ ( f )ξ j(s)|2 ds = const. ‖�‖2‖π�,σ ( f )‖2

HS.

So, (2.3) can be written as

‖ f‖1+ 1
a

2 �C

(∫
K×Rn

‖x‖2a | f (k,x)|2 dx dk

) 1
2a

⎛
⎝∫

Rn/K
∑

σ∈K̂�

‖�‖2
∥∥π�,σ ( f )

∥∥2
HS d �

⎞
⎠1/2

.

(2.4)
Using Hölder’s inequality in the second integral on R.H.S. of the inequality (2.4), we
obtain the required inequality (2.2). �
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3. Continuous Gabor transform

Let H be a separable Hilbert space and let B(H ) denotes the set of all bounded
linear operators on H . An operator T ∈ B(H ) is called Hilbert-Schmidt operator if
and only if

∑
k

‖Tek‖2 < ∞,

for some, and hence for any, orthonormal basis {ek} of H . We denote the set of all
Hilbert-Schmidt operators on H by HS(H ) . For each T ∈ HS(H ) , the Hilbert-
Schmidt norm ‖T‖HS of T is defined as

‖T‖2
HS := ∑

k

‖Tek‖2.

Also, HS(H ) forms a Hilbert space with the inner product given by

〈T,S〉HS(H ) = tr(S∗T ).

For more details, refer to [6].
Let G be a second countable, non-abelian, unimodular and type I group. Let

dx be the Haar measure on G . Let dπ be the Plancherel meaure on Ĝ . For each
(x,π) ∈ G× Ĝ , let

H(x,π) = π(x)HS(Hπ),

where π(x)HS(Hπ ) = {π(x)T : T ∈ HS(Hπ )} . Then, H(x,π) is a Hilbert space with
the inner product given by

〈π(x)T,π(x)S〉H(x,π) = tr(S∗T ) = 〈T,S〉HS(Hπ ).

One can easily verify that H(x,π) = HS(Hπ ) for all (x,π) ∈ G× Ĝ . The family

{H(x,π)}(x,π)∈G×Ĝ of Hilbert spaces indexed by G× Ĝ is a field of Hilbert spaces over

G× Ĝ . Let H 2(G× Ĝ) denote the direct integral of {H(x,π)}(x,π)∈G×Ĝ with respect to

the product measure dx dπ , i.e., the space of all measurable vector fields F on G× Ĝ
such that

‖F‖2
H 2(G×Ĝ)

=
∫

G×Ĝ
‖F(x,π)‖2

(x,π) dx dπ < ∞.

H 2(G× Ĝ) is a Hilbert space with the inner product given by

〈F,K〉H 2(G×Ĝ) =
∫

G×Ĝ
tr [F(x,π)K(x,π)∗] dx dπ .

Let f ∈ Cc(G) , the set of all continuous complex-valued functions on G with
compact supports and ψ be a fixed non-zero function in L2(G) which is sometimes
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called a window function. For (x,π) ∈ G× Ĝ , the continuous Gabor Transform of f
with respect to the window function ψ can be defined as a measurable field of operators
on G× Ĝ by

Gψ f (x,π) :=
∫

G
f (y) ψ(x−1y) π(y)∗ dy. (3.1)

The operator-valued integral (3.1) is considered in the weak-sense, i.e., for each (x,π)∈
G× Ĝ and ξ ,η ∈ Hπ , we have

〈Gψ f (x,π)ξ ,η〉 =
∫

G
f (y) ψ(x−1y) 〈π(y)∗ξ ,η〉 dy.

For each x ∈ G , define f ψ
x : G → C by

f ψ
x (y) := f (y) ψ(x−1y).

Since, f ∈ Cc(G) and ψ ∈ L2(G) , we have f ψ
x ∈ L1(G)∩L2(G) , for all x ∈ G . The

Fourier transform is given by

f̂ ψ
x (π) =

∫
G

f ψ
x (y) π(y)∗ dy =

∫
G

f (y) ψ(x−1y) π(y)∗ dy = Gψ f (x,π).

Also, using Plancherel theorem [6, Theorem 7.44], we see that f̂ ψ
x (π) is a Hilbert-

Schmidt operator for almost all π ∈ Ĝ . Therefore, Gψ f (x,π) is a Hilbert-Schmidt
operator for all x ∈G and for almost all π ∈ Ĝ . As in [5], for f ∈Cc(G) and a window
function ψ ∈ L2(G) , we have

‖Gψ f‖H 2(G×Ĝ) = ‖ψ‖2 ‖ f‖2.

