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A NEW OSTROWSKI TYPE INEQUALITY ON TIME SCALES

GAOPENG XU AND ZHONG BO FANG

(Communicated by J. Pečarić)

Abstract. In this paper, by introducing a technique of parameter functions, we establish a new
Ostrowski type inequality on time scales and unify corresponding continuous and discrete ver-
sions. Furthermore, some particular integral inequalities on time scales are given as special
cases.

1. Introduction

In 1938, Ostrowski established the following interesting integral inequality, which
is a relationship between the value of a function f on some point in (a,b) and the
integration on [a,b] :

Suppose that f : [a,b]→ R is continuous on [a,b] and differentiable in (a,b) , and
that its derivative f ′ : (a,b)→ R is bounded in (a,b) , i.e., ‖ f ′‖∞ := supt∈(a,b) | f ′(t)| <
∞. Then for any t ∈ [a,b] , the following inequality holds:

∣∣∣∣(b−a) f (t)−
∫ b

a
f (s)ds

∣∣∣∣ �
[

(b−a)2

4
+

(
t − a+b

2

)2
]
‖ f ′‖∞.

The inequality is sharp in the sense that the constant 1
4 cannot be replaced by a smaller

one.
Later, many authors have introduced some results on the extensions, generaliza-

tions, and applications of the Ostrowski type inequality. For example, the inequality
can be used to estimate the error of approximation to integration, which depends on
the theory of integration inequality, in studying the stability and reliability of numerical
computation, see [1].

The development of the theory of time scales was initiated by Hilger [2] in 1988 as
a theory capable to contain both difference and differential calculus in a consistent way.
Since then, many researchers have studied the theory of certain integral inequalities or
dynamic equations on time scales (cf. [3–5]). In particular, Bohner and Matthews [5,
Theorem 3.5] established the following Ostrowski type inequality on time scales:
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Suppose that a, b, s, t ∈ T, a < b, and that f : [a,b] → R is differentiable. Then
the following inequality holds:∣∣∣∣ f (t)− 1

b−a

∫ b

a
f (s)�s

∣∣∣∣ � M
b−a

(h2(t,a)+h2(t,b)), (1.1)

where T is a time scale set, h2 is a function defined in Section 2, and M = sup
a<t<b

| f�(t)|
< ∞ . This inequality is sharp in the sense that the right-hand side of (1.1) cannot be
replaced by a smaller one.

In addition, one can refer to [6-8] to see some studies on the weighted Ostrowski
type inequalities on time scales. For example, Liu, Tuna and Jiang [6] established some
weighted Ostrowski type inequalities based on a weighted Montgomery identity on
time scales. Liu and Tuna [8] obtained another weighted Ostrowski type inequalities
on time scales by using the recent theory of combined dynamic derivatives on time
scales. Meanwhile, many authors have studied multivariate Ostrowski type inequalities
on time scales, we provide the reader to the literature [9–11].

For the studies on Ostrowski type inequality including parameters, Liu and Ngô
[12, Theorem 4] discussed inequality (1.1) with a parameter λ and gave a more detailed
result as follows:

Suppose that a, b, s, t ∈ T , a < b, and that f : [a,b] → R is a differentiable
function. Then the following inequality holds:∣∣∣∣(1−λ ) f (t)+ λ

f (a)+ f (b)
2

− 1
b−a

∫ b

a
f σ (s)�s

∣∣∣∣ � M
b−a

[
h2

(
a,a+ λ

b−a
2

)

+h2

(
t,a+ λ

b−a
2

)
+h2

(
t,b−λ

b−a
2

)
+h2

(
b,b−λ

b−a
2

)]
, (1.2)

for all λ ∈ [0,1] such that a+ λ b−a
2 and b−λ b−a

2 are in T , and t ∈ [a+ λ b−a
2 ,b−

λ b−a
2 ]

⋂
T , where M = supa<t<b | f�(t)| < ∞ . This inequality is sharp provided

λ
2

a(b−a)+
λ 2

4
(b−a)2 �

∫ a+λ b−a
2

a
s�s.

