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REFINEMENTS OF THE CAUCHY–SCHWARZ

INEQUALITY FOR τ –MEASURABLE OPERATORS

YAZHOU HAN

(Communicated by Y. Seo)

Abstract. In this paper, we present the convexity of certain functions in noncommutative sym-
metric space generalizing the previous result of Hiai and Zhan. As an application, we gave
some refinements of the Cauchy-Schwarz inequality for τ -measurable operators by using some
integration techniques.

1. Introduction

Let Mn be the space of n× n complex matrices. A norm ‖ · ‖ on Mn is called
unitarily invariant if ‖UAV‖ = ‖A‖ for all A ∈ Mn and all unitary matrices U,V ∈ Mn.
For matrices A,B,X in Mn with A,B positive semidefinite and X arbitrary, Bhatia and
Davis [1] gave the matrix Cauchy-Schwarz inequality

‖|A∗XB|r‖2 � ‖|AA∗X |r‖ · ‖|XBB∗|r‖ for all r > 0.

In 2002, for the above matrices A,B and X , Hiai and Zhan [10] proved that the function
f (t) = ‖|AtXB1−t|r‖ · ‖|A1−tXBt |r‖ is convex on [0,1] for each r > 0. In particular,
they gave a Cauchy-Schwarz type inequality as follows

‖|A 1
2 XB

1
2 |r‖2 � ‖|AsXB1−s|r‖‖|A1−sXBs|r‖ � ‖|AX |r‖‖|XB|r‖, (1.1)

where A,B � 0 and X ∈ Mn and s ∈ [0,1] , r > 0. Among other things, Bakherad [2]
shows a further refinement of the Cauchy-Schwarz inequality as follows

‖|A 1
2 XB

1
2 |r‖2 � ‖|AtXB1−s|r‖‖|A1−tXBs|r‖

� max{‖|AX |r‖‖|XB|r‖,‖|AXB|r‖‖|X |r‖}, (1.2)

where s, t ∈ [0,1] and r > 0.
Let E(M ) be the noncommutative symmetric space of τ -measurable operators

affiliated with a semifinite von Neumann algebra equippedwith a normal faithful semifi-
nite trace τ . In 2009, Zhou, Wang and Wu [16] gave the Cauchy-Schwarz inequality
for τ -measurable operators

‖|x∗zy|r‖2
E(M ) � ‖|xx∗z|r‖E(M ) · ‖|zyy∗|r‖E(M ) for all r > 0, (1.3)
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where x,y ∈ L0(M ) and z ∈ M . We use the Cauchy-Schwarz inequality for τ -
measurable operator and the method of Hiai and Zhan to obtain generalizations of the
convexity of

ϕ(t) = ‖|xt zy1−t |r‖E(M ) · ‖|x1−tzyt |r‖E(M ) for t ∈ [0,1],

where x , y∈ E(M )(r)+ , z ∈M and r > 0. As an application, we show a generalization
of inequality (1.1) for the norm on noncommutative symmetric space. Finally, we show
that inequality (1.2) holds for the norm on noncommutative symmetric space.

2. Preliminaries

Let L0 be the set of all Lebesgue measurable functions on (0,∞) . For f ∈ L0 we
define its non-increasing rearrangement as

f ∗(t) = inf{s > 0 : d f (s) = m{r : | f (r)| > s} � t}, t > 0,

where m denotes the Lebesgue measure on (0,∞) . By a symmetric Banach space on
(0,∞) we mean a Banach lattice E of measurable functions on (0,∞) satisfying the
following properties: (a) E contains a simple function; (b) if f ∈ L0 and g ∈ E with
f ∗ = g∗ , then f ∈ E and ‖ f‖E = ‖g‖E . It is called fully symmetric if, in addition,
for f ∈ L0 and g ∈ E with

∫ t
0 f ∗(s)ds �

∫ t
0 g∗(s)ds we have f ∈ E and ‖ f‖E � ‖g‖E .

Let E be a symmetric Banach space on (0,∞) . For 0 < r < ∞ , E(r) will denote the
quasi-Banach spaces defined by

E(r) := {g ∈ L0 : |g|r ∈ E} and ‖g‖E(r) = ‖|g|r‖
1
r
E .

