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A METHOD FOR PROVING SOME INEQUALITIES ON

MIXED TRIGONOMETRIC POLYNOMIAL FUNCTIONS

BRANKO MALEŠEVIĆ AND MILICA MAKRAGIĆ

(Communicated by T. Burić)

Abstract. In this article we present a method for proving a class of inequalities of the form
(1). The method is based on the precise approximations of the sine and cosine functions by
Maclaurin polynomials of given order. By using this method we present new proofs of some
inequalities of C.-P. Chen, W.-S. Cheung [J. Inequal. Appl. 2012:72 (2012)] and Z.-J. Sun, L.
Zhu [ISRN Math. Anal. (2011)].

1. Introduction

In this article we consider a method for proving trigonometric inequalities of the
form

f (x) =
n

∑
i=1

αix
pi cosqi xsinri x > 0, (1)

for x∈ (δ1,δ2) , δ1 � 0 � δ2 and δ1 < δ2 ; where αi ∈R\{0} , pi,qi,ri ∈ N0 and n ∈ N .
The function f (x) is a mixed trigonometric polynomial function, see [10]. These func-
tions appear in the theory of analytic inequalities [1]–[9], [13]–[19], [21], [23]–[45].

In the article [26] a natural approach for proving some concrete examples of in-
equalities of the form (1) has been shown. This method is based on the direct compar-
ison of the sine and cosine functions with the corresponding Maclaurin polynomials.
However, the above-mentioned method is not appliable to the function cos2 x in the
whole interval [0, π

2 ] and to the function sin2 x in the whole interval [0,π ] . Based on
that fact, note that it is not advisable to make comparisons of cosqi x · sinri x with the
product of the corresponding Maclaurin approximations of the cosine and sine func-
tions raised to the powers qi and ri respectively. Therefore, one of the possibilities is
to make a transformation of cosqi x · sinri x into the sum of sines and cosines of multi-
ple angles. In the continuation of the article, we have explained a method for proving
inequalities of the form (1) by transforming the function f (x) into an equivalent form
in which sines and cosines of multiple angles appear.
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Let the function ϕ(x) be approximated by Taylor polynomial Tk(x) of degree k in
the neighbourhood of a point a . If there is η > 0 such that in the interval (a−η ,a+η)
it holds:

Tk(x) � ϕ(x),

then we introduce the symbol T
ϕ,a
k (x) = Tk(x) and we call T

ϕ,a
k (x) the upward ap-

proximation of the function ϕ(x) in the neighbourhood of the point a . Analogously, if
there is η > 0 such that in the interval (a−η ,a+ η) it holds:

Tk(x) � ϕ(x),

then we introduce the symbol Tϕ,a
k (x) = Tk(x) and we call T ϕ,a

k (x) the downward ap-
proximation of the function ϕ(x) in the neighbourhood of the point a . Further on, we
observe the function ϕ(x) as a function from the set {sinx,cosx} .

Observing Maclaurin approximations of the sine and cosine functions, we notice
that T

sin,0
1 (x) is above and T sin,0

3 (x) is below the graph of the function sinx for x > 0

and T sin,0
1 (x) is below and T

sin,0
3 (x) is above the graph of the function sinx for x < 0

as well as that T
cos,0
0 (x) is above and T cos,0

2 (x) is below the graph of the function cosx .
The previous facts are stated precisely and generalized through the following Lemmas:

LEMMA 1.1. (i) For the polynomial Tn(t) =
(n−1)/2

∑
i=0

(−1)it2i+1

(2i+1)!
, where n = 4k+1

k ∈ N0 , it is valid:(
∀t ∈ [0,

√
(n+3)(n+4)

])
Tn(t) � Tn+4(t) � sin t, (2)

(
∀t ∈ [−√(n+3)(n+4) ,0

])
Tn(t) � Tn+4(t) � sin t. (3)

For the value t = 0 the inequalities in (2) and (3) turn into equalities. For the
values t = ±√(n+3)(n+4) the equalities T n(t) = Tn+4(t) and Tn(t) = Tn+4(t) are
true, respectively.

(ii) For the polynomial Tn(t) =
(n−1)/2

∑
i=0

(−1)it2i+1

(2i+1)!
, where n = 4k+3 , k ∈ N0 , it is

valid: (
∀t ∈ [0,

√
(n+3)(n+4)

])
Tn(t) � Tn+4(t) � sin t, (4)

(
∀t ∈ [−√(n+3)(n+4) ,0

])
Tn(t) � Tn+4(t) � sin t. (5)

For the value t = 0 the inequalities in (4) and (5) turn into equalities. For the
values t = ±√(n+3)(n+4) the equalities T n(t) = Tn+4(t) and Tn(t) = Tn+4(t) are
true, respectively.
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Proof. (i) Let 0 < t �
√

(n+3)(n+4). Then:

Tn(t) =
2k

∑
i=0

(−1)it2i+1

(2i+1)!
>

∞

∑
i=0

(−1)it2i+1

(2i+1)!
= sin t

⇐⇒
∞

∑
j=1

t4(k+ j)−1(
4(k+ j)−1

)
!

(
1− t2(

4(k+ j)
)(

4(k+ j)+1
))

︸ ︷︷ ︸
(�0)

> 0.

Thus

Tn+4(t) = Tn(t)− tn+2

(n+2)!

(
1− t2

(n+3)(n+4)

)
︸ ︷︷ ︸

(�0)

� Tn(t)

and

Tn+4(t) =
2k+2

∑
i=0

(−1)it2i+1

(2i+1)!
>

∞

∑
i=0

(−1)it2i+1

(2i+1)!
= sin t

⇐⇒
∞

∑
j=1

t4(k+ j)+3(
4(k+ j)+3

)
!

(
1− t2(

4(k+ j)+4
)(

4(k+ j)+5
))

︸ ︷︷ ︸
(>0)

> 0.

The equalities at the endpoints of the segment
[
0,
√

(n+3)(n+4)
]

are also true. Over-
all, (2) has been proved. For t ∈ [−√(n+3)(n+4) ,0

)
, (3) is valid on the basis of the

odd property of the function sinx . Overall, (3) has been proved.

(ii) Let 0 < t �
√

(n+3)(n+4). Then:

Tn(t) =
2k+1

∑
i=0

(−1)it2i+1

(2i+1)!
<

∞

∑
i=0

(−1)it2i+1

(2i+1)!
= sin t

⇐⇒
∞

∑
j=1

− t4(k+ j)+1(
4(k+ j)+1

)
!

(
1− t2(

4(k+ j)+2
)(

4(k+ j)+3
))

︸ ︷︷ ︸
(�0)

< 0.

Thus

Tn+4(t) = Tn(t)+
tn+2

(n+2)!

(
1− t2

(n+3)(n+4)

)
︸ ︷︷ ︸

(�0)

� Tn(t)
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and

Tn+4(t) =
2k+3

∑
i=0

(−1)it2i+1

(2i+1)!
<

∞

∑
i=0

(−1)it2i+1

(2i+1)!
= sin t

⇐⇒
∞

∑
j=1

−t4(k+ j)+5(
4(k+ j)+5

)
!

(
1− t2(

4(k+ j)+6
)(

4(k+ j)+7
))

︸ ︷︷ ︸
(>0)

< 0.

The equalities at the endpoints of the segment
[
0,
√

(n+3)(n+4)
]

are true. Overall,
(4) has been proved. For t ∈ [−√(n+3)(n+4) ,0

)
, (5) is valid on the basis of the odd

property of the function sinx . Overall, (5) has been proved. �

LEMMA 1.2. (i) For the polynomial Tn(t) =
n/2

∑
i=0

(−1)it2i

(2i)!
, where n = 4k , k ∈ N0 ,

it is valid:(
∀t ∈ [−√(n+3)(n+4),

√
(n+3)(n+4)

])
Tn(t) � Tn+4(t) � cost. (6)

For the value t = 0 the inequalities in (6) turn into equalities. For the values
t = ±√(n+3)(n+4) the equality T n(t) = Tn+4(t) is true.

