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ON AN APPLICATION OF VIETORIS’S INEQUALITY

JANUSZ SOKÓŁAND PAWEŁ WITOWICZ

(Communicated by J. Pečarić)

Abstract. The radius of starlikeness for polynomials with zeroes distributed at certain curves in
the unit disc as well as the case in which zeroes are concentrated at a single point are considered
and sharp bounds are obtained.

1. Introduction

Let H be the class of analytic functions in the unit disc D = {z : |z| < 1} on
the complex plane C . Let us recall a concept of the radius for a certain property in
a certain set. Given a set of functions M and a property P which functions may or
may not have in a disc |z| < r , the radius for the property P in the set M , denoted by
RP(M ) , is the largest R such that every function in the set M has the property P in
each disc Dr = {z : |z| < r} for every r < R . Let us consider the property S T that
f (Dr) is a starlike region. Recall that a set E ⊂ C is said to be starlike with respect
to a point w0 ∈ E if and only if every linear segment joining w0 to an arbitrary point
w ∈ E lies entirely in E . Let a function f ∈ H be univalent in the unit disc D with
the normalization f (0) = 0. Then f maps D onto a starlike domain with respect to
w0 = 0 if and only if [7]

Re

{
z f ′(z)
f (z)

}
> 0 (1.1)

for all z ∈ D . Such function f is said to be starlike in D with respect to w0 = 0 (or
briefly starlike). It is well known that if an analytic function f satisfies (1.1) for all
z ∈ DR , f (0) = 0 and f ′(0) �= 0 then f is univalent and starlike in Dr for every r < R .
The subclass of H consisting of functions normalized by f (0) = 0 and f ′(0) = 1 that
are univalent functions in D will be denoted by S . The set of all functions f ∈ S
that are starlike univalent in D will be denoted by S ∗ . The radius of starlikeness in
the class S is [5]

RS T (S ) = tanh(π/4)≈ 0.65579.

The question about the starlikeness radius of functions was first considered in the paper
[1] in which the author primarily dealt with polynomial mappings. Sometimes the value
of r can be expressed in terms of the zeroes and critical points of a polynomial. The
problem of the starlikeness of polynomials and finite Blaschke products was considered
in the recent papers [6] and [4].
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2. Radius of starlikeness for polynomials

In this work we shall consider the radius of the starlikeness in a set of polynomials.
We assume that Pn,ρ consists of the polynomials P having n zeroes located in the ring
0 < ρ � |z| < 1 and a single zero at the origin and write P(z) = z∏n

k=1(1− z/zk) , 0 <
ρ � |zk| < 1. As we have written above (1.1), the polynomial P maps Dr bijectively
to a starlike region if and only if

Re
zP′(z)
P(z)

> 0 for z ∈ Dr.

Using logarithmic differentiation one has

Re
zP′(z)
P(z)

= 1+Re

{
n

∑
k=1

z
z− zk

}
. (2.1)

THEOREM 2.1. The radius of starlikeness in the set Pn,ρ is

RS T

(
Pn,ρ

)
=

ρ
1+n

. (2.2)

Proof. Let P(z)= z∏n
k=1(1−z/zk)∈Pn,ρ . Denote ρ̃ = min{|zk| : k ∈ {1, . . . ,n}}

and z = reit , r ∈ (0,ρ) ; zk = rkeiθk , 0 < ρ � |zk| < 1. From [4], we have that P(z)
maps |z| < r univalently onto a starlike region when

r <
ρ̃

1+ ∑n
k=1 ρ̃/|zk| .

Hence

RS T

(
Pn,ρ

)
� ρ̃

1+ ∑n
k=1 ρ̃/|zk| � ρ

1+n
. (2.3)

The polynomial Pρ(z) = z(1− z/ρ)n is in Pn,ρ and

Re
zP′

ρ(z)
Pρ(z)

= 1−nRe
z/ρ

1− z/ρ
> 0 for z ∈ Dr

if and only if r � ρ/(1+ n) , thus applying (2.3) we obtain RS T

(
Pρ

)
= ρ/(1+ n) ,

that is (2.2). �

THEOREM 2.2. [2] Let β0 = 0.308443 . . . denote the Littlewood-Salem-Izumi
number, i.e. the unique solution of the equation∫ 3π/2

0

cost

tβ dt = 0. (2.4)

Assume also that β0 � β � 1 and that {ak}n
k=0 is a sequence of real numbers satisfying

a0 � a1 � . . . � an > 0 (2.5)
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and

a2k �
(

1− β
k

)
a2k−1, 2k � n. (2.6)

Then for all 0 < θ < π and n ∈ N

n

∑
k=0

ak cos(kθ ) > 0. (2.7)

Moreover, if either n is odd and 0 < θ < π or n is even and 0 < θ < π −π/n, then

n

∑
k=1

ak sin(kθ ) > 0. (2.8)

For β = 1/2 the above theorem is close to the following Vietoris’ result.