As is shown in [11, pp. 53], if E is a symmetric Banach space and r � 1, then E(r) is
a symmetric Banach space. The symmetric Banach space E is called minimal if and
only if L1 ∩L∞ is dense in E . Further, if E is minimal, then f ∗(t) → 0 as t → 0 for
each f ∈ E . We say that E has order continuous norm if for every net { fi}i∈I in E
such that fi ↓ 0 we have ‖ fn‖E ↓ 0. Moreover, a symmetric Banach space has order
continuous norm if and only if it is separable, which is also equivalent to the statement
E ′ = E∗ , where E ′ is the köthe dual space of E given by

E ′ = { f ∈ L0 : sup{
∫ ∞

0
| f (t)g(t)|dt : ‖g‖E � 1} < ∞}.

In particular, a symmetric Banach space which has order continuous norm is automat-
ically fully symmetric. Then there exists a family W of nonincreasing functions on
(0,∞) such that

‖ f‖E = sup{
∫ ∞

0
f ∗(t)ω(t)dt : ω ∈W}.

Consequently,

‖ f‖r
E(r) = ‖| f |r‖E = sup{

∫ ∞

0
f ∗(t)rω(t)dt : ω ∈W}. (2.1)
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We refer to [5, 11] for these spaces.
Unless stated otherwise, M will always denote a semifinite von Neumann algebra

acting on the Hilbert space H , with a normal faithful semifinite trace τ . We refer to
[6, 12] for noncommutative integration. We denote the identity of M by 1 and let P
denote the projection lattice of M . For all p,q ∈ P , the supremum p

∨
q is given

by the orthogonal projection onto ran(p)∪ ran(q). A closed densely defined linear
operator x in H with domain D(x) ⊆ H is said to be affiliated with M if u∗xu = x
for all unitary operators u which belong to the commutant M ′ of M . If x is affiliated
with M , we define its distribution function by λs(x) = τ(e⊥s (|x|)) and x will be called
τ -measurable if and only if λs(x) < ∞ for some s > 0, where e⊥s (|x|) = e(s,∞)(|x|)
is the spectral projection of |x| associated with the interval (s,∞) . The decreasing
rearrangement of x is defined by μt(x) = inf{s > 0 : λs(x) � t} . We will denote simply
by λ (x) and μ(x) the functions t → λt(x) and t → μt(x) , respectively. See [8] for
basic properties and detailed information on decreasing rearrangement of x .

The set of all τ -measurable operators will be denoted by L0(M ) . The set L0(M )
is a ∗ -algebra with sum and product being the respective closures of the algebraic
sum and product. The measure topology in L0(M ) is the vector space topology de-
fined via the neighbourhood base {V (ε,δ ) : ε,δ > 0} , where V (ε,δ ) = {x ∈ L0(M ) :
τ(e(ε,∞)(|x|)) � δ} and e(ε,∞)(|x|) is the spectral projection of |x| associated with the
interval (ε,∞) . With respect to the measure topology, L0(M ) is a complete topological
∗ -algebra. As usual, we denote by ‖ · ‖ (= ‖ · ‖∞ ) the usual operator norm.

Let E be a symmetric Banach space on (0,∞) . We define

E(M ) = {x ∈ L0(M ) : μ(x) ∈ E} and ‖x‖E(M ) = ‖μ(x)‖E .

Then (E(M ),‖ · ‖E(M )) is a noncommutative symmetric Banach space (see, [6]). If
E = Lp , then E(M ) is the usual noncommutative Lp spaces Lp(M ) (see, [12]). For
0 < r < ∞ , we define

E(M )(r) = {x ∈ L0(M ) : |x|r ∈ E(M )} and ‖x‖E(M )(r) = ‖|x|r‖
1
r
E(M ).

As is shown in Proposition 3.1 of [7], if E is a symmetric Banach space, then E(r)(M )=
E(M )(r), where E(r)(M ) = {x∈ L0(M ) : μ(x) ∈ E(r)} and ‖x‖E(r)(M ) = ‖μ(x)‖E(r) .
Further details may be found in [6, 7].

For every x ∈ L0(M ) , there is a unique polar decomposition x = u|x| where |x| ∈
L0(M )+ ( the positive part of L0(M )) and u is a partial isometry operator. Let r(x) =
u∗u and l(x) = uu∗ . We call r(x) and l(x) the right and left supports of x , respectively.
Note that l(x) (resp. r(x)) is the least projection e of B(H ) such that ex = x (resp.
xe = x ). If x is self-adjoint, then r(x) = l(x) . This common projection is then said to
be the support of x and denoted by s(x) . Set S(M )+ = {x ∈ M+ : τ(s(x)) < ∞} and
let S(M ) be the linear span of S(M )+ .