The above equality shows that the continuous Gabor transform Gψ :Cc(G)→H 2(G×
Ĝ) defined by f �→ Gψ f is a multiple of an isometry. So, we can extend Gψ uniquely
to a bounded linear operator from L2(G) into a closed subspace H of H 2(G× Ĝ)
which we still denote by Gψ and this extension satisfies

‖Gψ f‖H 2(G×Ĝ) = ‖ψ‖2 ‖ f‖2, (3.2)

for each f ∈ L2(G) . We now prove an important lemma.

LEMMA 3.1. Let f ∈ L2(G) and ψ ∈ L2(G) be a window function. Then

Gψ f (x,π) = f̂ ψ
x (π).

Proof. Let f ∈ L2(G) . Since Cc(G) is dense in L2(G) , there exists a sequence
{φn} in Cc(G) such that f = lim

n→∞
φn in the L2 -norm. It follows that

Gψ : L2(G) → H ⊆ H 2(G× Ĝ)



744 A. BANSAL AND A. KUMAR

satisfies Gψ f = lim
n→∞

Gψ φn in the H 2(G× Ĝ)-norm and

Gψφn(x,π) = (̂φn)
ψ
x (π).

Now, ‖Gψ f −Gψφn‖2
H 2(G×Ĝ)

=
∫

G

∫
Ĝ
‖Gψ f (x,π)−Gψφn(x,π)‖2

HS dx dπ

=
∫

G

∫
Ĝ
‖Gψ f (x,π)− (̂φn)

ψ
x (π)‖2

HS dx dπ

and ‖ψ‖2
2 ‖ f −φn‖2

2 =
∫

G
|ψ(x)|2 dx

∫
G
|( f −φn)(y)|2 dy

=
∫

G

∫
G
|( f −φn)(y)|2 |ψ(x−1y)|2 dx dy

=
∫

G

∫
G
| f (y) ψ(x−1y)−φn(y) ψ(x−1y)|2 dx dy

=
∫

G

∫
G
|( f ψ

x − (φn)ψ
x )(y)|2 dx dy

=
∫

G

∫
Ĝ
‖ f̂ ψ

x (π)− (̂φn)
ψ
x (π)‖2

HS dx dπ .

Hence, Gψ f (x,π) = f̂ ψ
x (π) for all f ∈ L2(G) . �

We now establish Heisenberg uncertainty inequality for Gabor transform on G =
K � Rn , where K is a separable unimodular locally compact group of type I. The con-
tinuous Gabor Transform of f with respect to the window function ψ can be defined
as follows:

Gψ f (u,t,γ,σ) :=
∫

G
f ψ
u,t(k,x) πγ,σ (k,x)∗ dx dk, (3.3)

where f ψ
u,t (k,x) = f (k,x) ψ((u,t)−1(k,x)) , (u,t) ∈ G , γ ∈ R̂n and σ ∈ K̂γ . Also, the

equality in Lemma 3.1 takes the following form:

Gψ f (u,t,γ,σ) = πγ,σ ( f ψ
u,t). (3.4)

THEOREM 3.2. Let G = K � Rn satisfies the inequality (H) and ψ be a window
function. For a,b � 1 , we have

‖ψ‖
1
b
2 ‖ f‖(

1
a + 1

b)
2 � C

(∫
K×Rn

‖x‖2a | f (k,x)|2 dx dk

) 1
2a

×
(∫

K×Rn

∫
R̂n/G

∫
K̂γ
‖γ‖2b ‖Gψ f (u,t,γ,σ)‖2

HS dμγ(σ) dμRn(γ) du dt

) 1
2b

.

(3.5)



HEISENBERG UNCERTAINTY INEQUALITY FOR GABOR TRANSFORM 745

Proof. Assume that both integrals on the right-hand side of (3.5) are finite. Since
f ψ
u,t ∈ L2(G) for all (u,t) ∈ G , so by using inequality (H) for a = b = 1, we have

‖ f ψ
u,t‖2

2 � C

(∫
K×Rn

‖x‖2 | f ψ
u,t(k,x)|2 dx dk

)1/2

×
(∫

R̂n/G

∫
K̂γ
‖γ‖2 ‖πγ,σ ( f ψ

u,t )‖2
HS dμγ(σ) dμRn(γ)

)1/2

. (3.6)

Also, by Proposition 2.3 and (3.4), we have∫
R̂n/G

∫
K̂γ
‖Gψ f (u,t,γ,σ)‖2

HS dμγ(σ) dμRn(γ)