(ii) For the polynomial Tn(t) =
n/2

∑
i=0

(−1)it2i

(2i)!
, where n = 4k+2 , k ∈ N0 , it is valid:

(
∀t ∈ [−√(n+3)(n+4),

√
(n+3)(n+4)

])
Tn(t) � Tn+4(t) � cost. (7)

For the value t = 0 the inequalities in (7) turn into equalities. For the values
t = ±√(n+3)(n+4) the equality T n(t) = Tn+4(t) is true.

Proof. (i) Let 0 < t �
√

(n+3)(n+4). Then:

Tn(t) =
2k

∑
i=0

(−1)it2i

(2i)!
>

∞

∑
i=0

(−1)it2i

(2i)!
= cost

⇐⇒
∞

∑
j=1

t4(k+ j)−2(
4(k+ j)−2

)
!

(
1− t2(

4(k+ j)−1
)(

4(k+ j)
))

︸ ︷︷ ︸
(�0)

> 0.

Thus

Tn+4(t) = Tn(t)− tn+2

(n+2)!

(
1− t2

(n+3)(n+4)

)
︸ ︷︷ ︸

(�0)

� Tn(t)
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and

Tn+4(t) =
2k+2

∑
i=0

(−1)it2i

(2i)!
>

∞

∑
i=0

(−1)it2i

(2i)!
= cost

⇐⇒
∞

∑
j=1

t4(k+ j)+2(
4(k+ j)+2

)
!

(
1− t2(

4(k+ j)+3
)(

4(k+ j)+4
))

︸ ︷︷ ︸
(>0)

> 0.

The equalities at the endpoints of the segment
[
0,
√

(n+3)(n+4)
]

are true. Therefore,
the inequalities in (6) hold true for t ∈ [0,

√
(n+3)(n+4)

]
. For t ∈ [−√(n+3)(n+4) ,0

)
the inequalities in (6) are valid on the basis of the even property of the function cosx .
Overall, (6) has been proved.

(ii) Let 0 < t �
√

(n+3)(n+4). Then:

Tn(t) =
2k+1

∑
i=0

(−1)it2i

(2i)!
<

∞

∑
i=0

(−1)it2i

(2i)!
= cost

⇐⇒
∞

∑
j=1

− t4(k+ j)(
4(k+ j)

)
!

(
1− t2(

4(k+ j)+1
)(

4(k+ j)+2
))

︸ ︷︷ ︸
(�0)

< 0.

Thus

Tn+4(t) = Tn(t)+
tn+2

(n+2)!

(
1− t2

(n+3)(n+4)

)
︸ ︷︷ ︸

(�0)

� Tn(t)

and

Tn+4(t) =
2k+3

∑
i=0

(−1)it2i

(2i)!
<

∞

∑
i=0

(−1)it2i

(2i)!
= cost

⇐⇒
∞

∑
j=1

−t4(k+ j)+4(
4(k+ j)+4

)
!

(
1− t2(

4(k+ j)+5
)(

4(k+ j)+6
)
)

︸ ︷︷ ︸
(>0)

< 0.

The equalities at the endpoints of the segment
[
0,
√

(n+3)(n+4)
]

are also true. Therefo-
re, the inequalities in (7) hold true for t∈[0,

√
(n+3)(n+4)

]
. For t∈[−√(n+3)(n+4) ,0

)
the inequalities in (7) are valid on the basis of the even property of the function cosx .
Overall, (7) has been proved. �

Let us consider a complex number z = eix
(
x ∈ R, i =

√−1 – imaginary unit
)
.

Then it holds:

cosx =
1
2

(
z+

1
z

)
and sinx =

1
2i

(
z− 1

z

)
. (8)

Let us introduce the following functions:

Rk(z) = zk +
1
zk and Qk(z) = zk − 1

zk , (9)
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for k = 1,2, . . . . Then it is:

Rk(z) = 2cos(kx) and Qk(z) = 2isin(kx), (10)

for z = eix and k = 1,2, . . . . Hence, we may come to the conclusion that it holds:

Rn(z) ·Rm(z) = Rn+m(z)+R|n−m|(z) (11)

and
Rn(z) ·Qm(z) = Qn+m(z)+ ν ·Q|n−m|(z), (12)

where ν = sgn
(
m−n

)
. Specifically, R0(z) = 2 and Q0(z) = 0.

In the following auxiliary proposition we show that sinn x can be presented as a
sum of sines of multiple angels or sum of cosines of multiple angels depending on the
parity of degree n .

LEMMA 1.3. For n ∈ N the following formulas are valid:
(i) if n is odd, then:

sinn x =
2
2n

n−1
2

∑
k=0

(−1)
n−1
2 +k

(
n

k

)
sin
(
(n−2k)x

)
, (13)

(ii) if n is even, then:

sinn x =
1
2n

(
n
n
2

)
+

2
2n

n
2−1

∑
k=0

(−1)
n
2 +k
(

n

k

)
cos
(
(n−2k)x

)
. (14)

Proof. See Ex. 17, 18, Chapter IX [11] and the method of proving from [22]. �
For the function cosn x the following proposition analogously holds:

LEMMA 1.4. For n ∈ N the following formulas are valid:
(i) if n is odd, then:

cosn x =
2
2n

n−1
2

∑
k=0

(
n

k

)
cos
(
(n−2k)x

)
, (15)

(ii) if n is even, then:

cosn x =
1
2n

(
n
n
2

)
+

2
2n

n
2−1

∑
k=0

(
n

k

)
cos
(
(n−2k)x

)
. (16)

Proof. See Ex. 15, 16, Chapter IX [11] and the method of proving from [22]. �
Based on the previous two Lemmas we give a proof of the following statement:
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THEOREM 1.5. For n,m ∈ N we have the following cases:
(i) if both n and m are odd

cosn x · sinm x = 1
2n+m−1

n+m
2 −1

∑
k=0

(−1)
m−1

2 +k

(
k

∑
r=0

(−1)r
(

n

r

)(
m

k− r

)
sin
(
(n+m−2k)x

))
,

(17)
(ii) if n is even and m is odd

cosn x · sinm x = 1
2n+m−1

n+m−1
2

∑
k=0

(−1)
m−1

2 +k

(
k

∑
r=0

(−1)r
(

n

r

)(
m

k− r

)
sin
(
(n+m−2k)x

))
,

(18)
(iii) if n is odd and m is even

cosn x · sinm x = 1
2n+m−1

n+m−1
2

∑
k=0

(−1)
m
2 +k

(
k

∑
r=0

(−1)r
(

n

r

)(
m

k− r

)
cos
(
(n+m−2k)x

))
,

(19)
(iv) if both n and m are even

cosn x · sinm x = 1
2n+m−1

( n+m
2 −1

∑
k=0

(−1)
m
2 +k

k

∑
r=0

(−1)r
(

n

r

)(
m

k− r

)
cos
(
(n+m−2k)x

)
+ 1

2(−1)
2m+n

2

n+m
2

∑
r=0

(−1)r
(

n

r

)(
m

n+m
2 − r

))
.

(20)

Proof. (i) Let us suppose that n and m are both odd, then:

cosn x · sinm x

=

(
2
2n

n−1
2

∑
i=0

(
n

i

)
cos
(
(n−2i)x

)) ·
(

2
2m

m−1
2

∑
j=0

(−1)
m−1

2 + j
(

m

j

)
sin
(
(m−2 j)x

))

= 1
2n+mi

( n−1
2

∑
i=0

(
n

i

)
Rn−2i(z)

)
·
( m−1

2

∑
j=0

(−1)
m−1

2 + j
(

m

j

)
Qm−2 j(z)

)

= 1
2n+mi

n−1
2

∑
i=0

m−1
2

∑
j=0

(−1)
m−1

2 + j
(

n

i

)(
m

j

)
Rn−2i(z) ·Qm−2 j(z)

= 1
2n+mi

n−1
2

∑
i=0

m−1
2

∑
j=0

(−1)
m−1

2 + j
(

n

i

)(
m

j

)(
Qn+m−2(i+ j)(z)+ νQ|n−m−2(i− j)|

)

= 1
2n+mi

( n−1
2

∑
i=0

m−1
2

∑
j=0

(−1)
m−1

2 + j
(

n

i

)(
m

j

)
Qn+m−2(i+ j)(z)