Note the completion of (S(M ),‖ ·‖p) is Lp(M ) . If E is minimal, then S(M ) ⊆
L1(M )∩M ⊆ E(M ) and μt(x) → 0 as t → ∞ for each x ∈ E(M ) . Given x,y ∈
L0(M ) and 0 < α,q < ∞ , from Theorem 4.2 of [8], we have

∫ t

0
μs(xy)αqds �

∫ t

0
μs(y)αqμs(x)αqds,t > 0.
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So the well-known rearrangement inequality of Hardy (see, Proposition 3.6 of Chapter
II in [5]) implies that

∫ t

0
μs(xy)αqω(s)ds �

∫ t

0
μs(y)αqμs(x)αqω(s)ds, t > 0. (2.2)

holds for all nonincreasing function ω(s) . Therefore, inequality (2.2), (2.1) and the
usual Hölder inequality imply that

‖xy‖E(M )(r) � ‖x‖E(M )(p)‖y‖E(M )(q), x ∈ E(M )(p), y ∈ E(M )(q) (2.3)

holds for 0 < p,q,r < ∞ and 1
p + 1

q = 1
r .

In what follows, E will always denotes a minimal symmetric Banach space with
order continuous norm.

3. Main results

The following lemma, which is a refinement of inequality (2.3) and (1.3), plays a
central role in the proof of the convexity of function

ϕ(t) = ‖|xt zy1−t |r‖E(M ) · ‖|x1−tzyt |r‖E(M ) for t ∈ [0,1],

where x , y ∈ E(M )(r)+ , z ∈ M and r > 0.

LEMMA 3.1. Let s,r, p,q > 0 with 1
p + 1

q = 1
s . If z ∈ M , x ∈ E(M )(pr) , y ∈

E(M )(qr) , then

‖|x∗zy|r‖E(M )(s) � ‖|xx∗z|r‖
1
2

E(M )(
p
2 )
· ‖|zyy∗|r‖

1
2

E(M )(
q
2 )

.

Proof. First we assume that τ(1) < ∞ . For x,y,z ∈ M , we have

y∗z∗xx∗zy, zyy∗(xx∗z)∗ ∈ M ⊆ L1(M ).

By Lemma 2.5(ii) and (iv) in [8] and Lemma 2 in [4], we obtain

μs(|x∗zy|r)s = μs(|x∗zy|2) rs
2

= μs(zyy∗(xx∗z)∗)
rs
2

= μs(|zyy∗(xx∗z)∗|) rs
2

= μs(|zyy∗(xx∗z)∗| r
2 )s,
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and so ‖|x∗zy|r‖E(M )(s) = ‖|zyy∗(xx∗z)∗| r
2 ‖E(M )(s) . Since 1

p + 1
q = 1

s , then 1
rp
2

+ 1
rq
2

=
1
rs
2

. Hence, by Lemma 2.5(ii) and (iv) in [8] and inequality (2.3), we have

‖|zyy∗(xx∗z)∗| r
2 ‖E(M )(s) = ‖|zyy∗(xx∗z)∗| rs

2 ‖
1
s
E(M )

= ‖zyy∗(xx∗z)∗‖
r
2

E(M )(
rs
2 )

� (‖zyy∗‖
E(M )(

rq
2 ) · ‖(xx∗z)∗‖E(M )(

rp
2 ) )

r
2

= (‖|zyy∗| rq
2 ‖

2
rq

E(M ) · ‖|(xx∗z)∗|
rp
2 ‖

2
rp

E(M ))
r
2

= ‖|zyy∗| rq
2 ‖

1
q

E(M ) · ‖|xx∗z|
rp
2 ‖

1
p

E(M )

= ‖|zyy∗|r‖
1
2

E(M )(
q
2 )
· ‖|xx∗z|r‖

1
2

E(M )(
p
2 )

.

For the general case, namely, for any x∈ E(M )(pr) and y∈ E(M )(qr) , there exist
u1,u2 ∈ M such that x = u1|x| and y = u2|y| are the polar decomposition of x and y ,
respectively. We write xn = u1|x|e[0,n](|x|) , yn = u2|y|e[0,n](|y|) , n = 1,2 · · · , where
e[0,n](|x|) and e[0,n](|y|) are the spectral projection of |x| and |y| associated with the
interval [0,n] , respectively. According to Lemma 2.6 in [8], we obtain

μt(x− xn) = μt(xe(n,∞)(|x|)) � μt(x)χ[0,τ(e(n,∞)(|x|))].