=
∫

R̂n/G

∫
K̂γ
‖πγ,σ ( f ψ

u,t)‖2
HS dμγ (σ) dμRn(γ) = ‖ f ψ

u,t‖2
2. (3.7)

On combining (3.6) and (3.7), we obtain∫
R̂n/G

∫
K̂γ
‖Gψ f (u,t,γ,σ)‖2

HS dμγ(σ) dμRn(γ)

� C

(∫
K×Rn

‖x‖2 | f ψ
u,t(k,x)|2 dx dk

)1/2

×
(∫

R̂n/G

∫
K̂γ
‖γ‖2 ‖πγ,σ ( f ψ

u,t)‖2
HS dμγ (σ) dμRn(γ)

)1/2

,

which holds for almost all (u,t) ∈ G . Integrating both sides with respect to du dt and
then applying Cauchy-Schwarz inequality, we have∫

K×Rn

∫
R̂n/G

∫
K̂γ

∥∥Gψ f (u,t,γ,σ)
∥∥2

HS dμγ(σ) dμRn(γ) du dt

� C

(∫
K×Rn

∫
K×Rn

‖x‖2 | f ψ
u,t (k,x)|2 dx dk du dt

)1/2

×
(∫

K×Rn

∫
R̂n/G

∫
K̂γ
‖γ‖2 ‖πγ,σ ( f ψ

u,t)‖2
HS dμγ(σ) dμRn(γ) du dt

)1/2

= C

(∫
K×Rn

∫
K×Rn

‖x‖2 | f (k,x) ψ((u,t)−1(k,x))|2 dx dk du dt

)1/2

×
(∫

K×Rn

∫
R̂n/G

∫
K̂γ
‖γ‖2 ‖πγ,σ ( f ψ

u,t)‖2
HS dμγ(σ) dμRn(γ) du dt

)1/2

= C‖ψ‖2

(∫
K×Rn

‖x‖2 | f (k,x)|2 dx dk

)1/2

×
(∫

K×Rn

∫
R̂n/G

∫
K̂γ
‖γ‖2 ‖πγ,σ ( f ψ

u,t)‖2
HS dμγ(σ) dμRn(γ) du dt

)1/2

.
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Using (3.2) and (3.4), we get

‖ψ‖2 ‖ f‖2
2

� C

(∫
K×Rn

‖x‖2 | f (k,x)|2 dx dk

)1/2

×
(∫

K×Rn

∫
R̂n/G

∫
K̂γ
‖γ‖2 ‖Gψ f (u,t,γ,σ)‖2

HS dμγ(σ) dμRn(γ) du dt

)1/2

.

(3.8)

Applying Hölder’s inequality, we have(∫
K×Rn

‖x‖2a | f (k,x)|2 dx dk

) 1
a
(∫

K×Rn
| f (k,x)|2 dx dk

)1− 1
a

�
∫

K×Rn
‖x‖2 | f (k,x)|2 dx dk (3.9)

and (∫
K×Rn

∫
R̂n/G

∫
K̂γ
‖γ‖2b ‖Gψ f (u,t,γ,σ)‖2

HS dμγ(σ) dμRn(γ) du dt

) 1
b

×
(∫

K×Rn

∫
R̂n/G

∫
K̂γ
‖Gψ f (u,t,γ,σ)‖2

HS dμγ(σ) dμRn(γ) du dt

)1− 1
b

�
∫

K×Rn

∫
R̂n/G

∫
K̂γ
‖γ‖2 ‖Gψ f (u,t,γ,σ)‖2

HS dμγ(σ) dμRn(γ) du dt. (3.10)

Combining (3.8), (3.9) and (3.10), we have

‖ψ‖2 ‖ f‖2
2

� C

(∫
K×Rn

‖x‖2a | f (k,x)|2 dx dk

) 1
2a

(‖ f‖2
2)

1
2− 1

2a

×
(∫

K×Rn

∫
R̂n/G

∫
K̂γ
‖γ‖2b ‖Gψ f (u,t,γ,σ)‖2

HS dμγ (σ) dμRn(γ) du dt

) 1
2b

× (‖ψ‖2
2 ‖ f‖2

2)
1
2− 1

2b .