+

n−1
2

∑
i=0

m−1
2

∑
j=0

(−1)
m−1

2 + j
(

n

i

)(
m

j

)
νQ|n−m−2(i− j)|(z)

)
,
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where ν = sgn
(
m− n− 2( j− i)

)
. Now we observe the binomial coefficients next to

Q|n−m−2(i− j)|(z) . The products of binomial coefficients can be written in the following
way: (

n

i

)(
m

j

)
=
(

n

n− i

)(
m

j

)
=
(

n

i

)(
m

m− j

)
=
(

n

n− i

)(
m

m− j

)
. (21)

We may notice that the sums of the lower numbers in the products of the binomial
coefficients of the previous equalities in (21) are i+ j , n− i+ j , i+m− j and n− i+
m− j . Let us mark the index |n−m−2(i− j)| with d . Our aim is to determine k in
such a way that n+m−2k = d . Then we see two possibilities:

1) when n−m−2(i− j)> 0, then

n+m−2k = n−m−2(i− j)=⇒ k = m+ i− j, (22)

2) when n−m−2(i− j)< 0, then

n+m−2k = −n+m−2( j− i)=⇒ k = n− i+ j. (23)

Therefore, while calculating

n−1
2

∑
i=0

m−1
2

∑
j=0

(−1)
m−1

2 + j
(

n

i

)(
m

j

)
νQ|n−m−2(i− j)|(z) , on

the basis of the implication (22), we chose the product of the binomial coefficients(
n

i

)(
m

m− j

)
, and on the basis of the implication (23), we chose

(
n

n− i

)(
m

j

)
, i.e.

we chose that product of binomial coefficients whose sum of the lower numbers equals
to k .

Finally, we get the requested result:

cosn x · sinm x =
1

2n+mi

n+m
2 −1

∑
k=0

(−1)
m−1

2 +k

(
k

∑
r=0

(−1)r
(

n

r

)(
m

k− r

)
Qn+m−2k(z)

)

=
1

2n+m−1

n+m
2 −1

∑
k=0

(−1)
m−1

2 +k

(
k

∑
r=0

(−1)r
(

n

r

)(
m

k− r

)
sin
(
(n+m−2k)x

))
.

(ii) Let n be even and m odd, then:

cosn x · sinm x =

(
1
2n

(
n
n
2

)
+

2
2n

n
2−1

∑
i=0

(
n

i

)
cos
(
(n−2i)x

))

×
(

2
2m

m−1
2

∑
j=0

(−1)
m−1

2 + j
(

m

j

)
sin
(
(m−2 j)x

))

=
1

2n+mi

((
n
n
2

) m−1
2

∑
j=0

(−1)
m−1

2 + j
(

m

j

)
Qm−2 j(z)

+
( n

2−1

∑
i=0

(
n

i

)
Rn−2i(z)

)
·
( m−1

2

∑
j=0

(−1)
m−1

2 + j
(

m

j

)
Qm−2 j(z)

))
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=
1

2n+mi

((
n
n
2

) m−1
2

∑
j=0

(−1)
m−1

2 + j
(

m

j

)
Qm−2 j(z)

+

n
2−1

∑
i=0

m−1
2

∑
j=0

(−1)
m−1

2 + j
(

n

i

)(
m

j

)
Rn−2i(z) ·Qm−2 j(z)

)

=
1

2n+mi

((
n
n
2

) m−1
2

∑
j=0

(−1)
m−1

2 + j
(

m

j

)
Qm−2 j(z)

+

n
2−1

∑
i=0

m−1
2

∑
j=0

(−1)
m−1

2 + j
(

n

i

)(
m

j

)(
Qn+m−2(i+ j)(z)+ νQ|n−m−2(i− j)|(z)

))

=
1

2n+mi

((
n
n
2

) m−1
2

∑
j=0

(−1)
m−1

2 + j
(

m

j

)
Qm−2 j(z)

+

n
2−1

∑
i=0

m−1
2

∑
j=0

(−1)
m−1

2 + j
(

n

i

)(
m

j

)
Qn+m−2(i+ j)(z)

+

n
2−1

∑
i=0

m−1
2

∑
j=0

(−1)
m−1

2 + j
(

n

i

)(
m

j

)
νQ|n−m−2(i− j)|(z)

)
,

where ν = sgn
(
m−n−2( j− i)

)
. Looking at the products of the binomial coefficients

next to Q|n−m−2(i− j)|(z) , analogously to the equalities (21) and the procedure with the
implications (22) and (23), we may conclude that it is valid:

cosn x · sinm x =
1

2n+mi

n+m−1
2

∑
k=0

(−1)
m−1

2 +k

(
k

∑
r=0

(−1)r
(

n

r

)(
m

k− r

)
Qn+m−2k(z)

)

=
1

2n+m−1

n+m−1
2

∑
k=0

(−1)
m−1

2 +k

(
k

∑
r=0

(−1)r
(

n

r

)(
m

k− r

)
sin
(
(n+m−2k)x

))
,

(iii) Replacing x by π
2 − x in formula (18), we get formula (19).

(iv) If n and m are both even, then:

cosn x · sinm x

=

(
1
2n

(
n
n
2

)
+

2
2n

n
2−1

∑
i=0

(
n

i

)
cos
(
(n−2i)x

))

×
(

1
2m

(
m
m
2

)
+

2
2m

m
2 −1

∑
j=0

(−1)
m
2 + j
(

m

j

)
cos
(
(m−2 j)x

))

=
1

2n+m

((
n
n
2

)(
m
m
2

)
+
(

n
n
2

) m
2 −1

∑
j=0

(−1)
m
2 + j
(

m

j

)
Rm−2 j(z)
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+
(

m
m
2

) n
2−1

∑
i=0

(
n

i

)
Rn−2i(z)+

( n
2−1

∑
i=0

(
n

i

)
Rn−2i(z)

)
·
( m

2 −1

∑
j=0

(−1)
m
2 + j
(

m

j

)
Rm−2 j(z)

))

=
1

2n+m

((
n
n
2

)(
m
m
2

)
+
(

n
n
2

) m
2 −1

∑
j=0

(−1)
m
2 + j
(

m

j

)
Rm−2 j(z)+

(
m
m
2

) n
2−1

∑
i=0

(
n

i

)
Rn−2i(z)

+

n
2−1

∑
i=0

m
2 −1

∑
j=0

(−1)
m
2 + j
(

n

i

)(
m

j

)
Rn−2i(z) ·Rm−2 j(z)

)

=
1

2n+m

((
n
n
2

)(
m
m
2

)
+
(

n
n
2

) m
2 −1

∑
j=0

(−1)
m
2 + j
(

m

j

)
Rm−2 j(z)+

(
m
m
2

) n
2−1

∑
i=0

(
n

i

)
Rn−2i(z)

+

n
2−1

∑
i=0

m
2 −1

∑
j=0

(−1)
m
2 + j
(

n

i

)(
m

j

)(
Rn+m−2(i+ j)(z)+R|n−m−2(i− j)|(z)

))

=
1

2n+m

((
n
n
2

)(
m
m
2

)
+
(

n
n
2

) m
2 −1

∑
j=0

(−1)
m
2 + j
(

m

j

)
Rm−2 j(z)+

(
m
m
2

) n
2−1

∑
i=0

(
n

i

)
Rn−2i(z)

+

n
2−1

∑
i=0

m
2 −1

∑
j=0

(−1)
m
2 + j
(

n

i

)(
m

j

)
Rn+m−2(i+ j)(z)

+

n
2−1

∑
i=0

m
2 −1

∑
j=0

(−1)
m
2 + j
(

n

i

)(
m

j

)
R|n−m−2(i− j)|(z)

)
.