Then xn , yn ∈ M and

‖x− xn‖E(M )(pr) = ‖xe(n,∞)(|x|)‖E(M )(pr) � ‖μ(x)prχ[0,τ(e(n,∞)(|x|))]‖
1
pr
E .

Since τ(e(n,∞)(x)) decreases to zero as n → ∞ (cf, Proposition 21 of Chapter I in [14])

and E has order continuous norm, we obtain xn → x in E(M )(pr) . Similarly, yn → y
in E(M )(qr) . Moreover,

‖|x∗nzyn|r‖E(M )(s) � ‖|xnx
∗
nz|

pr
2 ‖

1
p

E(M ) · ‖|zyny
∗
n|

qr
2 ‖

1
q

E(M ).

Hence,

‖|x∗zy|r‖E(M )(s) � ‖|xx∗z| pr
2 ‖

1
p

E(M ) · ‖|zyy∗|
qr
2 ‖

1
q

E(M ).

In the general case when τ is semifinite, for any x∈ E(M )(pr) and y∈E(M )(qr) ,
there exist u1,u2 ∈ M such that x = u1|x| , y = u2|y| are the polar decomposition of x
and y , respectively. We put

xn = u1|x|e( 1
n ,∞)(|x|), yn = u2|y|e( 1

n ,∞)(|y|), n = 1,2 · · · ,

where e( 1
n ,∞)(|x|) and e( 1

n ,∞)(|y|) are the spectral projection of |x| and |y| associated

with the interval ( 1
n ,∞) , respectively. Then xn ∈ E(PnMPn)(pr) , yn ∈ E(PnMPn)(qr) ,
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where Pn = e( 1
n ,∞)(|x|)

∨
e( 1

n ,∞)(|y|) . Since E is minimal, then limt→∞ μt(|x|pr) =
limt→∞ μt(|y|qr) = 0. According to Proposition 3.2 in [8], we obtain τ(e( 1

n ,∞)(|x|)) < ∞
and τ(e( 1

n ,∞)(|y|)) < ∞ for any n ∈ N+ . Hence,

τ(Pn) � τ(e( 1
n ,∞)(|x|))+ τ(e( 1

n ,∞)(|y|)) < ∞.

Thus, PnMPn is finite and so

‖|x∗nzyn|r‖E(s)(M ) � ‖|xnx
∗
nz|

pr
2 ‖

1
p

E(M ) · ‖|zyny
∗
n|

qr
2 ‖

1
q

E(M ).

Since E has order continuous norm and

μt(|x|e[0, 1
n+1 ](|x|)) � μt(|x|e[0, 1

n ](|x|)) � 1
n
, n = 1,2, · · · ,

by a simple computationwe derive xn → x in E(M )(pr) . Similarly, yn → y in E(M )(qr) .
Thus,

‖|x∗zy|r‖E(M )(s) � ‖|xx∗z|r‖
1
2

E(M )(
p
2 )
· ‖|zyy∗|r‖

1
2

E(M )(
q
2 )

. �

REMARK 3.2. It is clear that E(M )(1) = E(M ) . If we replace s, p,q by 1,2,2,
respectively, in Lemma 3.1, then we obtain the Cauchy-Schwarz inequality

‖|x∗zy|r‖2
E(M ) � ‖|xx∗z|r‖E(M ) · ‖|zyy∗|r‖E(M ) for all r > 0.

THEOREM 3.3. Let x , y ∈ E(M )(r)+ , z ∈ M and r > 0 . Then the function

ϕ(t) = ‖|xtzy1−t |r‖E(M ) · ‖|x1−t zyt |r‖E(M )

is convex on the interval [0,1] and attains its minimum at t = 1
2 . Consequently, it is

decreasing on [0, 1
2 ] and increasing on [ 1

2 ,1] .

Proof. Let x , y ∈ E(M )(r)+ . By Lemma 2.5(iv) of [8], we have μ(x)r = μ(xr) ,
μ(y)r = μ(yr), which means that μ(x),μ(y) ∈ E(r) . Therefore, Lemma 2.5 (iv) and
(vi) in [8] and inequality (2.3) imply that

‖|xtzy1−t |r‖
1
r
E(M ) = ‖xtzy1−t‖E(M )(r)

� ‖xt z‖
E(M )(

r
t )‖y1−t‖

E(M )(
r

1−t )

� ‖z‖‖μ(x)r‖
t
r
E‖μ(y)r‖

1−t
r

E

= ‖z‖‖μ(x)‖t
E(r)‖μ(y)‖1−t

E(r) .

