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Abstract. In this paper, we have solved two open problems, and as consequence some interesting
integral inequalities are obtained.

1. Introduction

More recently, Liu et al. (see [1]) obtained the following theorem.

THEOREM 1.1. Let f (x) � 0 be a continuous function on [a,b] satisfying

∫ b

x
f min{1,β}(t)dt �

∫ b

x
(t −a)min{1,β}dt, ∀x ∈ [a,b] (1.1)

Then the inequality

∫ b

a
f α+β (x)dx �

∫ b

a
(x−a)α f β (x)dx (1.2)

holds for every positive real number α > 0 and β > 0.

THEOREM 1.2. Let f (x),g(x),h(x) > 0 be continuous functions on [a,b] with

f (x) � h(x) for all x and such that
f (x)
h(x)

is decreasing and f (x),g(x) are increasing.

Assume that ϕ(x) is a convex function with ϕ(0) = 0.
Then the inequality

∫ b
a f (x)dx∫ b
a h(x)dx

�
∫ b
a ϕ( f (x))g(x)dx∫ b
a ϕ(h(x))g(x)dx

(1.3)

holds.
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Liu et al. (see [2]) presented the following two open problems.

Open Problem 1. Under what conditions does the inequality

∫ b

a
f α+β (x)dx �

(∫ b

a
(x−a)α f β (x)dx

)λ
(1.4)

hold for α,β and λ ?

Open Problem 2. Assume that ϕ(x) is a convex function with ϕ(0) = 0. Under
what conditions does the inequality

∫ b
a f (x)dx∫ b
a h(x)dx

�

(∫ b
a ϕ( f (x))g(x)dx

)δ

(∫ b
a ϕ(h(x))g(x)dx

)λ (1.5)

hold for δ and λ ?

2. Main results

THEOREM 2.1. Let f (x) � 0 be a continuous function on [a,b] satisfying

∫ b

x
(t−a)min{1,β}dt �

∫ b

x
f min{1,β}(t)dt, ∀x ∈ [a,b] (2.1)

Then the inequality

∫ b

a
f α+β (x)dx �

(∫ b

a
(x−a)α f β (x)dx

)λ
, ∀λ � 1 (2.2)

holds under each of the following conditions:

1. For all β > 1 and α > 0 such that

(b−a)α+2

α +2
� 1

2. For β ∈ (0,1] and α > 0 such that

(b−a)α+β+1

α + β +1
� 1

Proof. If λ = 1 then (2.2) holds for every positive real number α > 0 and β > 0
by theorem 1.1. Let λ > 1.

Then(∫ b

a
(x−a)α f β (x)dx

)λ
=
(∫ b

a
(x−a)α f β (x)dx

)
·
(∫ b

a
(x−a)α f β (x)dx

)λ−1
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=⇒
(∫ b

a
(x−a)α f β (x)dx

)λ
�
∫ b

a
f α+β (x)dx ⇐⇒

(∫ b

a
(x−a)α f β (x)dx

)λ−1

� 1

=⇒
(∫ b

a
(x−a)α f β (x)dx

)λ−1

� 1 ⇐⇒ 0 �
∫ b

a
(x−a)α f β (x)dx � 1. (2.3)

By using integration by parts, we obtain the following relation

∫ b

a
(x−a)α f β (x)dx = α

∫ b

a
(x−a)α−1

(∫ b

x
f β (t)dt

)
dx (2.4)

But, by the hypothesis of theorem 2.1

∫ b

x
(t −a)min{1,β}dt �

∫ b

x
f min{1,β}(t)dt, ∀x ∈ [a,b]

We have the following two cases:
(1) For all β > 1 and α > 0 such that

(b−a)α+2

α +2
� 1

by simple calculations inequality (2.3) follows.
(2) For β ∈ (0,1] and α > 0 such that

(b−a)α+β+1

α + β +1
� 1

by simple calculations inequality (2.3) holds. �

THEOREM 2.2. Let f (x),g(x),h(x) > 0 be continuous functions on [a,b] with

f (x) � h(x) for all x and such that
f (x)
h(x)

is decreasing and f (x),g(x) are increasing.

Assume that ϕ(x) is positive and convex function with ϕ(0) = 0.
Then the inequality

∫ b
a f (x)dx∫ b
a h(x)dx

�

(∫ b
a ϕ( f (x))g(x)dx

)δ

(∫ b
a ϕ(h(x))g(x)dx

)λ (2.5)

holds under each of the following conditions:

1. λ = δ = 0 and f (x) = h(x) , for all x ∈ [a,b];

2. λ = δ ∈ [1,+∞) , for all x ∈ [a,b];

3. ϕ( f (a)) � 1
(b−a)g(a)

for 1 � δ < λ ;
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4. ϕ( f (b)) � 1
(b−a)g(b)

for 1 � λ < δ .

Proof.

1. If λ = δ = 0 and f (x) = h(x) , for all x ∈ [a,b] then inequality (2.5) turns into
an equality.

2. If λ = δ = 1 inequality (2.5) coincides with theorem 1.2.

Now let λ = δ > 1 and denote by d =
∫ b
a f (x)dx∫ b
a h(x)dx

. Since 0 < f (x) � h(x), for

all x ∈ [a,b] then d ∈ [0,1] . By theorem 1.2 and the fact that ϕ(x) is positive
and convex function with ϕ(0) = 0, we have the following inequalities

(∫ b
a ϕ( f (x))g(x)dx∫ b
a ϕ(h(x))g(x)dx

)δ

�
(∫ b

a f (x)dx∫ b
a h(x)dx

)δ

�
∫ b
a f (x)dx∫ b
a h(x)dx

(2.6)

since d ∈ [0,1], for all δ > 1. So inequality (2.5) follows.

