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Abstract. It is shown that if the higher order Marcinkiewicz-Zygmund type inequality holds,
then some generalized Marcinkiewicz-Zygmund type inequality holds, in particular, the lower
order Marcinkiewicz-Zygmund type inequality also holds. No additional assumptions are made
on the random variables. As applications, a generalized Cr -inequality and a weak law of large
numbers for pairwise independent random variables are obtained.

1. Introduction

Probability and moment inequalities play an important role in the properties of
sums of random variables. A number of inequalities have been established for indepen-
dent random variables. One of the most interesting inequalities is the Marcinkiewicz-
Zygmund inequalities. For a sequence {Xi,1 � i � n} of independent random variables
with mean 0 and E|Xi|p < ∞,1 � i � n, for some p > 1, there exist positive constants
Ap and Bp depending only on p such that
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If 1 < p � 2, then we can immediately obtain from (1.1) that
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The above inequalities (1.1) and (1.2) were extended to a sequence of martingale dif-
ferences by Burkholder [3] and von Bahr and Esseen [2], respectively. Hadjikyriakou
[6] extended the Marcinkiewicz-Zygmund inequalities to the case of nonnegative N-
demimartingales. Asadian et al. [1] proved that (1.2) holds for a sequence of negatively
orthant dependent mean zero random variables. Burkholder [3] also proved that the
Marcinkiewicz-Zygmund inequalities holds for the maximum of partial sums of mar-
tingale differences. Therefore, (1.1) also holds for the maximum of partial sums of
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independent random variables with mean 0. That is, there exist positive constants Cp

and Dp depending only on p such that
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If 1 < p � 2, then
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Shao [12] proved that (1.4) holds for a sequence of negatively associated mean zero ran-
dom variables. The inequality (1.2) is called the p -th order Marcinkiewicz-Zygmund
type inequality for the sum of random variables. The inequality (1.4) is called the p -
th order Marcinkiewicz-Zygmund type inequality for the maximum of partial sums of
random variables.

Let f (x) = xp , x � 0, where 1 < p � 2. Then we can rewrite (1.2) and (1.4) as
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respectively, where the first Cf = Bp , and the second Cf = Dp . The inequalities (1.5)
and (1.6) are called the generalized Marcinkiewicz-Zygmund type inequalities if the
function f (x) is more general than f (x) = xp .

In this paper, we prove that if the q -th order Marcinkiewicz-Zygmund type in-
equality holds for the sum of random variables, then the generalized Marcinkiewicz-
Zygmund type inequality (1.5) with f ∈ Φq (Φq is defined below) holds, in particular,
the p(1 < p < q)-th order Marcinkiewicz-Zygmund type inequality also holds. No ad-
ditional assumptions are made on the random variables. We also prove the same result
for the maximum of partial sums of random variables. As applications, we obtain a gen-
eralized Cr -inequality for real numbers and a weak law of large numbers for pairwise
independent random variables.

Now we introduce two notions and one lemma.
For any q > 0, let Φq be the set of all continuous and strictly increasing functions

f (x) from [0,∞) to [0,∞) satisfying
(i) f (0) = 0,
(ii) f (x) � C′

f x f ′(x) for almost all x ∈ (0,∞) ,
(iii)

∫ ∞
x [g(s)]−qds � C′′

f x[g(x)]−q for all x ∈ (0,∞) ,
(iv)

∫ x
0 [g(s)]−1ds � C′′′

f x[g(x)]−1 for all x ∈ (0,∞) ,
where C′

f , C′′
f , C′′′

f are positive constants depending only on f (x) , and g(x) is the
inverse function of f (x) .
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For any q > 0, let Ψq be the set of all continuous and strictly increasing functions
f (x) from [0,∞) to [0,∞) satisfying the above (i), (ii) and (iii).

Obviously, Φq ⊂ Ψq , Φq ⊂ Φq′ and Ψq ⊂ Ψq′ if q < q′ . We present some exam-
ples of functions in Φq and Ψq.

EXAMPLES. (1) For any 1 < p < q and α ∈ R , set f (x) = xp if x ∈ [0,1] and
f (x) = xp(lnx+1)α if x ∈ (1,∞) . Then f ∈ Φq .

(2) For any 1 < p < q and α ∈ (1− p,q− p) , set f (x) = xp lnα(x + 1) . Then
f ∈ Φq .