Thus, x , y ∈ E(M )(r)+ imply that |xt zy1−t |r ∈ E(M ) . Similarly, |x1−t zyt |r ∈ E(M ) .
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First we assume that τ is finite and x , y ∈ M+ . Since ϕ is continuous and
symmetric with respect to t = 1

2 , all the conclusions will follow after we show that

ϕ(t) � 1
2
{ϕ(t + s)+ ϕ(t− s)}, t± s ∈ [0,1].

By Lemma 3.1 (or, Theorem 3 of [16]), we have

‖|xtzy1−t |r‖E(M ) = ‖|xs(xt−szy1−t−s)ys|r‖E(M )

� {‖|xt+szy1−(t+s)|r‖E(M ) · ‖|xt−szy1−(t−s)|r‖E(M )}
1
2

and

‖|x1−t zyt |r‖E(M ) = ‖|xs(x1−t−szyt−s)ys|r‖E(M )

� {‖|x1−(t−s)zyt−s|r‖E(M ) · ‖|x1−(t+s)zyt+s|r‖E(M )}
1
2 .

Multiplying the above two inequalities we obtain

ϕ(t) � 1
2
{ϕ(t + s)+ ϕ(t− s)}, t± s ∈ [0,1].

For the general case, for any x , y ∈ E(M )(r)+ , we write xn = xe[0,n](x) and yn =
ye[0,n](y) ∈ M+ , n = 1,2 · · · . According to Lemma 2.6 in [8], we obtain

μt(x− xn) = μt(xe(n,∞)(|x|)) � μt(x)χ[0,τ(e(n,∞)(|x|))].

Hence,

‖x− xn‖E(M )(r) = ‖xe(n,∞)(x)‖E(M )(r) = ‖μ(x)rχ[0,τ(e(n,∞)(x))]‖
1
r
E .

Since τ(e(n,∞)(x)) decreases to zero as n → ∞ (cf, Proposition 21 of Chapter I in

[14]) and E has order continuous norm we infer that xn → x in E(M )(r) as n →
∞ . Similarly, yn → y in E(M )(r) . It follows from the above case that ϕn(t) =
‖|xt

nzy
1−t
n |r‖E(M ) · ‖|x1−t

n zyt
n|r‖E(M ) is convex for all t ∈ [0,1] and attains its minimum

at t = 1
2 . On the other hand, by inequality (2.3) and the fact E(M )(r) is a quasi-Banach

space, there exists some constant C > 0 such that

‖xt
nzy

1−t
n − xtzy1−t‖E(M )(r) = ‖xt

nzy
1−t
n − xtzy1−t

n + xtzy1−t
n − xtzy1−t‖E(M )(r)

� C(‖(xt
n− xt)zy1−t

n ‖E(M )(r)

+‖xtz(y1−t
n − y1−t)‖E(M )(r) )

� C‖z‖(‖xt − xt
n‖E(M )(

r
t )‖y1−t

n ‖
E(M )(

r
1−t )

+‖xt‖
E(M )(

r
t )‖y1−t − y1−t

n ‖
E(M )(

r
1−t ))

� C‖z‖(‖μ(x)rχ[0,τ(e(n,∞)(x))]‖
t
r
E‖yr

n‖
1−t
r

E(M )

+‖xr‖
t
r
E‖μ(y)rχ[0,τ(e(n,∞)(y))]‖

1−t
r

E(M )).
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This implies that xt
nzy

1−t
n → xt zy1−t in E(M )(r) as n → ∞ . Similarly, x1−t

n zyt
n →

x1−t zyt in E(M )(r) as n→ ∞ , and so ϕn(t)→ ϕ(t),n → ∞ . Therefore, ϕ(t) is convex
on [0,1] and attains its minimum at t = 1

2 .

In the general case when τ is semifinite, for x , y ∈ E(M )(r)+ , we write xn =
xe( 1

n ,∞)(x) and yn = xe( 1
n ,∞)(y) , n = 1,2 · · · . Then xn , yn ∈ E(PnMPn)

(r)
+ , where

Pn = e( 1
n ,∞)(x)

∨
e( 1

n ,∞)(y) , n = 1,2 · · · . Since E is minimal, then limt→∞ μt(|x|r) =
limt→∞ μt(|y|r) = 0. According to Proposition 3.2 in [8], we obtain τ(e( 1

n ,∞)(|x|)) < ∞
and τ(e( 1

n ,∞)(|y|)) < ∞ for any n ∈ N+ . Hence,

τ(Pn) � τ(e( 1
n ,∞)(|x|))+ τ(e( 1

n ,∞)(|y|)) < ∞.