Looking at the products of the binomial coefficients next to R|n−m−2(i− j)|(z) , analo-
gously to the equalities (21) and the procedure with the implications (22) and (23), we
may conclude that it is valid:

cosn x · sinm x = 1
2n+m

( n+m
2 −1

∑
k=0

(−1)
m
2 +k

k

∑
r=0

(−1)r
(

n

r

)(
m

k− r

)
Rn+m−2k(z)

+ 1
2(−1)

2m+n
2

n+m
2

∑
r=0

(−1)r
(

n

r

)(
m

n+m
2 − r

)
R0

)

= 1
2n+m−1

( n+m
2 −1

∑
k=0

(−1)
m
2 +k

k

∑
r=0

(−1)r
(

n

r

)(
m

k− r

)
cos
(
(n+m−2k)x

)

+ 1
2(−1)

2m+n
2

n+m
2

∑
r=0

(−1)r
(

n

r

)(
m

n+m
2 − r

))
,

with the note that
(

n

i

)(
m

j

)
· R0 (R0 = 2) is written as a sum of two products of

binomial coefficients equal to
(

n

i

)(
m

j

)
, analogously to (21), whose sum of the lower

numbers equals to n+m
2 . �
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2. The description of the method

I Our aim is to present a method for proving inequalities of the type (1) for
x ∈ (0,δ ) and δ = δ2 > 0. We will use the upward and downward Maclaurin approxi-
mations of the sine and cosine functions determined in the Lemmas 1.1. and 1.2.

Let us observe the addend of the sum (1): si(x) = αixpi cosqi xsinri x, where αi �= 0
for i = 1, . . . ,n . Let us introduce the symbol

mi =

{ qi+ri
2 −1, when qi and ri are both even or both odd,

qi+ri−1
2 , when qi and ri have different parity.

(24)

According to the Theorem 1.5. the addends si(x) (i = 1,2, . . . ,n) are represented
in four different ways depending on the cases, so the following possibilities are given
in the description of the method:

1. Let qi and ri be odd or let qi be even and ri odd. In both cases, it holds:

si(x) = αixpi cosqi xsinri x

= αix
pi

2qi+ri−1

mi

∑
k=0

(−1)
ri−1

2 +k
k

∑
r=0

(−1)r
(

qi

r

)(
ri

k− r

)
sin
(
(qi + ri−2k)x

)
= xpi

2qi+ri−1

mi

∑
k=0

(
k

∑
r=0

αi(−1)
ri−1

2 +k+r
(

qi

r

)(
ri

k− r

))
sin
(
(qi + ri−2k)x

)
.

(25)

Let us mark with βk =
k

∑
r=0

αi(−1)
ri−1

2 +k+r
(

qi

r

)(
ri

k− r

)
. Then, for every sub-addend

βk sin
(
(qi + ri−2k)x

)
, depending on the sign of βk , two cases are possible:

1) if βk > 0:

βk sin
(
(qi + ri−2k)x

)
> βkT

sin,0

4l
(i)
k +3

(
(qi + ri−2k)x

)
, (26)

2) if βk < 0:

βk sin
(
(qi + ri−2k)x

)
> βkT

sin,0

4l(i)k +1

(
(qi + ri−2k)x

)
. (27)

Let the addend si(x) be written in the form:

si(x) =
xpi

2qi+ri−1

mi

∑
k=0

βk sin
(
(qi + ri−2k)x

)
. (28)

Then it holds:

si(x) > τ i(x) =
xpi

2qi+ri−1

mi

∑
k=0

βkT
sin,0

4l(i)k +u

(
(qi + ri−2k)x

)
, (29)

where u =

{
3, βk > 0,

1, βk < 0
, l(i)k ∈ N0 and T ∈ {T ,T} .
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2. Let qi be odd and ri even, then it holds:

si(x) = αixpi cosqi xsinri x

= αixpi

2qi+ri−1

mi

∑
k=0

(−1)
ri
2 +k

k

∑
r=0

(−1)r
(

qi

r

)(
ri

k− r

)
cos
(
(qi + ri−2k)x

)
= xpi

2qi+ri−1

mi

∑
k=0

(
k

∑
r=0

αi(−1)
ri
2 +k+r

(
qi

r

)(
ri

k− r

))
cos
(
(qi + ri−2k)x

)
.

(30)

Let us mark with γk =
k

∑
r=0

αi(−1)
ri
2 +k+r

(
qi

r

)(
ri

k− r

)
. Then, for every sub-addend

γk cos
(
(qi + ri−2k)x

)
, depending on the sign of γk , two cases are possible:

1) if γk > 0:

γk cos
(
(qi + ri−2k)x

)
> γkT

cos,0

4l(i)k +2

(
(qi + ri−2k)x

)
, (31)

2) if γk < 0:

γk cos
(
(qi + ri−2k)x

)
> γkT

cos,0

4l
(i)
k +0

(
(qi + ri−2k)x

)
. (32)

Let the addend si(x) be written in the form:

si(x) =
xpi

2qi+ri−1

mi

∑
k=0

γk cos
(
(qi + ri −2k)x

)
. (33)

Then it holds:

si(x) > τ i(x) =
xpi

2qi+ri−1

mi

∑
k=0

γkT
cos,0

4l
(i)
k +v

(
(qi + ri−2k)x

)
, (34)

where v =

{
2, γk > 0,

0, γk < 0
, l(i)k ∈ N0 and T ∈ {T ,T} .

3. Let qi and ri be even, then based on the previous case (under 2.) it holds:

si(x) = xpi

2qi+ri−1

(
mi

∑
k=0

(
k

∑
r=0

αi(−1)
ri
2 +k+r

(
qi

r

)(
ri

k− r

))
cos
(
(qi + ri−2k)x

)

+ 1
2(−1)

2ri+qi
2

qi+ri
2

∑
r=0

(−1)r
(

qi

r

)(
ri

qi+ri
2 − r

))

> τ i(x) = xpi

2qi+ri−1

(
mi

∑
k=0

γkT
cos,0

4l(i)k +v

(
(qi + ri−2k)x

)

+ 1
2(−1)

2ri+qi
2

qi+ri
2

∑
r=0

(−1)r
(

qi

r

)(
ri

qi+ri
2 − r

))
,

(35)
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where v =

{
2, γk > 0,

0, γk < 0
, l(i)k ∈ N0 and T ∈ {T ,T} .

Comparing all the addends si(x) (i = 1,2, . . . ,n) that appear in the sum (1), ac-
cording to the above stated cases, we get the polynomial

P(x) =
n

∑
i=1

τ i(x) (36)

(
downward approximation of the function f (x) in (1)

)
; i.e. it holds:

f (x) > P(x). (37)

On the basis of the previous consideration, the following statement ensues:

THEOREM 2.1. Let the following properties of the polynomial P(x) =
n

∑
i=1

τ i(x)

be true:
(i) there is at least one positive real root of the polynomial P(x) ;
(ii) P(x) > 0 for x ∈ (0,x∗) , where x∗ is the least positive real root

of the polynomial P(x);
then it is valid

f (x) > 0

for x ∈ (0,x∗) ⊆ (0,δ ) .

REMARK 2.2. Let us notice that hereby the proof of the inequality f (x) > 0 has
been obtained for x ∈ (0,δ2) , where δ2 = x∗ . The previous Theorem can be applied in
the interval (δ1,0) by introducing the substitute t = −x .

REMARK 2.3. If there is not at least one positive real root of the polynomial P(x)
and P(x) > 0 for x ∈ (0,∞) , then it is valid f (x) > 0 for x ∈ (0,∞) .

The previous Theorem determines a method of proving a class of trigonometric
inequalities based on approximations of the sine and cosine functions by Maclaurin
polynomials.

II We will consider completeness of the given method for the function f (x) , of
the mixed trigonometric polynomial, which is not a classical polynomial. Let us start
from the following auxiliary statement.

LEMMA 2.4. Let f : (δ1,δ2) −→ R , δ1 � 0 � δ2 and δ1 < δ2 , be a real, non-
constant, analytic function such that domain (δ1,δ2) belongs to the interval of conver-
gence of the function f (x) .

If f (0) �= 0 , then it holds:
1.

f (0) > 0 ⇐⇒ (∃x+ ∈ (0,δ2]
)(∀x ∈ (0,x+ )

)
f (x) > 0, (38)
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2.
f (0) < 0 ⇐⇒ (∃x+ ∈ (0,δ2]

)(∀x ∈ (0,x+ )
)
f (x) < 0. (39)

If f (0) = . . . = f (n−1)(0) = 0 ∧ f (n)(0) �= 0 , for some n ∈ N , then it holds:
3.

f (n)(0) > 0 ⇐⇒ (∃x+ ∈ (0,δ2]
)(∀x ∈ (0,x+ )

)
f (x) > 0, (40)

4.
f (n)(0) < 0 ⇐⇒ (∃x+ ∈ (0,δ2]

)(∀x ∈ (0,x+ )
)
f (x) < 0. (41)

Proof. Let f (x) be a non-constant function with Maclaurin series expansion

f (h) = f (0)+
f ′(0)
1!

h+
f ′′(0)
2!

h2 + . . . , (h > 0). (42)

In the proof we use the method from [12] (pages 157, 158), by which it has been shown
that zeros of non-constant analytic function are isolated.