(3) For any 1 < p < q , α ∈ R and a > 1, set f (x) = xp lnα(x+a) . Then f ∈ Φq .
(4) For any 1 < p < q , α ∈ R, a > 1 and lna > −α/p, set f (x) = xp lnα a if

x ∈ [0,a] and f (x) = xp lnα x if x ∈ (a,∞) . Then f ∈ Φq.
(5) For any q > p > 0 and α ∈ R , set f (x) = xp if x ∈ [0,1] and f (x) = xp(lnx+

1)α if x ∈ (1,∞) . Then f ∈ Ψq .
(6) For any q > p > 0 and α ∈ (−p,q− p) , set f (x) = xp lnα(x + 1) . Then

f ∈ Ψq .
(7) For any q > p > 0, α ∈ R and a > 1, set f (x) = xp lnα(x+a) . Then f ∈ Ψq .
(8) For any q > p > 0, α ∈ R, a > 1 and lna > −α/p, set f (x) = xp lnα a if

x ∈ [0,a] and f (x) = xp lnα x if x ∈ (a,∞) . Then f ∈ Ψq.
The following lemma is well-known. It can be proved by the Fubini theorem.

LEMMA 1.1. Let Y be a random variable and let r and b be positive constants.
Then the following statements hold.

(1) E|Y |r = r
∫ ∞
0 sr−1P(|Y | > s)ds.

(2) E|Y |rI(|Y | � b) = r
∫ b
0 sr−1P(|Y | > s)ds−brP(|Y | > b).

(3) E|Y |rI(|Y | > b) = r
∫ ∞
b sr−1P(|Y | > s)ds+brP(|Y | > b).

Throughout this paper, I(A) denotes the indicator function of the event A.

2. Generalized Marcinkiewicz-Zygmund type inequalities

The following theorem shows that if the higher order Marcinkiewicz-Zygmund
type inequality holds for the sum of random variables, then some generalized Marcin-
kiewicz-Zygmund type inequality holds, in particular, the lower order Marcinkiewicz-
Zygmund type inequality also holds.

THEOREM 2.1. Let {Xn,n � 1} be a sequence of random variables with finite
means. Assume that for some q > 1, there exists a positive function αq(x) such that

E
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where Xi(x) = XiI(|Xi| � x)+ xI(Xi > x)− xI(Xi < −x). Then for f ∈ Φq ,
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In particular, for 1 < p < q,
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Proof. By Markov’s inequality and (2.1), we have that
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By Lemma 1.1 and the Fubini theorem, we get∫ ∞

0
[g(x)]−qE |Xi(g(x))|q dx

=
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0
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We also get
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Substituting (2.3) and (2.4) into (2.2), we obtain the desired result. �

The following theorem shows that if the higher order Marcinkiewicz-Zygmund
type inequality holds for the maximum of partial sums of random variables, then some
generalized Marcinkiewicz-Zygmund type inequality holds, in particular, the lower or-
der Marcinkiewicz-Zygmund type inequality also holds.

THEOREM 2.2. Let {Xn,n � 1} be a sequence of random variables with finite
means. Assume that for some q > 1, there exists a positive function βq(x) such that
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(2.5)
where Xi(x) = XiI(|Xi| � x)+ xI(Xi > x)− xI(Xi < −x). Then for f ∈ Φq ,
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In particular, for 1 < p < q,
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Proof. The proof is similar to that of Theorem 2.1. By Markov’s inequality and
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(2.5), we have that
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The rest of the proof is the same as that of Theorem 2.1 and is omitted. �

REMARK 2.1. The 2nd order Marcinkiewicz-Zygmund type inequalities ((2.1)
and (2.5) with q = 2) hold for dependent random variables as well as independent
random variables.

(1) Let {Xn,n � 1} be a sequence of pairwise independent random variables. Then
(2.1) holds trivially for q = 2 and αq(n) = 1. By Theorem 3 of Móricz [9], (2.5) holds
for q = 2 and βq(n) = (ln2n/ ln2)2.

(2) Let {Xn,n � 1} be a sequence of pairwise negative quadrant dependent random
variables (for the definition of negative quadrant dependence, see Lehmann [7]). Then
(2.1) holds trivially for q = 2 and αq(n) = 1. By Theorem 3 of Móricz [9], (2.5) holds
for q = 2 and βq(n) = (ln2n/ ln2)2.

(3) Let {Xn,n � 1} be a sequence of negatively associated random variables. Then
(2.1) holds trivially for q = 2 and αq(n) = 1, and (2.5) holds for q = 2 and βq(n) = 2
(see Matula [8]).

(4) Let {Xn,n � 1} be a sequence of ϕ -mixing random variables. Then (2.5)
holds for q = 2 and a constant function βq(x) if ∑∞

n=1 ϕ1/2(n) < ∞ (see Yang [14]).
(5) Let {Xn,n � 1} be a sequence of identically distributed ϕ -mixing random

variables. Then (2.5) holds for q = 2 and a slowly varying function βq(x) (see Shao
[10]). In particular, if ∑∞

n=1 ϕ1/2(2n) < ∞, then (2.5) holds for q = 2 and a constant
function βq(x).
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(6) Let {Xn,n � 1} be a sequence of ρ -mixing random variables. Then (2.1) holds
for q = 2 and a constant function βq(x) if ∑∞

n=1 ρ(n) < ∞ (see Yang [14]).
(7) Let {Xn,n � 1} be a sequence of identically distributed ρ -mixing random

variables. Then (2.5) holds for q = 2 and a slowly varying functions βq(x) (see Shao
[11]). In particular, if ∑∞

n=1 ρ(2n) < ∞, then (2.5) holds for q = 2 and a constant
function βq(x).