Motivated by the mentioned works above, we introduce a parameter function to
generalize the Ostrowski type inequality and then unify corresponding continuous and
discrete versions. In the end, we also discuss some particular integral inequalities on
time scales as special cases.

2. A new Ostrowski type inequality on time scales

Throughout this article, we assume that T is a time scale set, which is an arbitrary
nonempty closed subset of real numbers. For more definitions and basic properties
about the theory of time scales, one can refer to [2, 12, 13, 14]. Before introducing the
generalized Ostrowski type inequalities, we firstly define the function hk(t,s) and give
the generalized Montgomery identity for parameter functions.
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DEFINITION 1. Let hk : T ×T → R , k ∈ N be functions that are recursively de-
fined as

h0(s,t) = 1,

and

hk+1 =
∫ t

s
hk(τ,s)�t for all s, t ∈ T.

LEMMA 1. (Generalized Montgomery identity) Suppose that a, b, s, t ∈ T ,
a < b, f : [a,b] → R is differentiable, and that g is a function of [0,1] into [0,1] . We
then have the equation

1−g(1−λ )−g(λ )
2

f (t)+
g(λ ) f (a)+ (1−g(1−λ )) f (b)

2

=
1

b−a

∫ b

a
f σ (s)�s+

1
b−a

∫ b

a
K(s,t) f�(s)�s,

where

K(s,t) =

{
s− (

a+g(λ ) b−a
2

)
, s ∈ [a,t),

s− (
a+

(
1+g(1−λ )

)
b−a
2

)
, s ∈ [t,b].

Proof. Integrating by parts, we have∫ b

a
K(s, t) f�(s)�s

=
∫ t

a

[
s−

(
a+g(λ )

b−a
2

)]
f�(s)�s+

∫ b

t

[
s−

(
a+

(
1+g(1−λ )

)b−a
2

)]
f�(s)�s

=
[
t−

(
a+g(λ )

b−a
2

)]
f (t)+g(λ )

b−a
2

f (a)−
∫ t

a
f σ (s)�s−

∫ b

t
f σ (s)�s

−
(

t−a− (1+g(1−λ ))
b−a

2

)
f (t)+

(
b−a− (1+g(1−λ ))

b−a
2

)
f (b)

= (b−a)
(

1+g(1−λ )−g(λ )
2

f (t)+
g(λ ) f (a)+(1−g(1−λ )) f (b)

2

)
−

∫ b

a
f σ (s)�s,

from which we get the desired equality. �
We now establish our main result in the following theorem:

THEOREM 1. Suppose that a, b, s, t ∈ T , a < b, f : [a,b]→ R is differentiable,
and that g is a function of [0,1] into [0,1] . We then have the inequality∣∣∣∣1+g(1−λ )−g(λ )

2
f (t)+

g(λ ) f (a)+ (1−g(1−λ )) f (b)
2

− 1
b−a

∫ b

a
f σ (s)�s

∣∣∣∣
� M

b−a

[
h2

(
a,a+g(λ )

b−a
2

)
+h2

(
t,a+g(λ )

b−a
2

)
+h2

(
t,a+(1+g(1−λ ))

b−a
2

)

+h2

(
b,a+(1+g(1−λ))

b−a
2

)]
, (2.1)
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for all λ ∈ [0,1] such that a + g(λ ) b−a
2 and a + (1 + g(1− λ )) b−a

2 are in T , and
t ∈ [a+g(λ ) b−a

2 ,a+(1+g(1−λ )) b−a
2 ]

⋂
T , where M = supa<t<b | f�(t)| < ∞ . This

inequality is sharp provided

g2(λ )−2g(λ )
2

a− g2(λ )
2

b �
∫ a

a+g(λ ) b−a
2

s�s. (2.2)