1. (⇒) Let f (0) > 0. Let us note (42) in the form

f (h) = f (0)
(
1+g(h)

)
, (43)

where g(h) is the real analytical function. Then there exist x+ > 0 and M > 0 such
that |g(h)| < Mh and Mh < 1/2 for every h ∈ (0,x+ ) . Hence, we conclude that
f (h) = f (0)+ f (0)g(h) > f (0)− f (0)Mh > f (0)/2 > 0 for h ∈ (0,x+ ) . (⇐) Let us
suppose that there exists x+ ∈ (0,δ2] such that for every x ∈ (0,x+ ) it holds f (x) > 0.
Consequently, it ensues that f (x) is a positive function in arbitrarily small right-hand
neighbourhood of the point x = 0. Let g(x) be the function considered in the previous
part of the proof. Then there exist M > 0 and x1 ∈ (0,x+ ] such that for every x∈ (0,x1)
it holds |g(x)|< Mx < 1/2. If it holds f (0) < 0, then for x ∈ (0,x1)⊆ (0,x+ ) we have
the contradiction f (x) = f (0)

(
1+g(x)

)
< 0. Hereby it has been proved f (0) > 0.

2. It is sufficient to consider function − f (x) instead of function f (x) and to apply
1.

In the case f (0) = . . . = f (n−1)(0) = 0 ∧ f (n)(0) �= 0, for some n ∈ N , the point
x = 0 has been isolated zero of order n . Let us note further (42) in the form

f (h) =
f (n)(0)

n!
hn +

f (n+1)(0)
(n+1)!

hn+1 + . . . , (h > 0). (44)

3. (⇒) Let f (n)(0) > 0. Let us note (44) in the form

f (h) =
f (n)(0)

n!
hn(1+g(h)

)
, (45)

where g(h) is the real analytical function. Then there exist x+ > 0 and M > 0 such that
|g(h)| < Mh and Mh < 1/2 for every h ∈ (0,x+ ) . Hence, we conclude that f (h) =
f (n)(0)

n! hn + f (n)(0)
n! hng(h) > f (n)(0)

n! hn − f (n)(0)
n! hnMh > 1

2
f (n)(0)

n! hn > 0 for h ∈ (0,x+ ) .
(⇐) Let us suppose that there exists x+ ∈ (0,δ2] such that for every x ∈ (0,x+ ) it
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holds f (x) > 0. Consequently, it ensues that f (x) is a positive function in arbitrarily
small right-hand neighbourhoodof the point x = 0. Let g(x) be the function considered
in the previous part of the proof. Then there exist M > 0 and x1 ∈ (0,x+ ] such that
for every x ∈ (0,x1) it holds |g(x)| < Mx < 1/2. If it holds f (n)(0) < 0, then for

x ∈ (0,x1)⊆ (0,x+ ) we have the contradiction f (x) = f (n)(0)
n! xn

(
1+g(x)

)
< 0. Hereby

it has been proved f (n)(0) > 0.
4. It is sufficient to consider function − f (x) instead of function f (x) and to

apply 3. �

Based on the previous statement it follows:

THEOREM 2.5. Let f : (δ1,δ2) −→ R , δ1 � 0 � δ2 and δ1 < δ2 , be a real, non-
constant, analytic function such that domain (δ1,δ2) belongs to the interval of conver-
gence of the function f (x) . Then the equivalences(∃x+ ∈ (0,δ2]

)(∀x ∈ (0,x+)
)
f (x) > 0

⇐⇒
f (0) > 0 ∨

((∃n ∈ N
)
f (0) = . . . = f (n−1)(0) = 0 ∧ f (n)(0) > 0

) (46)

or (∃x+ ∈ (0,δ2]
)(∀x ∈ (0,x+)

)
f (x) < 0

⇐⇒
f (0) < 0 ∨

((∃n ∈ N
)
f (0) = . . . = f (n−1)(0) = 0 ∧ f (n)(0) < 0

) (47)

are true.

REMARK 2.6. In the following consideration we observe that f (x) is a mixed
trigonometric polynomial which is not a classical polynomial. Such functions are an-
alytic with the interval of convergence which is determined as a set of real numbers.
That is why the problem whether there is an interval (0,x+ ) for the mixed trigonomet-
ric polynomial f (x) , for some x+ > 0, in which f (x) is of the constant sign, represents
a decidable problem based on the equivalences (46) and (47) .

We will consider completeness of the given method for the function f (x) , of the
mixed trigonometric polynomial, which is not a classical polynomial under the assump-
tion (∃x+ ∈ (0,δ )

)(∀x ∈ (0,x+ )
)
f (x) > 0. (48)

We will show that for the function f (x) in every sub-interval (a,b) ⊂ (0,x+ ) , where
0 < a < b < x+ , there exists a positive downward polynomial approximation P(x) . Let

all the indexes l(i)k

(
i ∈ {1, . . . ,n} and k ∈ {0, . . . ,mi}

)
have the same value l(i)k = K ∈
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N0 . As a function of index K , a polynomial P [K] (x) = ∑n
i=1 τ [K]

i (x) is formed. Previ-
ously formed polynomial P [K] (x) of index K is downward polynomial approximation
of the function f (x) such that it is valid

lim
K−→∞

P [K] (x) = f (x), (49)

where the previous convergence is uniform in [0,x+ ] . The uniform property of the
convergence follows based on the fact that for every i = 1, . . . ,n the convergence

lim
K−→∞

τ [K]

i (x) = si(x), (50)

is uniform in [0,x+ ] . Based on P [K] (x) < f (x) and P [K] (x) ⇒ f (x) , in [0,x+ ] , we get
the following statement about the completeness of the discussed method.

THEOREM 2.7. Let for the mixed trigonometric polynomial f (x) which is not
a classical polynomial, the condition (48) is valid. Then in every interval (a,b) ⊂
(0,x+ ) , where 0<a<b<x+ , there exists downward polynomial approximation P [K] (x)
of the index K such that (∀x ∈ (a,b)

)
f (x) > P [K] (x) > 0. (51)

REMARK 2.8. Under the assumptions of the previous Theorem for the function
f (x) it follows the completeness of the method in the sense that it is possible in every
interval (a,b) ⊂ (0,x+ ) , where 0 < a < b < x+ , to prove the inequality f (x) > 0 by
using some downward approximation P [K] (x) .

2.1. Improving of the method

Let us emphasise that the previous method can be applied to the functions of the
form f (x) = ∑n

i=1 αihi(x)cosqi xsinri x for x ∈ (0,δ ) , where hi(x) is a polynomial, in
such a way that two possibilities exist. The first possibility is when the polynomial hi(x)
is of the constant sign in the given interval and then we can see the cases hi(x) > 0 or
hi(x) < 0, and we do that by analogy with the previously described procedure. On the
other hand, we have a possibility that the polynomial hi(x) is not of the constant sign.
Then, αihi(x)cosqi xsinri x can be written as a sum of addends of the form si(x) , and
then we can apply the previously described method for each of those addends.

2.2. The end of the procedure

Let the indexes l(i)k

(
i∈ {1, . . . ,n} and k ∈ {0, . . . ,mi}

)
, which appear in the poly-

nomial P(x) , be aligned: l0, l1, . . . , lm ; where m + 1 is the overall number of sub-
addends which come from every addend si(x) . The indexes l0, l1, . . . lm have been
determined in (29), (34) and (35). Let us notice that according to the index ls it holds:

f (x) > P(x, l0, l1, . . . , ls +1, . . . , lm) > P(x, l0, l1, . . . , ls, . . . , lm) (52)
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for every index s ∈ {0,1,2, . . . ,m} and ls ∈ N0 . It should be noted that the interval in
which the sharp inequality

P(x, l0, l1, . . . , ls +1, . . . , lm) > P(x, l0, l1, . . . , ls, . . . , lm) (53)

is valid, can be determined according to the Lemmas 1.1. and 1.2. By increasing every
index ls , the intervals of validity of (52) are expanded based on the Lemmas 1.1 and
1.2. and we get even better and better downward approximations of the function f (x) .
The previously described method defines a procedure which ends when at least one
(m + 1)-tuple of the indexes (l0, l1, . . . , lm) = (l̂0, l̂1, . . . , l̂m) has been determined for
which it is valid:

P(x, l̂0, l̂1, . . . , l̂m) > 0 (54)

for x ∈ (0,δ ) . By completing the procedure, we get a proof of the initial inequality (1).