Therefore, PnMPn is finite and the function

ϕn(t) = ‖|xt
nzy

1−t
n |r‖E · ‖|x1−t

n zyt
n|r‖E(M )

is convex on [0,1] and attains its minimum at t = 1
2 . On the other hand, since xe[0, 1

n ](x)�
xe[0, 1

n+1 ](x) and μ(xe[0, 1
n ](x)) � 1

n , we obtain

‖x− xn‖E(M )(r) = ‖xe[0, 1
n ](x)‖E(M )(r) → 0,n → ∞.

Similarly, yn → y in E(M )(r) . By a simple computation we derive limn ϕn(t) = ϕ(t) .
Therefore, ϕ(t) is convex on [0,1] and attains its minimum at t = 1

2 . This completes
the proof. �

Based on Theorem 3.3, we obtain the generalizations of inequality (1.1) for the
norm on noncommutative symmetric space.

COROLLARY 3.4. Let x , y ∈ E(M )(r)+ , z ∈ M and r > 0 . Then

‖|x 1
2 zy

1
2 |r‖2

E(M ) � ‖|xt zy1−t |r‖E(M ) · ‖|x1−t zyt |r‖E(M )

� ‖|xz|r‖E(M ) · ‖|zy|r‖E(M ).

holds for 0 � t � 1 .

Proof. It follows immediately from Theorem 3.3. �

In view of the result of Theorem 3.3, we obtain our refinement of the first inequal-
ity in Corollary 3.4.

COROLLARY 3.5. Let x , y ∈ E(M )(r)+ , z ∈ M and r > 0 . Then

‖|x 1
2 zy

1
2 |r‖2

E(M ) � 1
|1−2α| |

∫ 1−α

α
‖|xszy1−s|r‖E(M )‖|x1−szys|r‖E(M )ds|

� 1
2
[‖|x 1

2 zy
1
2 |r‖2

E(M ) +‖|xαzy1−α |r‖E(M )‖|x1−αzyα |r‖E(M )]

� ‖|xαzy1−α |r‖E(M )‖|x1−αzyα |r‖E(M )
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for all 0 � α � 1 and α �= 1
2 .

Proof. Let ϕ(t) = ‖|xtzy1−t |r‖E(M )‖|x1−t zyt |r‖E(M ) and let 0 � α < 1
2 . By The-

orem 1.1 of [9] and Theorem 3.3, we have

ϕ
(

α +1−α
2

)
� 1

1−2α

∫ 1−α

α
ϕ(s)ds

� L(h) � ϕ(1−α)+ ϕ(α)
2

, h ∈ [0,1],

where

L(h) =
1
2
[ϕ(h(1−α)+ (1−h)α)+hϕ(α)+(1−h)ϕ(1−α)].

Thus,

ϕ
(

1
2

)
� 1

1−2α

∫ 1−α

α
ϕ(s)ds � L

(
1
2

)
� ϕ(1−α)+ ϕ(α)

2
.

It follows that

‖|x 1
2 zy

1
2 |r‖2

E(M ) � 1
1−2α

∫ 1−α

α
‖|x1−szys|r‖E(M )‖|xszy1−s|r‖E(M )ds

� 1
2
[‖|x 1

2 zy
1
2 |r‖E(M ) +‖|xαzy1−α |r‖E(M )‖|x1−αzyα |r‖E(M )]

� ‖|xαzy1−α |r‖E(M )‖|x1−αzyα |r‖E(M ).

Let 1
2 < α � 1. By the symmetry property of ϕ with respect to α = 1

2 , if we replace
α by 1−α , then

‖|x 1
2 zy

1
2 |r‖2

E(M ) � 1
2α −1

∫ α

1−α
‖|x1−szys|r‖E(M )‖|xszy1−s|r‖E(M )ds

� 1
2
[‖|x 1

2 zy
1
2 |r‖E(M ) +‖|xαzy1−α |r‖E(M )‖|x1−αzyα |r‖E(M )]

� ‖|xαzy1−α |r‖E(M )‖|x1−αzyα |r‖E(M ). �

The following result is a refinement of the second inequality in Corollary 3.4.