(8) Let {Xn,n � 1} be a sequence of ρ∗ -mixing random variables. Then (2.5)
holds for q = 2 and a constant function βq(x) (see Utev and Peligrad [13]).

COROLLARY 2.1. Let 1 < p < 2 and let {Xn,n � 1} be a sequence of pairwise
independent random variables with EXn = 0 and E|Xn|p < ∞ for n � 1. Then
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Proof. The result follows from Theorems 2.1 and 2.2 together with Remark 2.1
(1). �

REMARK 2.2. Under the same conditions as Corollary 2.1, Chen et al. [5] proved
that
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where Cp = inf0<ε<∞ f (ε) and f (ε) = 2+ ε +
(

1+ε
ε
)2( 2

2−p

)2
. We compare the coef-

ficient Cp with that of Corollary 2.1. Since 8/(2− p)+ 4/(p− 1) diverges as p > 1
goes to 1, 8/(2− p) + 4/(p− 1) > Cp for all p > 1 sufficiently close to 1. Since
(2− p) f (ε) > 4/(2− p) > 8+ 4(2− p)/(p− 1) for all p < 2 sufficiently close to 2,
8/(2− p)+ 4/(p− 1) < Cp for all p < 2 sufficiently close to 2. Hence, we cannot
compare the coefficients.

COROLLARY 2.2. Let 1 < p < 2 and let {Xn,n � 1} be a sequence of ρ∗ -mixing
random variables with EXn = 0 and E|Xn|p < ∞ for n � 1. Then

E max
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where Cp is a positive constant independent of n.

Proof. The result follows from Theorem 2.2 together with Remark 2.1 (8). �

REMARK 2.3. When {Xn,n � 1} is a sequence of asymptotically linear negative
quadrant dependent (ALNQD) random variables with mean 0, Zhang [15] proved that
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for p > 1,
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where Cp is a positive constant independent of n. From (2.6), we get that for 1 < p < 2,

E

∣∣∣∣∣
n

∑
i=1

Xi

∣∣∣∣∣
p

� Cp

n

∑
i=1

E|Xi|p. (2.7)

If ALNQD condition is strengthen to ρ∗ -mixing, then (2.7) holds for the maximum of
partial sums (see Corollary 2.2).

In the symmetric case, the condition f ∈ Φq can be weaken to f ∈ Ψq (see the
following theorem).

THEOREM 2.3. Let {Xn,n � 1} be a sequence of random variables. Assume that
for some q > 1, there exists a positive function αq(x) such that
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In particular, for 1 < p < q,
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Proof. Note that
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By (2.3), we complete the proof. �

When f ∈ Ψ1, the generalized Marcinkiewicz-Zygmund type inequality holds
without any assumptions.



MARCINKIEWICZ-ZYGMUND TYPE INEQUALITIES 845

THEOREM 2.4. Let {Xn,n � 1} be a sequence of random variables. If f ∈ Ψ1 ,
then
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i=1

E f (|Xi|).

Proof. Note that

E f

(∣∣∣∣∣
n

∑
i=1

Xi

∣∣∣∣∣
)

=
∫ ∞

0
P

(∣∣∣∣∣
n

∑
i=1

Xi

∣∣∣∣∣> g(x)

)
dx

�
n

∑
i=1

∫ ∞

0
P(|Xi| > g(x))dx+

∫ ∞

0
P

(∣∣∣∣∣
n

∑
i=1

XiI(|Xi| � g(x))

∣∣∣∣∣> g(x)

)
dx

�
n

∑
i=1

E f (|Xi|)+
n

∑
i=1

∫ ∞

0
[g(x)]−1E|Xi|I(|Xi| � g(x))dx.

By Lemma 1.1, we have that for any 1 � i � n ,

∫ ∞

0
[g(x)]−1E|Xi|I(|Xi| � g(x))dx

=
∫ ∞

0
[g(x)]−1

(∫ g(x)

0
P(|Xi| > y)dy−g(x)P(|Xi| > g(x))

)
dx

=
∫ ∞

0
P(|Xi| > y)dy

∫ ∞

f (y)
[g(x)]−1dx−E f (|Xi|)

� C′′
f

∫ ∞

0
y−1 f (y)P(|Xi| > y)dy−E f (|Xi|)

� C′
fC

′′
f

∫ ∞

0
f ′(y)P(|Xi| > y)dy−E f (|Xi|)

= (C′
fC

′′
f −1)E f (|Xi|).