REMARK 2.9. This method represents a generalisation of the method that C. Mor-
tici used for proving inequalities in the article [26]. The method comes down to proving
polynomial inequalities of the form P(x) > 0 for x ∈ (0,δ ) which is a decidable prob-
lem according to the results by Tarski [20].

By using this method it is our aim in this article to get some well-known results
concerning the inequalities of the form (1) that have been considered in the lately pub-
lished articles.

3. Some applications

In this section we consider some applications of the method based on the Theorem
2.1. in some concrete inequalities.

3.1. A proof of an inequality from the article [6]

In the article [6] C.-P. Chen and W.-S. Cheung have lately proved the following
statement (Theorem 2):

THEOREM 3.1. (i) For 0 < x < π/2 , we have

( x
sinx

)2
+

x
tanx

< 2+
2
45

x3 tanx. (55)

The constant 2
45 is best possible.

(ii) For 0 < x < π/2 , we have

( x
sinx

)2
+

x
tanx

< 2+
2
45

x4 +
8

945
x5 tanx. (56)

The constant 8
945 is best possible.
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Now we present a proof of the inequality (55).

Proof. The requested inequality is equivalent to f (x) > 0 for x ∈ (0,π/2) , where

f (x) = 2cosxsin2 x+ 2
45x3 sin3 x− xcos2 xsinx− x2 cosx, (57)

which is a concrete mixed trigonometric polynomial. Let us notice that x = 0 is zero
of the eighth order of the function f (x) . According to the Theorem 1.5. the function
f (x) can be written in the following way:

f (x) = 1
2 cosx− x2 cosx− 1

2 cos3x− ( 1
90x3 + 1

4x︸ ︷︷ ︸
(>0)

)sin3x+( 1
30x3− 1

4x︸ ︷︷ ︸
(<0)

)sinx. (58)

Then, according to the Lemmas 1.1. and 1.2. and the description of the method,
the following inequalities are true: cosy > T cos,0

k (y) (k = 6) , cosy < T
cos,0
k (y) (k = 12)

and siny < T
sin,0
k (y) (k = 13) , for y ∈ (0,

√
(k+3)(k+4)

)
.

For x ∈ (0,π/2) it is valid:

f (x) > 1
2T cos,0

6 (x)− x2T
cos,0
12 (x)− 1

2T
cos,0
12 (3x)− ( 1

90x3 + 1
4x︸ ︷︷ ︸

(>0)

)T sin,0
13 (3x)

+( 1
30x3 − 1

4x︸ ︷︷ ︸
(<0)

)T sin,0
13 (x) = P16(x),

(59)

where P16(x) is the polynomial

P16(x) = x8

186810624000

(
−531440x8 −2746332x6 −8885955x4

−118584180x2 +1183782600
)

= x8

186810624000
P8(x).

(60)

Then we determine the sign of the polynomial P8(x) for x ∈ (0,π/2) . By introducing
the substitute z = x2 , we get the fourth degree polynomial:

P4(z) = −531440z4 −2746332z3 −8885955z2 −118584180z+1183782600 . (61)

A real numerical factorization of the polynomial P4(z) , has been determined via
Matlab software, and given with

P4(z) = α(z− z1)(z− z2)(z2 + pz+q), (62)

where α = −531440, z1 = 4.503628... , z2 = −9.049... , p = 0.621... , q = 54.652... ;
whereby the inequality p2−4q < 0 is true. The polynomial P4(z) has exactly two sim-
ple real roots with a symbolic radical representation and the corresponding numerical
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values z1 and z2 . Since P4(0) > 0 it follows that P4(z) > 0 for z ∈ (0,z1) ⊂ (z2,z1) .
Finally, we conclude that

P8(x) > 0 for x ∈ (0,
√

z1) = (0,2.122...) =⇒ P16(x) > 0 for x ∈ (0,2.122...)

=⇒ f (x) > 0 for x ∈
(
0,

π
2

)
⊂ (0,2.122...).

(63)
Let us notice that the least positive real root of the downward approximation of

the function f (x) , i.e. of the polynomial P16(x) , is x∗ =
√

z1 = 2.122175... > π/2.
Elementary calculus gives that the constant 2

45 is the best possible. �

3.2. A proof of an inequality from the paper [35]

In the paper [34] Z.-J. Sun and L. Zhu have posed an open problem, to prove the
statement:

THEOREM 3.2. Let 0 < x < π/2 . Then

(2π4/3)x3 +(8π4/15−16π2/3)x5

(π2 −4x2)2
< x sec2 x− tanx

<
(2π4/3)x3 +(256/π2 −8π2/3)x5

(π2 −4x2)2
,

(64)

hold, where (8π4/15−16π2/3) and (256/π2−8π2/3) are the best constants in (64) .

Now we present a proof of the previous statement.

Proof.
I We prove the inequality:

(2π4/3)x3 +(8π4/15−16π2/3)x5

(π2−4x2)2 < xsec2 x− tanx (65)

for x ∈ (0,π/2) . The requested inequality is equivalent to the inequality f (x) > 0 for
x ∈ (0,π/2) , where

f (x) = x(π2−4x2)2−(π2−4x2)2 cosxsinx−((2π4/3)x3+(8π4/15−16π2/3)x5)cos2 x
(66)

is a concrete mixed trigonometric polynomial. Let us notice that x = 0 is zero of the
seventh order and x = π/2 is zero of the second order of the function f (x) . Let us
consider two cases:

1) If x ∈ (0,1.136) :
According to the Theorem 1.5. the function f (x) can be written in the following

way:

f (x) = x(π2 −4x2)2− (π2 −4x2)2

2
sin2x− ((π4/3)x3 +(4π4/15−8π2/3)x5

)
−( (π4/3)x3 +(4π4/15−8π2/3)x5︸ ︷︷ ︸

(>0)

)
cos2x. (67)
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Then, according to the Lemmas 1.1. and 1.2. and the description of the method, the
following inequalities are true: siny < T

sin,0
k (y) (k = 9) and cosy < T

cos,0
k (y) (k = 8) ,

for y ∈ (0,
√

(k+3)(k+4)
)
.

For x ∈ (0,1.136) it is valid:

f (x) > x(π2 −4x2)2 − (π2 −4x2)2

2
T

sin,0
9 (2x)− ((π4/3)x3 +(4π4/15−8π2/3)x5

)
−((π4/3)x3 +(4π4/15−8π2/3)x5︸ ︷︷ ︸

(>0)

)
T

cos,0
8 (2x) = P13(x),

(68)

where P13(x) is the polynomial

P13(x) = 2x7

14175

(
(−12π4 +120π2 −80)x6 − (−153π4 +1640π2 −1440)x4

−(1055π4 −11880π2 +15120)x2 +2295π4 −30240π2 +75600
)

= 2x7

14175
P6(x).

(69)

Then we determine the sign of the polynomial P6(x) for x ∈ (0,1.136) . By introducing
the substitute z = x2 , we get the third degree polynomial:

P3(z) = (−12π4 +120π2 −80)z3 − (−153π4 +1640π2 −1440)z2

−(1055π4 −11880π2 +15120)z+2295π4 −30240π2 +75600.
(70)

A real numerical factorization of the polynomial P3(z) , has been determined via
Matlab software, and given with

P3(z) = α(z− z1)(z2 + pz+q), (71)

where α = −64.556... , z1 = 1.290721... , p = −1.148... , q = 8.365... ; whereby the
inequality p2−4q < 0 is true. The polynomial P3(z) has exactly one simple real root
with a symbolic radical representation and the corresponding numerical value z1 . Let
us notice that

√
z1 = 1.136099... > 1.136. Since P3(0) > 0 it follows that P3(z) > 0

for z ∈ (0,1.136) . Finally, we conclude that

P6(x) > 0 for x ∈ (0,1.136) =⇒ P13(x) > 0 for x ∈ (0,1.136)
=⇒ f (x) > 0 for x ∈ (0,1.136).