THEOREM 3.6. Let x , y ∈ E(M )(r)+ , z ∈ M , r > 0 and s ∈ [0,1] . For every
t ∈ (0,1) , we have

‖|xz|r‖E(M )‖|zy|r‖E(M )−‖|xszy1−s|r‖E(M )‖|x1−szys|r‖E(M )

� 1
t

(
ϕ

(
1− t

2

)
−ϕ

(
1− t

2
+ ts

))
� 0,

where ϕ(s) = ‖|xszy1−s|r‖E(M )‖|x1−szys|r‖E(M ) .
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Proof. Let ϕ(s) = ‖|xszy1−s|r‖E(M )‖|x1−szys|r‖E(M ) and f (s) = (1− t)ϕ( 1
2)+

tϕ(s)−ϕ( 1−t
2 +st) . Lemma 1 of [3] and Theorem 3.3 imply that f (s) is decreasing on

[0, 1
2 ] and increasing on [ 1

2 ,1] . Since f (s) is decreasing on [0, 1
2 ] , we have f (0) � f (s) ,

s ∈ [0, 1
2 ] . This means that

ϕ(0)−ϕ(s) � 1
t

[
ϕ

(
1− t

2

)
−ϕ

(
1− t

2
+ st

)]
. (3.1)

Thus

‖|xz|r‖E(M )‖|zy|r‖E(M )−‖|xszy1−s|r‖E(M )‖|x1−szys|r‖E(M )

� 1
t

(
ϕ

(
1− t

2

)
−ϕ

(
1− t

2
+ ts

))
� 0,

where ϕ( 1−t
2 )−ϕ( 1−t

2 + ts) � 0 follows immediately from that 1
2 � 1−t

2 + st � 1−t
2

and Theorem 3.3. Now, let s ∈ [ 1
2 ,1] . By the symmetry property of (3.1) with respect

to s = 1
2 , if we replace s by 1− s , we obtain

ϕ(0)−ϕ(1− s) � 1
t

[
ϕ

(
1− t

2

)
−ϕ

(
1− t

2
+(1− s)t

)]
,

which reduces to the desire result since ϕ(1− s) = ϕ(s) , s ∈ [0,1] . �

Recall that a real valued function F(s,t) defined on [a,b]× [c,d] is called convex
if

F(λ s1 +(1−λ )s2,λ t1 +(1−λ )t2) � λF(s1,t1)+ (1−λ )F(s2,t2)

for all s1,s2 ∈ [a,b] , t1,t2 ∈ [c,d] and 0 < λ < 1. Now, we show the convexity of the
function

ϕ(s,t) = ‖|x1−t zy1+s|r‖E(M ) · ‖|x1+t zy1−s|r‖E(M )

and we use the convexity of ϕ to prove some Cauchy-Schwarz type inequalities.
To achieve one of our main results, we state for easy reference the following fact,

obtained from [15], which will be applied below.

LEMMA 3.7. 1. An operator x ∈ M belongs to S(M ) if and only if there
exists a projection e of finite trace such that l(x)

∨
r(x) � e(or equivalently,

exe = x).

2. Let x ∈ S(M ) . Then |x|p ∈ S(M ) for any 0 < p < ∞. More generally, let h be
a bounded Borel function on the spectrum σ(|x|) of |x| . Then h(|x|) ∈ S(M ).

THEOREM 3.8. Let z ∈ M , r > 0 and x , y ∈ S(M )+ . Then the function

ϕ(s,t) = ‖|x1−t zy1+s|r‖E(M ) · ‖|x1+t zy1−s|r‖E(M )

is convex on [−1,1]× [−1,1] and attains its minimum at (0,0) .
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Proof. Let x , y ∈ S(M )+ . By Lemma 3.7(2), we have x1−t , y1+s , x1+t , y1−s ∈
S(M ) . We write e = s(x)

∨
s(y) . It is clear that

ex1−t zy1+se = x1−t zy1+s, ex1+t zy1−se = x1+t zy1−s.

