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ON D’AURIZIO’S TRIGONOMETRIC INEQUALITY

JÓZSEF SÁNDOR

(Communicated by J. Pečarić)

Abstract. We offer new proof of the recent sharp trigonometric inequality cosx/cos(x/2) �
1− 4x2/π2 for x ∈ (0,π/2), discovered by Jacopo D’aurizio [1]. The converse inequality, as
well as sharp analogous inequalities are pointed out, too.

1. Introduction

By studying refinements of the famous Shafer-Fink inequality for the arctangent
function, J. D’aurizio [1] recently proved the following new trigonometric inequality
(see the Proof of Theorem 4 of [1])

cosx
cos x

2
� 1− 4x2

π2 , x ∈
[
0,

π
2

]
(1)

D’aurizio’s proof is based on infinite product expansions, as well as inequalities
on series and ζ (2n), where ζ is the Riemann’s zeta function.

Our aim will be to offer a new proof of (1), based on trigonometric inequalities,
using an auxiliary function. The method will provide also the following converse to
(1):

cosx
cos x

2
� 1− 3

8
x2 (2)

2. Main results

In fact, (1) and (2) are consequences to the following:

THEOREM 1.

3
8

<

1− cosx
cos x

2

x2 <
4

π2 , (3)

for any x ∈ (0,π/2)
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Proof. Let us consider the application

f (x) =
1− cosx

cos x
2

x2 , x ∈ (0,π/2) (4)

By letting x = 2t, for t ∈ (0,π/4), and by using cos2t = 2cos2 t−1, we get

4 f (x) = g(t) =
cost −2cos2 t +1

t2 cost
, t ∈ (0,π/4) (5)

A simple computation shows that one has

t3 cos2 t ·g′(t) = 2t sin t · cos2 t +4cos3 t−2cos2 t−2cost = h(t)

We will show that h(t) > 0 for any t ∈ (0,π/4), or equivalently:

(t sin t)(2cos2 t +1) > 2cost · (1− cost) · (2cost +1) (6)

As sin t = 2sin
t
2

cos
t
2
, and 1− cost = 2sin2 t

2
, relation (6) may be written as

sin(t/2)
(t/2)

< (cos(t/2)) ·A(t), (7)

where A(t) =
2cos2 t +1

2cos2 t + cost
.

First we remark that, it is immediate that

A(t) >
3

2+ cost
, (8)

as this becomes equivalent with cos2 t − 2cost + 1 > 0, or (cos t − 1)2 > 0. On the
other hand, by the famous Cusa–Huygens inequality (see e.g. [2], [3])

sinz
z

<
cosz+2

3
, z ∈ (0,π/2) (9)

the validity of (7) will be a consequence of the relation

cos
t
2

+2

3
<
(
cos

t
2

)
· 3
2+ cost

(10)

By letting cos
t
2

= u, inequality (10) becomes, after certain elementary transfor-

mations:
P(u) = u3 +2u2−4u+1 < 0 (11)
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As P(u) = (u−1)(u2 +3u−1) and u−1 < 0, it is sufficient to remark that u2 +

3u− 1 > 0. This holds clearly true, as u = cos
t
2

>
1√
2

for 0 <
t
2

<
π
8

<
π
4

, and so

u2 +3u >
3
√

2+1
2

> 1.

Therefore, relation (7) follows, and this means that (6) is also true, implying h(t)>
0. Thus, the function g(t) will be strictly increasing, and as x = 2t, clearly the function
f (x) will have this property, too.

As lim
x→π/2

f (x) =
4

π2 and lim
x→0

f (x) =
3
8
, Theorem 1 follows. �

REMARK 1. The proof shows that, there is equality in (1) only for x = 0 and
x = π/2; and in (2) only for x = 0. Clearly, both inequalities are best possible.

The following analogue for the case of sin functions holds true:

THEOREM 2.

4
π2 (2−

√
2) <

2− sinx

sin
x
2

x2 <
1
4
, (12)

for any x ∈ (0,π/2).

Proof. As sinx = 2sin
x
2

cos
x
2
, we can write

2− sinx

sin
x
2

x2 = 2

⎛
⎝1− cos

x
2

x2

⎞
⎠=

1
2
·q(t), (13)

where

q(t) =
1− cost

t2
, (14)

and t =
x
2
. In our recent paper [3] it is proved that q(p) of (14) is a strictly decreasing

(and concave) function of p, for any p ∈ (0,π/2). As x ∈ (0,π/2), we get lim
t→0

q(t) >

q(t) > lim
t→π/4

q(t), giving the double inequality

16
π2 ·

(
1−

√
2

2

)
< q(t) <

1
2
, (15)

which by (13) immediately implies (12). �
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