(72)

Let us notice that the least positive real root of the downward approximation of the
function f (x) , i.e. of the polynomial P13(x) , is x∗ =

√
z1 = 1.136099... .

2) If x ∈ [1.136,π/2) , let us define the function

ϕ(x) = f
(
π/2− x

)
= −16x5 +40πx4 −32π2x3 +8π3x2

−(16x4 −32πx3 +16π2x2)sinxcosx

−(π2/60)(π −2x)3
(
(4π2 −40)x2 +(−4π3 +40π)x+π4 −5π2

)
sin2 x.

(73)
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Now we prove that f (x) > 0 for x ∈ [1.136,π/2) , which is equivalent to ϕ(x) > 0
for x ∈ (0,c ] , where c = π/2−1.136= π/2−142/125 (c = 0.434 . . .) . The function
ϕ(x) is also a concrete mixed trigonometric polynomial. According to the Theorem
1.5. the function ϕ(x) can be written in the following way:

ϕ(x) = −16x5 +40πx4 −32π2x3 +8π3x2 − (8x4−16πx3 +8π2x2︸ ︷︷ ︸
(>0)

)sin2x

−(π2/60)(π −2x)3
(
(2π2 −20)x2 +(−2π3 +20π)x+π4/2−5π2/2

)
+(π2/60)(π −2x)3

(
(2π2 −20)x2 +(−2π3 +20π)x+π4/2−5π2/2︸ ︷︷ ︸

(>0)

)
cos2x.

(74)

Then, according to the Lemmas 1.1. and 1.2. and the description of the method, the
following inequalities are true: siny < T

sin,0
k (y) (k = 5) and cosy > T cos,0

k (y) (k = 6) ,
for y ∈ (0,

√
(k+3)(k+4)

)
.

For x ∈ (0,c ] it is valid:

ϕ(x) > −16x5 +40πx4 −32π2x3 +8π3x2 − (8x4 −16πx3 +8π2x2︸ ︷︷ ︸
(>0)

)T sin,0
5 (2x)

−(π2/60)(π −2x)3
(
(2π2 −20)x2 +(−2π3 +20π)x+π4/2−5π2/2

)
+(π2/60)(π −2x)3

(
(2π2 −20)x2 +(−2π3 +20π)x+π4/2−5π2/2︸ ︷︷ ︸

(>0)

)
T cos,0

6 (2x)

= Q11(x),
(75)

where Q11(x) is the polynomial

Q11(x) = x2

2700

(
(64π4 −640π2)x9 +(−160π5 +1600π3)x8

+(160π6 −2000π4 +4800π2 −5760)x7

+(−80π7 +1880π5 −12000π3 +11520π)x6

+(20π8 −1340π6 +12840π4 −20160π2 +28800)x5

+(−2π9 +610π7 −8700π5 +36000π3 −57600π)x4

+(−150π8 +4650π6 −34200π4 +28800π2 −86400)x3

+(15π9 −1875π7 +15300π5 +194400π)x2

+(450π8 −3150π6 −129600π2)x−45π9 +225π7 +21600π3
)

= x2

2700
Q9(x).

(76)

Then we determine the sign of the polynomial Q9(x) for x ∈ (0,c] . Let us look at
the fifth derivative of the polynomial Q9(x) , as the fourth degree polynomial, in the
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following form

Q(5)
9 (x) = (967680π4 −9676800π2)x4 +(−1075200π5 +10752000π3)x3

+(403200π6 −5040000π4 +12096000π2 −14515200)x2

+(−57600π7 +1353600π5 −8640000π3 +8294400π)x

+2400π8 −160800π6 +1540800π4 −2419200π2 +3456000.

(77)

A real numerical factorization of the polynomial Q(5)
9 (x) has been determined via Mat-

lab software, and given with

Q(5)
9 (x) = β (x− x1)(x− x2)(x2 + px+q), (78)

where β = −1245358.656... , x1 = 0.894... , x2 = 3.702... , p = 1.106... , q = 0.521... ,

whereby the inequality p2−4q < 0 is true. The polynomial Q(5)
9 (x) has exactly two

simple real roots with a symbolic radical representation and the corresponding numeri-

cal values x1 and x2 . Therefore, the polynomial Q(5)
9 (x) has no real roots for x∈ (0,c ] .

Since Q(5)
9 (0) < 0 it follows that Q(5)

9 (x) < 0 for x ∈ (0,c ] . Furthermore, the polyno-

mial Q(4)
9 (x) is a monotonically decreasing function for x ∈ (0,c ] and Q(4)

9 (c) > 0, so

it follows that Q(4)
9 (x) > 0 for x∈ (0,c ] . Then, since the polynomial Q

′′′
9 (x) is a mono-

tonically increasing function for x ∈ (0,c ] and Q
′′′
9 (c) < 0 it follows that Q

′′′
9 (x) < 0

for x ∈ (0,c ] . This implies that the polynomial Q
′′
9(x) is a monotonically decreasing

function for x ∈ (0,c ] and since Q
′′
9(c) > 0 it follows that Q

′′
9(x) > 0 for x ∈ (0,c ] .

Hence, the polynomial Q
′
9(x) is a monotonically increasing function for x ∈ (0,c ] and

Q
′
9(c) < 0, so it follows that Q

′
9(x) < 0 for x ∈ (0,c ] . Finally, since the polynomial

Q9(x) is a monotonically decreasing function for x ∈ (0,c ] and Q9(c) > 0, we con-
clude that

Q9(x) > 0 for x ∈ (0,c ] =⇒ Q11(x) > 0 for x ∈ (0,c ]

=⇒ ϕ(x) > 0 for x ∈ (0,c ]

=⇒ f (x) > 0 for x ∈ [1.136,π/2).

(79)

Let us notice that the least positive real root of the downward approximation of
the function ϕ(x) , i.e. of the polynomial Q11(x) , is x∗ = 0.630862 . . . > c = 0.434 . . . .
Elementary calculus gives that the constant (8π4/15− 16π2/3) is the best possible.
The proof of the first inequality is completed.

II We prove the inequality:

xsec2 x− tanx <
(2π4/3)x3 +(256/π2−8π2/3)x5

(π2−4x2)2 (80)

for x ∈ (0,π/2) . The requested inequality is equivalent to the inequality f (x) > 0
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for x ∈ (0,π/2) , where

f (x) =−x(π2−4x2)2+(π2−4x2)2 cosxsinx+
(
(2π4/3)x3+(256/π2−8π2/3)x5)cos2 x

(81)
is a concrete mixed trigonometric polynomial. Let us notice that x = 0 is zero of the
fifth order and x = π/2 is zero of the third order of the function f (x) .

Let us consider two cases:
1) If x ∈ (0,0.858) :
According to the Theorem 1.5. the function f (x) can be written in the following

way:

f (x) = −x(π2 −4x2)2 +
(π2 −4x2)2

2
sin2x+(π4/3)x3 +(128/π2 −4π2/3)x5

+
(
(π4/3)x3 +(128/π2 −4π2/3)x5︸ ︷︷ ︸

(>0)

)
cos2x. (82)

Then, according to the Lemmas 1.1. and 1.2. and the description of the method,
the inequalities are true: siny > T sin,0

k (y) (k = 7) and cosy > T cos,0
k (y) (k = 6) , for

y ∈ (0,
√

(k+3)(k+4)
)
.

For x ∈ (0,0.858) it is valid:

f (x) > −x(π2 −4x2)2 +
(π2 −4x2)2

2
T sin,0

7 (2x)+ (π4/3)x3 +(128/π2 −4π2/3)x5

+
(
(π4/3)x3 +(128/π2 −4π2/3)x5︸ ︷︷ ︸

(>0)

)
T cos,0

6 (2x) = P11(x),
(83)

where P11(x) is the polynomial

P11(x) = 2x5

945π2

(
(56π4 −96π2 −5376)x6 +(−14π6 −372π4 +1008π2 +40320)x4

+(99π6 +756π4 −5040π2 −120960)x2 −252π6 +1260π4 +120960
)

= 2x5

945π2 P6(x).