Proof. By applying Lemma 1, we get

∣∣∣∣1+g(1−λ )−g(λ)
2

f (t)+
g(λ ) f (a)+ (1−g(1−λ )) f (b)

2
− 1

b−a

∫ b

a
f σ (s)�s

∣∣∣∣
=

1
b−a

∣∣∣∣
∫ b

a
K(s, t) f�(s)�s

∣∣∣∣
� M

b−a

[∫ t

a
|K(s, t)|�s+

∫ b

t
|K(s,t)|�s

]

=
M

b−a

[∫ t

a

∣∣∣∣s−
(

a+g(λ )
b−a

2

)∣∣∣∣�s+
∫ b

t

∣∣∣∣s−
(

a+
(
1+g(1−λ )

)b−a
2

)∣∣∣∣�s

]

=
M

b−a

[∫ a+g(λ ) b−a
2

a

∣∣∣∣s−
(

a+g(λ )
b−a
2

)∣∣∣∣�s+
∫ t

a+g(λ ) b−a
2

∣∣∣∣s−
(

a+g(λ )
b−a
2

)∣∣∣∣�s

+
∫ a+

(
1+g(1−λ )

)
b−a
2

t

∣∣∣∣s−
(

a+
(
1+g(1−λ )

)b−a
2

)∣∣∣∣�s

+
∫ b

a+
(
1+g(1−λ )

)
b−a
2

∣∣∣∣s−
(

a+
(
1+g(1−λ )

)b−a
2

)∣∣∣∣�s

]

=
M

b−a

[∫ a

a+g(λ ) b−a
2

(
s−

(
a+g(λ )

b−a
2

))
�s+

∫ t

a+g(λ ) b−a
2

(
s−

(
a+g(λ )

b−a
2

))
�s

+
∫ t

a+
(
1+g(1−λ )

)
b−a
2

(
s−

(
a+

(
1+g(1−λ )

)b−a
2

))
�s

+
∫ b

a+
(
1+g(1−λ )

)
b−a
2

(
s−

(
a+

(
1+g(1−λ )

)b−a
2

))
�s

]

=
M

b−a

[
h2

(
a,a+g(λ )

b−a
2

)
+h2

(
t,a+g(λ )

b−a
2

)
+h2

(
t,a+(1+g(1−λ ))

b−a
2

)

+h2

(
b,a+(1+g(1−λ ))

b−a
2

)]
,

from which inequality (2.1) can be obtained.

To prove the sharpness of this inequality, let f (t) = t and t = a + (1 + g(1−
λ )) b−a

2 . Then one can see that M = 1. Starting with the right-hand side of inequality
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(2.1), we have the equation

M
b−a

[
h2

(
a,a+g(λ )

b−a
2

)
+h2

(
t,a+g(λ )

b−a
2

)

+h2

(
t,a+(1+g(1−λ ))

b−a
2

)
+h2

(
b,a+(1+g(1−λ ))

b−a
2

)

=
1

b−a

[
h2

(
a,a+g(λ )

b−a
2

)
+h2

(
a+(1+g(1−λ ))

b−a
2

,a+g(λ )
b−a

2

)

+h2

(
b,a+(1+g(1−λ ))

b−a
2

)]
.

Moreover, we have that

h2

(
a,a+g(λ )

b−a
2

)

=
∫ a

a+g(λ ) b−a
2

(
s−

(
a+g(λ )

b−a
2

))
�s

=
∫ a

a+g(λ ) b−a
2

s�s−
(

a+g(λ )
b−a

2

)(
a−

(
a+g(λ )

b−a
2

))

=
∫ a

a+g(λ ) b−a
2

s�s+
(

a+g(λ )
b−a

2

)
+g(λ )

b−a
2

,

h2

(
a+(1+g(1−λ)

b−a
2

,a+g(λ )
b−a

2

)