3. For 1 � δ < λ there exists a real positive number r such that λ = δ + r . Using
case (2) for λ = δ ∈ [1,+∞) we have

(∫ b
a ϕ( f (x))g(x)dx

)δ

(∫ b
a ϕ(h(x))g(x)dx

)λ =

(∫ b
a ϕ( f (x))g(x)dx∫ b
a ϕ(h(x))g(x)dx

)δ

· 1(∫ b
a ϕ(h(x))g(x)dx

)r

�
(∫ b

a f (x)dx∫ b
a h(x)dx

)
· 1(∫ b

a ϕ(h(x))g(x)dx
)r �

∫ b
a f (x)dx∫ b
a h(x)dx

The last inequality above follows by the fact that
(∫ b

a ϕ(h(x))g(x)dx
)r

� 1 for

r > 0, since we have assumed that ϕ( f (a)) � 1
(b−a)g(a)

. So inequality (2.5)

holds.

4. For 1 � λ < δ there exists a real positive number r1 such that δ = λ +r1 . Using
case (2) for λ = δ ∈ [1,+∞) we have

(∫ b
a ϕ( f (x))g(x)dx

)δ

(∫ b
a ϕ(h(x))g(x)dx

)λ =

(∫ b
a ϕ( f (x))g(x)dx∫ b
a ϕ(h(x))g(x)dx

)λ

·
(∫ b

a
ϕ( f (x))g(x)dx

)r1

�
(∫ b

a f (x)dx∫ b
a h(x)dx

)
·
(∫ b

a
ϕ( f (x))g(x)dx

)r1

�
∫ b
a f (x)dx∫ b
a h(x)dx
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In the last inequality we have used the fact that
(∫ b

a ϕ( f (x))g(x)dx
)r1 � 1 for

r1 > 0, since we have assumed that ϕ( f (b)) � 1
(b−a)g(b)

. So inequality (2.5)

follows. �

3. Applications

COROLLARY 3.1. Let f (x) � 0 be a continuous function on [0,1] satisfying∫ 1

x
tmin{1,β}dt �

∫ 1

x
f min{1,β}(t)dt, ∀x ∈ [0,1] (3.1)

Then the inequality
∫ 1

0
f α+β (x)dx �

(∫ 1

0
xα f β (x)dx

)λ
, ∀λ � 1 (3.2)

holds for α,β > 0.

COROLLARY 3.2. Let f (x) � 0 be a continuous function on [a,b] satisfying∫ b

x
(t −a)min{1,α}dt �

∫ b

x
f min{1,α}(t)dt, ∀x ∈ [a,b] (3.3)

Then the inequality

∫ b

a
f 2α (x)dx �

(∫ b

a
((x−a) · f (x))α dx

)λ
, ∀λ � 1 (3.4)

holds under each of the following conditions:

1. For α > 1 such that
(b−a)α+2

α +2
� 1

2. For α ∈ (0,1] such that
(b−a)2α+1

2α +1
� 1

Proof. Let α = β and applying theorem 2.1. �

COROLLARY 3.3. Let f (x),g(x),h(x) > 0 be continuous functions on [a,b] with

f (x) � h(x) for all x and such that
f (x)
h(x)

is decreasing and f (x),g(x) are increasing.

Assume that ϕ(x) is positive and convex function with ϕ(0) = 0. Then the inequality

∫ b
a f (x)dx∫ b
a h(x)dx

�

(∫ b
a ϕ( f (x))gp(x)dx

)δ

(∫ b
a ϕ(h(x))gp(x)dx

)λ , ∀p � 0 (3.5)

holds under each of the following conditions:
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1. λ = δ = 0 and f (x) = h(x) , for all x ∈ [a,b];

2. λ = δ ∈ [1,+∞) , for all x ∈ [a,b];

3. ϕ( f (a)) � 1
(b−a)gp(a)

for 1 � δ < λ ;

4. ϕ( f (b)) � 1
(b−a)gp(b)

for 1 � λ < δ .

Proof. Let gp(x) = gp(x), for all x ∈ [a,b] and for all p � 0. Since g(x) is in-
creasing function and g(x) > 0, then gp(x) are increasing functions for all p � 0. By
applying theorem 2.2, inequality (3.5) follows. �

COROLLARY 3.4. Let f (x),g(x),h(x) > 0 be continuous functions on [a,b] with

f (x) � h(x) for all x and such that
f (x)
h(x)

is decreasing and f (x),g(x) are increasing.

Then the inequality

∫ b
a f (x)dx∫ b
a h(x)dx

�

(∫ b
a f k(x)gp(x)dx

)δ

(∫ b
a hk(x)gp(x)dx

)λ , ∀k � 1 and ∀p � 0 (3.6)

holds under each of the following conditions:

1. λ = δ = 0 and f (x) = h(x) , for all x ∈ [a,b];

2. λ = δ ∈ [1,+∞) , for all x ∈ [a,b];

3. f k(a) � 1
(b−a)gp(a)

for 1 � δ < λ ;

4. f k(b) � 1
(b−a)gp(b)

for 1 � λ < δ .

Proof. Let ϕ(x) = xk where k � 1. ϕ is a convex function and ϕ(0) = 0. By
corollary 3.3, inequality (3.6) follows. �
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