THEOREM 2.3. [8] Let {ak}n
k=0 be a sequence of real numbers satisfying

a0 � a1 � . . . � an > 0 and a2k �
(

1− 1
2k

)
a2k−1, 2k � n. (2.9)

Then for all 0 < θ < π and n ∈ N

n

∑
k=0

ak cos(kθ ) > 0 (2.10)

and
n

∑
k=1

ak sin(kθ ) > 0. (2.11)

THEOREM 2.4. Let β0 = 0.308443 . . . denote the Littlewood-Salem-Izumi num-
ber that is the solution of (2.4). Assume that n is odd and that the coefficients of the
polynomial pn(z) = z+b2z2 + · · · +bnzn satisfy

1 = b1 � b2 � b3 � . . . � bn > 0. (2.12)

Let us denote

r1 = min

{(
1− β0

k

)(
2k−1

2k

)
b2k−1

b2k
: 2k � n

}
, (2.13)

where β0 � β � 1 . Furthermore,

r2 = min

{
kbk

(k+1)bk+1
: k ∈ {1,2, . . . ,n−1}

}
. (2.14)

Then pn is starlike in |z| < r , where

r = min{r1,r2} . (2.15)
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Proof. Let n be odd and pn(z) = z+b2z2 +b3z3 + · · ·+bnzn . Let the coefficients
of pn(z) satisfy,

1 = b1 � b2 � b3 � · · · � bn > 0.

Using Eneström-Kakeya theorem [3], pn(z) does not vanish in D \ {0} . So pn(z)/z
has no zeros in D , and so zp′n(z)/pn(z) is an analytic function in D . We have to find
radius r > 0 such that

Re

{
zp′n(z)
pn(z)

}
> 0 for |z| < r.

Let z = reiθ , then

Re
reiθ p′n(reiθ )

pn(reiθ )

= Re

reiθ
n
∑

k=1
kbkrk−1ei(k−1)θ

n
∑

k=1
bkrkeiθk

= Re

n
∑

k=1
kbkrkeiθk

n
∑

k=1
bkrkeiθk

= Re

n
∑

k=1
kbkrk(cos(kθ )+ isin(kθ ))

n
∑

k=1
bkrk(cos(kθ )+ isin(kθ ))

=

(
n
∑

k=1
kbkrk cos(kθ )

)(
n
∑

k=1
bkrk cos(kθ )

)
+

(
n
∑

k=1
kbkrk sin(kθ )

)(
n
∑

k=1
bkrk sin(kθ )

)
(

n
∑

k=1
bkrk cos(kθ )

)2

+
(

n
∑

k=1
bkrk sin(kθ )

)2 .

Now we will prove that all trigonometric sums inside the brackets are positive. Since
the coefficients of pn(z) are real, so pn(z) = pn(z) i.e. pn(z) is symmetric with respect
to real axis, so we will prove it for 0 < θ < π . To find the condition on bk , we will use
Theorem 2.2. Let

ck(r) = kbkr
k, k ∈ {1,2, . . . ,n} , (2.16)

dk(r) = bkr
k, k ∈ {1,2, . . . ,n} . (2.17)

The sequence ck(r) satisfies the condition (2.6) if

c2k(r) �
(

1− β0

k

)
c2k−1(r)

2kb2kr
2k �

(
1− β0

k

)
(2k−1)b2k−1r

2k−1

r �
(

1− β0

k

)(
2k−1

2k

)
b2k−1

b2k
, 2k � n.
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Let

r1 = min

{(
1− β0

k

)(
2k−1

2k

)
b2k−1

b2k
;2k � n

}
.

For such r1 , dk(r) also satisfies condition (2.6). The sequence ck(r) satisfies condition
(2.5) if

ck+1(r) � ck(r)
(k+1)bk+1r

k+1 � kbkr
k

r � kbk

(k+1)bk+1
, k ∈ {1,2, . . . ,n−1}.

Let

r2 = min

{
kbk

(k+1)bk+1
;k ∈ {1,2, . . . ,n−1}

}
.

For such r2 , dk(r) also satisfies condition (2.5) because k < k+1. Let r = min{r1,r2} ,
for such r , the trigonometric sums are positive. Hence pn(z) is starlike in |z| < r . �

THEOREM 2.5. Assume that n is even and that the coefficients of the polynomial
pn(z) = z+b2z2 + · · ·+bnzn satisfy

1 = b1 � b2 � b3 � . . . � bn > 0. (2.18)

Let us denote

r1 = min

{
(2k−1)2b2k−1

(2k)2b2k
: 2k � n

}
. (2.19)

Furthermore,

r2 = min

{
kbk

(k+1)bk+1
: k ∈ {1,2, . . . ,n−1}

}
. (2.20)

Then pn is starlike in |z| < r , where

r = min{r1,r2} . (2.21)

Proof. We do the proof in the same manner as the proof of Theorem 2.4 with one
exception: instead of Theorem 2.2 we apply Theorem 2.3. �

Let n be odd and bk = qk−1 , 0 < q < 1 and pn(z) = z+q2z2 +q3z3 + · · ·+qn−1zn .
Then

r1 = min

{(
1− β0

k

)(
2k−1

2k

)
b2k−1

b2k
: 2k � n

}
= min

{(
1− β0

k

)(
2k−1

2k

)
1
q

: 2k � n

}
= min

{
1−β0

2q
,
(2−β0)3

8q
, . . . ,

(n−2β0)(n−1)
n2q

}
=

1−β0

2q
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and

r2 = min

{
kbk

(k+1)bk+1
;k ∈ {1,2, . . . ,n−1}

}
= min

{
k

(k+1)q
;k ∈ {1,2, . . . ,n−1}

}
= min

{
1
2q

,
2
3q

, . . . ,
n−1
nq

}
=

1
2q

.