=
∫ a+(1+g(1−λ ) b−a

2

a+g(λ ) b−a
2

(
s−

(
a+g(λ )

b−a
2

))
�s

=
∫ a+(1+g(1−λ ) b−a

2

a+g(λ ) b−a
2

s�s−
(

a+g(λ )
b−a
2

)(
a+(1+g(1−λ ))

b−a
2

−
(

a+g(λ )
b−a
2

))

=
∫ a+(1+g(1−λ ) b−a

2

a+g(λ ) b−a
2

s�s−
(

a+g(λ )
b−a

2

)
(1+g(1−λ )−g(λ ))

b−a
2

,

and

h2

(
b,a+(1+g(1−λ ))

b−a
2

)

=
∫ b

a+
(
1+g(1−λ )

)
b−a
2

(
s−

(
a+

(
1+g(1−λ )

)b−a
2

))
�s

=
∫ b

a+
(
1+g(1−λ )

)
b−a
2

s�s−
(

a+
(
1+g(1−λ )

)b−a
2

)(
b−a−(

1+g(1−λ )
)b−a

2

)
.
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Thus, the right-hand side of inequality (2.1) equals to

1
b−a

[∫ a

a+g(λ ) b−a
2

s�s+
∫ a+(1+g(1−λ ) b−a

2

a+g(λ ) b−a
2

s�s+
∫ b

a+
(
1+g(1−λ )

)
b−a
2

s�s

+
(
a+g(λ )

b−a
2

)
+g(λ )

b−a
2

−
(

a+g(λ )
b−a

2

)
(1+g(1−λ )−g(λ ))

b−a
2

−
(

a+
(
1+g(1−λ )

)b−a
2

)(
b−a− (

1+g(1−λ )
)b−a

2

)]

=
5g(λ )−2g2(λ )+g(λ )g(1−λ )−g2(1−λ )−3

4
a

+
2g2(λ )−g(λ )−g(λ )g(1−λ )+g2(1−λ )−1

4
b

+
1

b−a

(
2

∫ a

a+g(λ ) b−a
2

s�s+
∫ b

a
s�s

)
.

Starting with the left-hand side of (2.1), we have∣∣∣∣1+g(1−λ )−g(λ )
2

f (t)+
g(λ ) f (a)+ (1−g(1−λ )) f (b)

2
− 1

b−a

∫ b

a
f σ (s)�s

∣∣∣∣
=

∣∣∣∣1+g(1−λ )−g(λ )
2

(
a+(1+g(1−λ ))

b−a
2

)

+
ag(λ )+ (1−g(1−λ ))b

2
− 1

b−a

∫ b

a
σ(s)�s

∣∣∣∣
=

∣∣∣∣1+g(1−λ )−g(λ )
2

(
a+(1+g(1−λ ))

b−a
2

)
+

ag(λ )+ (1−g(1−λ ))b
2

+
1

b−a

∫ b

a
s�s−a−b

∣∣∣∣
=

∣∣∣∣g(λ )−g2(1−λ )+g(λ )g(1−λ )−3
4

a

+
g2(1−λ )−g(λ )g(1−λ )−g(λ )−1

4
b+

∫ b

a
s�s

∣∣∣∣,
where we have used∫ b

a
σ(s)�s =

∫ b

a
(σ(s)+s)�s−

∫ b

a
s�s =

∫ b

a
(s2)��s−

∫ b

a
s�s = b2−a2−

∫ b

a
s�s.