(84)

Then we determine the sign of the polynomial P6(x) for x ∈ (0,0.858) . By introducing
the substitute z = x2 , we get the third degree polynomial:

P3(z) = (56π4 −96π2 −5376)z3 +(−14π6 −372π4 +1008π2 +40320)z2

+(99π6 +756π4 −5040π2 −120960)z−252π6 +1260π4 +120960.
(85)

A real numerical factorization of the polynomial P3(z) , has been determined via
Matlab software, and given with

P3(z) = α(z− z1)(z2 + pz+q), (86)

where α = −868.572... , z1 = 0.737147... , p = 0.077... , q = 2.226... ; whereby the
inequality p2−4q < 0 is true. The polynomial P3(z) has exactly one simple real root
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with a symbolic radical representation and the corresponding numerical value z1 . Let
us notice that

√
z1 = 0.858573... > 0.858. Since P3(0) > 0 it follows that P3(z) > 0

for z ∈ (0,0.858) . Finally, we conclude that

P6(x) > 0 for x ∈ (0,0.858) =⇒ P11(x) > 0 for x ∈ (0,0.858)

=⇒ f (x) > 0 for x ∈ (0,0.858).
(87)

Let us notice that the least positive real root of the downward approximation of the
function f (x) , i.e. of the polynomial P11(x) , is x∗ =

√
z1 = 0.858573... .

2) If x ∈ [0.858,π/2) , let us define the function

ϕ(x) = f
(
π/2− x

)
= 16x5 −40πx4 +32π2x3 −8π3x2

+(16x4 −32πx3 +16π2x2) sinxcosx

+(1/(3π2))(π −2x)3
(
(96−π4)x2 +(π5 −96π)x+24π2

)
sin2 x.

(88)

Now we prove that f (x) > 0 for x ∈ [0.858,π/2) , which is equivalent to ϕ(x) > 0
for x ∈ (0,c ] , where c = π/2−0.858= π/2−429/500 (c = 0.712 . . .) . The function
ϕ(x) is also a concrete mixed trigonometric polynomial. According to the Theorem
1.5. the function ϕ(x) can be written in the following way:

ϕ(x) = 16x5 −40πx4 +32π2x3 −8π3x2 +(8x4 −16πx3 +8π2x2︸ ︷︷ ︸
(>0)

)sin2x

+(1/(6π2))(π −2x)3
(
(96−π4)x2 +(π5 −96π)x+24π2

)
−(1/(6π2))(π −2x)3

(
(96−π4)x2 +(π5 −96π)x+24π2︸ ︷︷ ︸

(>0)

)
cos2x.

(89)

Then, according to the Lemmas 1.1. and 1.2. and the description of the method, the
inequalities are true: siny > T sin,0

k (y) (k = 7) and cosy < T
cos,0
k (y) (k = 8) , for y ∈(

0,
√

(k+3)(k+4)
)
.

For x ∈ (0,c ] it is valid:

ϕ(x) > 16x5 −40πx4 +32π2x3 −8π3x2 +(8x4 −16πx3 +8π2x2︸ ︷︷ ︸
(>0)

)T sin,0
7 (2x)

+(1/(6π2))(π −2x)3
(
(96−π4)x2 +(π5 −96π)x+24π2

)

−(1/(6π2))(π −2x)3
(
(96−π4)x2 +(π5 −96π)x+24π2︸ ︷︷ ︸

(>0)

)
T

cos,0
8 (2x)

= Q13(x),

(90)
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where Q13(x) is the polynomial

Q13(x) = x3

945π2

(
(−8π4 +768)x10 +(20π5 −1920π)x9

+(−18π6 +112π4 +1728π2 −10752)x8

+(7π7 −280π5 −576π3 +26880π)x7

+(−π8 +252π6 −792π4 −24864π2 +80640)x6

+(−98π7 +2076π5 +9408π3 −201600π)x5

+(14π8 −1890π6 +1176π4 +191520π2 −241920)x4

+(735π7 −5964π5 −80640π3 +604800π)x3

+(−105π8 +5670π6 +15120π4 −574560π2)x2

+(−2205π7 −2520π5 +234360π3)x+315π8 −30240π4
)

= x3

945π2 Q10(x).

(91)

Then we determine the sign of the polynomial Q10(x) for x ∈ (0,c ] . Let us look at
the sixth derivative of the polynomial Q10(x) , as the fourth degree polynomial, in the
following form

Q(6)
10 (x) = (−1209600π4 +116121600)x4 +(1209600π5 −116121600π)x3

+(−362880π6 +2257920π4 +34836480π2 −216760320)x2

+(35280π7 −1411200π5 −2903040π3 +135475200π)x

−720π8 +181440π6 −570240π4 −17902080π2 +58060800.

(92)

A real numerical factorization of the polynomial Q(6)
10 (x) has been determined via Mat-

lab software, and given with

Q(6)
10 (x) = β (x− x1)(x− x2)(x2 + px+q), (93)

where β = −1704436.514... , x1 = 0.610... , x2 = 3.262... , p = 0.731... , q = 1.935... ,

whereby the inequality p2−4q < 0 is true. The polynomial Q(6)
10 (x) has exactly two

simple real roots with a symbolic radical representation and the corresponding numeri-

cal values x1 and x2 . Since Q(6)
10 (0)< 0, it follows that Q(6)

10 (x) < 0 for x < x1 and since

Q(6)
10 (c) > 0, hence it follows that Q(6)

10 (x) > 0 for x ∈ (x1,x2) . Therefore, Q(5)
10 (x) is a

monotonically decreasing function for x < x1 and a monotonically increasing function

for x ∈ (x1,x2) , hence Q(5)
10 (x) reaches the minimum at the point x1 = 0.610... in the

interval (0,c ] . Then, since Q(5)
10 (0)< 0 and Q(5)

10 (c) < 0, it follows that Q(5)
10 (x) < 0 for

x ∈ (0,c ] . Furthermore, since the polynomial Q(4)
10 (x) is a monotonically decreasing

function for x ∈ (0,c ] and Q(4)
10 (c) > 0 it follows that Q(4)

10 (x) > 0 for x ∈ (0,c ] . This
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implies that the polynomial Q
′′′
10(x) is a monotonically increasing function for x∈ (0,c ]

and Q
′′′
10(c) < 0, so it follows that Q

′′′
10(x) < 0 for x ∈ (0,c ] . Hence, the polynomial

Q
′′
10(x) is a monotonically decreasing function for x ∈ (0,c ] and since Q

′′
10(c) > 0 it

follows that Q
′′
10(x) > 0 for x ∈ (0,c ] . Then, since the polynomial Q

′
10(x) is a mono-

tonically increasing function for x ∈ (0,c ] and Q
′
10(c) < 0 it follows that Q

′
10(x) < 0

for x ∈ (0,c ] . Finally, since the polynomial Q10(x) is a monotonically decreasing
function for x ∈ (0,c ] and Q10(c) > 0, we conclude that

Q10(x) > 0 for x ∈ (0,c ] =⇒ Q13(x) > 0 for x ∈ (0,c ]
=⇒ ϕ(x) > 0 for x ∈ (0,c ]
=⇒ f (x) > 0 for x ∈ [0.858,π/2).

(94)

Let us notice that the least positive real root of the downward approximation of
the function ϕ(x) , i.e. of the polynomial Q13(x) , is x∗ = 0.910490 . . . > c = 0.712 . . . .
Elementary calculus gives that the constant (256/π2−8π2/3) is the best possible. The
proof of the second inequality is completed. �

4. Conclusion

The previous method can be applied to numerous trigonometric inequalities which
correspond to univariate mixed trigonometric polynomial functions. By using this
method new results can be obtained and the existing ones can be improved from the
articles [1]–[2], [4]–[9], [13]–[19], [21], [26]–[45] and the books [24], [25]. Concrete
results of the presented method for proving some inequalities, have been obtained in
this article through the applications, as well as in the articles [3] and [23].
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