So, r = min{r1,r2} = (1−β0)/(2q) . Hence pn(z) is starlike in |z| < (1−β0)/(2q) .
We have

1−β0

2q
� 1 ⇔ q � 1−β0

2
= 0.345778 . . ..

So if 0 < q � 0.345778 . . ., then pn(z) is starlike in |z| < 1.

COROLLARY 2.6. Let n be an odd positive integer. If pn(z) = z + b2z2 + · · ·+
bnzn , bk = qk−1 . If 0 < q � 1−β0

2 = 0.345778 . . ., then pn is starlike in |z| < 1 .

Here we have some interesting particular cases for q = 1/3, q = 1/2, q = 1/4
contained in the following three corollaries, respectively.

COROLLARY 2.7. Let n be an odd positive integer. If

pn(z) = z+
z2

3
+

z3

9
+

z4

27
+ · · ·+ zn

3n−1

then pn is starlike in |z| < 3(1−β0)/2 = 1.037334 . . ..

COROLLARY 2.8. Let n be an odd positive integer. If

pn(z) = z+
z2

2
+

z3

4
+

z4

8
+ · · ·+ zn

2n−1

then pn is starlike in |z| < 1−β0 = 0.691556 . . ..

COROLLARY 2.9. Let n be an odd positive integer. If

pn(z) = z+
z2

4
+

z3

16
+

z4

64
+ · · ·+ zn

4n−1

then pn is starlike in |z| < 4(1−β0)/2 = 1.383112 . . ..
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If n is even and pn(z) = z+b2z2 + · · ·+bnzn , bn = qn−1 , 0 < q < 1, then

r1 = min

{
(2k−1)2

(2k)2q
: 2k � n

}
=

1
4q

(2.22)

and

r2 = min

{
k

(k+1)q
: k ∈ {1,2, . . . ,n−1}

}
=

1
2q

. (2.23)

Therefore,

r = min{r1,r2} =
1
4q

. (2.24)

For q � 1/4 we obtain r � 1. For q = 1/2 we obtain r = 1/2. Hence we get the
following corollaries.

COROLLARY 2.10. Let n be an even positive integer. If pn(z) = z+b2z2 + · · ·+
bnzn , bn = qn−1 , q � 1/4 , then pn is starlike in |z| < 1 .

COROLLARY 2.11. Let n be an even positive integer. If

pn(z) = z+
z2

4
+

z3

16
+

z4

64
+ · · ·+ zn

4n−1

then pn is starlike in |z| < 1 .

COROLLARY 2.12. Let n be an even positive integer. If

pn(z) = z+
z2

2
+

z3

4
+

z4

8
+ · · ·+ zn

2n−1

then pn is starlike in |z| < 1/2 .

If in Theorems 2.4 and 2.5 instead of the assumption r < r2 we write the condition
1= b1 � 2b2 � 3b3 � . . . � nbn > 0 then we obtain the following theorems which proofs
run as the proofs of Theorems 2.4 and 2.5.

THEOREM 2.13. Let β0 = 0.308443 . . . denote the Littlewood-Salem-Izumi num-
ber which is the solution of (2.4). Assume that n is odd and that the coefficient of the
polynomial pn(z) = z+b2z2 + · · · +bnzn satisfy

1 = b1 � 2b2 � 3b3 � . . . � nbn > 0. (2.25)

Let us denote

r1 = min

{(
1− β

k

)(
2k−1

2k

)
b2k−1

b2k
: 2k � n

}
, (2.26)

where β0 � β � 1 . Then pn is starlike in |z| < r1 .
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THEOREM 2.14. Assume that n is even and that the coefficient of the polynomial
pn(z) = z+b2z2 + · · ·+bnzn satisfy

1 = b1 � 2b2 � 3b3 � . . . � nbn > 0. (2.27)

Let us denote

r1 = min

{
(2k−1)2b2k−1

(2k)2b2k
: 2k � n

}
. (2.28)

Then pn is starlike in |z| < r1 .

Competing interests. The authors declare that they have no competing interests.

Authors’ contributions. All authors contributed equally to the writing of this paper.
All authors read and approved the final manuscript.

RE F ER EN C ES

[1] J. W. ALEXANDER, Functions which map the interior of the unit disc upon simple regions, Ann. of
Math. 17 (1915), 12–22.

[2] G. BROWN, F. DAI, K. WANG, Extensions of Vietoris’s inequalities I, Ramanujan J. 14 (2007), 471–
507.
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