Hence, if inequality (2.2) holds, then we obtain the inequalities∣∣∣∣g(λ )−g2(1−λ )+g(λ )g(1−λ )−3
4

a+
g2(1−λ )−g(λ )g(1−λ )−g(λ )−1

4
b+

∫ b

a
s�s

∣∣∣∣
� g(λ )−g2(1−λ )+g(λ )g(1−λ )−3

4
a+

g2(1−λ )−g(λ )g(1−λ )−g(λ )−1
4

b

+
∫ b

a
s�s
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� 5g(λ )−2g2(λ )+g(λ )g(1−λ )−g2(1−λ )−3
4

a

+
2g2(λ )−g(λ )−g(λ )g(1−λ )+g2(1−λ )−1

4
b

+
1

b−a

(
2

∫ a

a+g(λ ) b−a
2

s�s+
∫ b

a
s�s

)
,

which completes our proof. �

REMARK 1. Taking g(λ ) = λ in Theorem 1, one can have inequality (1.2), and
hence, Theorem 1 covers the result in [12].

REMARK 2. In fact, with different functions of K(s,t) , one can obtain some new
Ostrowski type inequalities including parameter functions and the inequalities can be
summarized as follows:

(a) If

K(s,t) =

{
s− (

a+g(λ ) b−a
2

)
, s ∈ [a,t),

s− (
b−g(λ ) b−a

2

)
, s ∈ [t,b],

then we have the inequality∣∣∣∣(1−g(λ )) f (t)+g(λ )
f (a)+ f (b)

2
− 1

b−a

∫ b

a
f σ (s)�s

∣∣∣∣
� M

b−a

[
h2

(
a,a+g(λ )

b−a
2

)
+h2

(
t,a+g(λ )

b−a
2

)
+h2

(
t,b−g(λ )

b−a
2

)

+h2

(
b,b−g(λ )

b−a
2

)]
.

(b) If

K(s,t) =

{
s− (

a+g(λ ) b−a
2

)
, s ∈ [a,t),

s− (
a+

(
2+g(1−λ )

)
b−a
2

)
, s ∈ [t,b],

then we have the inequality∣∣∣∣2+g(1−λ )−g(λ )
2

f (t)+
g(λ ) f (a)−g(1−λ ) f (b)

2
− 1

b−a

∫ b

a
f σ (s)�s

∣∣∣∣
� M

b−a

[
h2

(
a,a+g(λ )

b−a
2

)
+h2

(
t,a+(2+g(1−λ ))

b−a
2

)

+h2

(
t,a+g(λ )

b−a
2

)
+h2

(
b,a+(2+g(1−λ ))

b−a
2

)]
.

Furthermore, if we apply inequalities in Theorem 1 and Remark 1 to different
time scales, one can obtain some new results. For a brief explanation, we only give the
relevant results to inequality (2,1).
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COROLLARY 1. (Continuous case) If T = R, we have the inequality∣∣∣∣1+g(1−λ )−g(λ )
2

f (t)+
g(λ ) f (a)+ (1−g(1−λ )) f (b)

2
− 1

b−a

∫ b

a
f (s)ds

∣∣∣∣
� M

b−a

[
g2(λ )(b−a)2

8
+

(
t− (

a+g(λ ) b−a
2

))2
+

(
t− (

a+(1+g(1−λ)) b−a
2

))2

2

+

(
b− (

a+(1+g(1−λ)) b−a
2

))2

2

]
,

for all λ ∈ [0,1] and t ∈ [
a+g(λ ) b−a

2 ,a+(1+g(1−λ )) b−a
2

]⋂
T , where M =

sup
a<t<b

| f�(t)| < ∞ .

Proof. If T = R , then our delta integral is the usual Riemann integral, and hence,

h2(t,s) =
(t− s)2

2
for all s, t ∈ R,

from which the result follows. �

COROLLARY 2. (Discrete case) If T = Z, a = 0, b = n, s = j, t = i , and f (k) =
xk , we have the inequality∣∣∣∣∣1+g(1−λ )−g(λ )

2
xi +

g(λ )x0 +(1−g(1−λ ))xn

2
− 1

n

n

∑
j=1

∣∣∣∣∣
� M

2

[
2i2− i(ng(λ )+ng(1−λ )+n+2)+

n2
(
g2(λ )+ (1+g(1−λ ))2

)
2

+ng(λ )+ (n−n2)g(1−λ )−n2
]
,

for all λ ∈ [0,1] , ng(λ )
2 , n(1+g(1−λ ))

2 ∈ T , and i ∈
[

ng(λ )
2 , n(1+g(1−λ ))

2

]⋂
Z , where M =

sup0<i<n |�xi| < ∞.