Thus, we have the required inequality (3.5). �

EXAMPLE 3.3. We give the explicit expression of the Heisenberg uncertainty in-
equality for Gabor transform in the following cases:

1. Euclidean group Rn .

‖ψ‖
1
b
2 ‖ f‖(

1
a + 1

b )
2 � C

(∫
Rn

‖x‖2a | f (x)|2 dx

) 1
2a

×
(∫

Rn

∫
R̂n

‖ω‖2b ‖Gψ f (t,ω)‖2
HS dt dω

) 1
2b

.
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2. Rn×K , where K is a separable unimodular locally compact group of type I.

‖ψ‖
1
b
2 ‖ f‖(

1
a + 1

b )
2 � C

(∫
Rn×K

‖x‖2a | f (x,k)|2 dx dk

) 1
2a

×
(∫

Rn×K

∫
Rn×K̂

‖z‖2b ‖Gψ f (t,u,z,γ)‖2
HS dz dγ dt du

) 1
2b

.

3. Heisenberg Group Hn (see [14]).

‖ψ‖
1
b
2 ‖ f‖(

1
a + 1

b )
2 � C

(∫
Hn

|t|2a | f (z,t)|2 dz dt

) 1
2a

×
(∫

Hn

∫
R∗

|λ |2b ‖Gψ f (z′,t ′,λ )‖2
HS |λ |n dλ dz′ dt ′

) 1
2b

.

4. K � Rn , where K is a compact subgroup of the group of automorphisms of Rn .

‖ψ‖
1
b
2 ‖ f‖(

1
a + 1

b )
2 � C

(∫
K×Rn

‖x‖2a | f (k,x)|2 dx dk

) 1
2a

×
⎛
⎝∫

K×Rn

∫
R̂n/G

∑
σ∈K̂�

‖�‖2b ‖Gψ f (u,t, �,σ)‖2
HS d � du dt

⎞
⎠

1
2b

.

5. A class of connected, simply connected nilpotent Lie groups G for which the
Hilbert-Schmidt norm of the group Fourier transform πξ ( f ) of f attains a par-
ticular form (see [2]).

‖ψ‖
1
b
2 ‖ f‖(

1
a + 1

b )
2 � C

(∫
G
‖x‖2a | f (x)|2 dx

) 1
2a

×
(∫

G

∫
W
‖ξ‖2b‖Gψ f (y,ξ )‖2

HS
1

|h(ξ )|b|Pf(ξ )|b−1 dξ dy

) 1
2b

.

6. For thread-like nilpotent Lie groups (see [8]).

‖ψ‖
1
b
2 ‖ f‖(

1
a+ 1

b )
2 � C

(∫
G
‖x‖2a | f (x)|2 dx

) 1
2a

×
(∫

G

∫
W
‖ξ‖2b ‖Gψ f (y,ξ )‖2

HS |ξ1| dξ
) 1

2b

.

7. For 2-NPC nilpotent Lie groups (see [1]), let {0} = g0 ⊂ g1 ⊂ ·· · ⊂ gn = g be
a Jordan-Hölder sequence in g such that gm = z(g) and h = gn−2 . We have the
following two cases:



748 A. BANSAL AND A. KUMAR

(a) dim [g,gm+1] = 2.

‖ψ‖
1
b
2 ‖ f‖(

1
a + 1

b )
2 � C

(∫
G
‖x‖2a | f (x)|2 dx

) 1
2a

×
(∫

G

∫
W
‖ξ‖2b ‖Gψ f (y,ξ )‖2

HS
1

|h(ξ )|b|Pf(ξ )|b−1 dξ
) 1

2b

.

(b) dim [g,gm+1] = 1.

‖ψ‖
1
b
2 ‖ f‖(

1
a + 1

b )
2 � C

(∫
G
‖x‖2a | f (x)|2 dx

) 1
2a

×
(∫

G

∫
W
‖ξ‖2b ‖Gψ f (y,ξ )‖2

HS |Pf(ξ )| dξ
) 1

2b

.

8. For connected simply connected nilpotent Lie groups G = expg such that g(ξ )⊂
[g,g] for all ξ ∈ U (see [13]).

‖ψ‖
1
b
2 ‖ f‖(

1
a + 1

b )
2 � C

(∫
G
‖x‖2a | f (x)|2 dx

) 1
2a

×
(∫

G

∫
W
‖ξ‖2b ‖Gψ f (y,ξ )‖2

HS
|Pf(ξ )|b+1

|ξ ([Xj1 ,Xn])|b dξ
) 1

2b

.

9. For low-dimensional nilpotent Lie groups of dimension less than or equal to 6
(for details, see [11]) except for G6,8 , G6,12 , G6,14 , G6,15 , G6,17 , one can write
an explicit Heisenberg uncertainty inequality for Gabor transform.
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