So the first result is proved. Observing that

f

(
max

1�k�n

∣∣∣∣∣
k

∑
i=1

Xi

∣∣∣∣∣
)

� f

(
n

∑
i=1

|Xi|
)

,

the second result follows from the first. �
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3. Applications

Generalized Marcinkiewicz-Zygmund inequalities can be applied to estimate the
moments and tail probabilities of sums of random variables. In this section, we present
only two of many such applications. As a simple application of Theorem 2.4, we can
obtain a generalized version of the Cr -inequality.

THEOREM 3.1. Let {xn,n � 1} be a sequence of real numbers. If f ∈ Ψ1 , then

f

(∣∣∣∣∣
n

∑
i=1

xi

∣∣∣∣∣
)

� C′
fC

′′
f

n

∑
i=1

f (|xi|).

As an application of Theorem 2.1, we can obtain a weak law of large numbers for
pairwise independent random variables.

THEOREM 3.2. Let {Xn,n � 1} be a sequence of pairwise independent random
variables with EXn = 0 for all n � 1 and satisfying f ( f ∈ Φ2)-uniform integrability
in the Cesàro sense, i.e.,

lim
x→∞

sup
n�1

n−1
n

∑
i=1

E f (|Xi|)I(|Xi| > x) = 0.

Assume that for any ε > 0,

n
f (εg(n))

= O(1) and
n

g2(n)
→ 0,

where g is the inverse function of f . Then g−1(n)∑n
i=1 Xi → 0 in probability as n→ ∞.

Proof. Let ε > 0 be given. Then we get by Theorem 2.1 that for any x > 0,

P

(
g−1(n)

∣∣∣∣∣
n

∑
i=1

Xi

∣∣∣∣∣> ε

)

� P

(∣∣∣∣∣
n

∑
i=1

(XiI(|Xi| � x)−EXiI(|Xi| � x))

∣∣∣∣∣> εg(n)/2

)

+P

(∣∣∣∣∣
n

∑
i=1

(XiI(|Xi| > x)−EXiI(|Xi| > x))

∣∣∣∣∣> εg(n)/2

)

� 4ε−2g−2(n)E

∣∣∣∣∣
n

∑
i=1

(XiI(|Xi| � x)−EXiI(|Xi| � x))

∣∣∣∣∣
2

+ f−1(εg(n)/2)E f

(∣∣∣∣∣
n

∑
i=1

(XiI(|Xi| > x)−EXiI(|Xi| > x))

∣∣∣∣∣
)

� 4ε−2g−2(n)nx2 +
(
8C′

fC
′′
f +4C′

fC
′′′
f

)
f−1(εg(n)/2)

n

∑
i=1

E f (|Xi|I(|Xi| > x))

� 4ε−2g−2(n)nx2 +
(
8C′

fC
′′
f +4C′

fC
′′′
f

)
f−1(εg(n)/2)n sup

m�1
m−1

m

∑
i=1

E f (|Xi|) I(|Xi| > x).
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It follows by the assumptions that

limsup
n→∞

P

(
g−1(n)

∣∣∣∣∣
n

∑
i=1

Xi

∣∣∣∣∣> ε

)

� O(1)
(
8C′

fC
′′
f +4C′

fC
′′′
f

)
sup
m�1

m−1
m

∑
i=1

E f (|Xi|) I(|Xi| > x) → 0,

as x → ∞. Hence the result is proved. �

COROLLARY 3.1. Let 1 < p < 2 and α ∈ R. Let {Xn,n � 1} be a sequence of
pairwise independent random variables with EXn = 0 for all n � 1 and satisfying

lim
x→∞

sup
n�1

n−1
n

∑
i=1

E|Xi|p lnα |Xi|I(|Xi| > x) = 0.

Then n−1/p(lnn)α/p ∑n
i=1 Xi → 0 in probability as n → ∞.

Proof. Let a > 1 and lna > −α/p. Set f (x) = xp lnα a if x ∈ [0,a] and f (x) =
xp lnα x if x ∈ (a,∞) . Then f ∈ Φ2 by Example (4). Note that

lim
x→∞

sup
n�1

n−1
n

∑
i=1

E f (|Xi|)I(|Xi| > x) = lim
x→∞

sup
n�1

n−1
n

∑
i=1

E|Xi|p lnα |Xi|I(|Xi| > x) = 0.

Since

g(x) ∼ pα/p x1/p

(lnx)α/p
as x → ∞,

n/ f (εg(n)) = O(1) for any ε > 0 and n/g2(n) → 0 as n → ∞, where g is the inverse
function of f . Hence the result follows from Theorem 3.2. �

REMARK 3.1. When α = 0, Corollary 3.1 ( p = 1 and 1 < p < 2, respectively)
were proved by Chandra [4] and Chen et al. [5].
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