Proof. It is known that

hk(t,s) =
(

t− s
k

)
for all s, t ∈ Z.

Taking k = 2 in the equation above, the result follows. �

3. Some particular integral inequalities on time scales

In this section, we discuss some particular integral inequalities on time scales
as special cases. Throughout this section, we assume that a,b ∈ T with a < b , f :
[a,b] → R is differentiable, and that g is a function of [0,1] into [0,1] . We set M =
supa<t<b | f�(t)| < ∞ .
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PROPOSITION 1. Under the assumptions of Theorem 1 with t = a+b
2 , we have the

sharp rectangle inequality on a time scale set T∣∣∣∣1+g(1−λ )−g(λ )
2

f

(
a+b
2

)
+

g(λ ) f (a)+(1−g(1−λ )) f (b)
2

− 1
b−a

∫ b

a
f σ (s)�s

∣∣∣∣
� M

b−a

[
h2

(
a,a+g(λ )

b−a
2

)
+h2

(
a+b

2
,a+(1+g(1−λ ))

b−a
2

)

+h2

(
a+b

2
,a+g(λ )

b−a
2

)
+h2

(
b,a+(1+g(1−λ))

b−a
2

)]
.

PROPOSITION 2. Under the assumptions of Theorem 1 with g(λ ) = λ 2 , we have
the inequality on a time scale set T∣∣∣∣∣(1−λ ) f (t)+

λ 2 f (a)+
(
2λ −λ 2

)
f (b)

2
− 1

b−a

∫ b

a
f σ (s)�s

∣∣∣∣∣
� M

b−a

[
h2

(
a,a+ λ 2 b−a

2

)
+h2

(
a+b

2
,a+(λ 2−2λ +2)

b−a
2

)

+h2

(
a+b

2
,a+ λ 2b−a

2

)
+h2

(
b,a+(λ 2−2λ +2))

b−a
2

)]
.

REMARK 3.

(a) If we take λ = 0 in Proposition 2, then one can have the sharp rectangle inequal-
ity on a time scale set T∣∣∣∣ f (t)− 1

b−a

∫ b

a
f σ (s)�s

∣∣∣∣ � M
b−a

[
h2(t,a)+h2(t,b)

]
.

(b) If we take λ = 1/2 in Proposition 2, then one can obtain the inequality on a time
scale set T∣∣∣∣ f (t)+

f (a)+3 f (b)
4

− 2
b−a

∫ b

a
f σ (s)�s

∣∣∣∣
� 2M

b−a

[
h2

(
a,

b+7a
8

)
+h2

(
t,

b+7a
8

)
+h2

(
t,

5b+3a
8

)
+h2

(
b,

5b+3a
8

)]
.

(c) If we take λ = 1 in Proposition 2, then one can have the inequality on a time
scale set T∣∣∣∣ f (a)+ f (b)

2
− 1

b−a

∫ b

a
f σ (s)�s

∣∣∣∣
� M

b−a

[
h2

(
a,

b+a
2

)
+2h2

(
t,

b+a
2

)
+h2

(
b,

b+a
2

)]
, (3.1)
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and if we take t = a+b
2 , inequality (3.1) becomes the trapezoid inequality on a

time scale set T∣∣∣∣ f (a)+ f (b)
2

− 1
b−a

∫ b

a
f σ (s)�s

∣∣∣∣ � M
b−a

[
h2

(
a,

b+a
2

)
+h2

(
b,

b+a
2

)]
.
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