From Lemma 3.7(1), we deduce x1−t zy1+s , x1+t zy1−s ∈ S(M ) . By Lemma 3.7(2), we
obtain

|x1−t zy1+s|r, |x1+t zy1−s|r ∈ S(M )⊆ E(M )

for all r > 0 and s, t ∈ [−1,1]. Since E(M )(r) is a quasi-Banach space and S(M ) ⊆
M , by Lemma 2.5 (vi) of [8], there exists some constant C > 0 such that

‖|x1∓t zy1±s− x1∓t1zy1±s1 |r‖E(M ) = ‖x1∓t zy1±s− x1∓t1zy1±s1‖r
E(M )(r)

� C(‖(x1∓t − x1∓t1)zy1±s‖E(M )(r)

+‖x1∓t1z(y1±s − y1±s1)‖E(M )(r) )
r

� C‖z‖r(‖x1∓t − x1∓t1‖‖y1±s‖‖s(y)‖E(M )(r)

+‖y1±s− y1±s1‖‖x1∓t1‖‖s(x)‖E(M )(r))
r.

This implies that ϕ(s,t) is continuous. A similar argument to the proof of Theorem 3.3
shows that it suffices to prove the following inequality

ϕ(s1, t1) � 1
2
[ϕ(s1 + s2,t1 + t2)+ϕ(s1− s2,t1− t2)], s1± s2, t1± t2 ∈ [−1,1]× [−1,1].

By Lemma 3.1 (or, Theorem 3 of [16]), we obtain

‖|x1−t1zy1+s1 |r‖E(M ) = ‖|xt2(x1−t1−t2zy1+s1−s2)ys2 |r‖E(M )

� ‖|x1−t1+t2zy1+s1−s2 |r‖
1
2
E(M )‖|x1−t1−t2zy1+s1+s2 |r‖

1
2
E(M )

and

‖|x1+t1zy1−s1 |r‖E(M ) = ‖|xt2(x1+t1−t2zy1−s1−s2)ys2 |r‖E(M )

� ‖|x1+t1+t2zy1−s1−s2 |r‖
1
2
E(M )‖|x1+t1−t2zy1−s1+s2 |r‖

1
2
E(M ).

Multiplying the above two inequalities we have

ϕ(s1,t1) = ‖|x1−t1zy1+s1 |r‖E(M ) · ‖|x1+t1zy1−s1 |r‖E(M )

� [ϕ(s1 + s2,t1 + t2)ϕ(s1 − s2, t1 − t2)]
1
2

� 1
2
[ϕ(s1 + s2,t1 + t2)+ ϕ(s1− s2,t1 − t2)].

This implies the desired result. �

From Theorem 3.8, we obtain the generalization of inequality (1.2) for the norm
on noncommutative symmetric space.
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COROLLARY 3.9. Let x , y ∈ S(M )+ , z ∈ M and r > 0 . Then

‖|x 1
2 zy

1
2 |r‖2

E(M ) � ‖|xtzy1−s|r‖E(M ) · ‖|x1−tzys|r‖E(M )

� max{‖|xz|r‖E(M )‖|zy|r‖E(M ),‖|xzy|r‖E(M )‖|z|r‖E(M )},
where s, t ∈ [0,1] .

Proof. If we replace s , t , x , y by 2s−1, 2t−1, x
1
2 , y

1
2 , respectively, in Theorem

3.8, we deduce that the function ψ(s,t)= ‖|xt zy1−s|r‖E(M ) ·‖|x1−tzys|r‖E(M ) is convex
on [0,1]× [0,1] and attains its minimum at ( 1

2 , 1
2 ) . Hence

‖|x 1
2 zy

1
2 |r‖2

E(M ) � ‖|xt zy1−s|r‖E(M ) · ‖|x1−tzys|r‖E(M ).

Since x,y ∈ S(M )+ ⊆ M+ and z ∈ M , then ψ is continuous and convex on [0,1]×
[0,1] , and so ψ attains its maximum at the vertices of the square. Moreover, due to the
symmetry there are two possibilities for the maximum. �

We conclude this section with a series of inequalities that lead to another refine-
ments of the inequality in Corollary 3.5 and 3.9. From Theorem 3.8 and the proof of
Corollary 3.9, we obtain that the functions

ϕ(s, t) = ‖|x1−t zy1+s|r‖E(M ) · ‖|x1+tzy1−s|r‖E(M ) for s,t ∈ [−1,1]

and
ψ(s, t) = ‖|xtzy1−s|r‖E(M ) · ‖|x1−tzys|r‖E(M ) for s,t ∈ [0,1]

are convex functions. Applying Theorem 1 of [13] to the convex function ϕ(s,t) and
ψ(s,t) , we obtain the following series of inequalities.

PROPOSITION 3.10. Let x , y ∈ S(M )+ and z ∈ M .

1. For r > 0 , we have

‖|xzy|r‖2
E(M ) � 1

4

∫ 1

−1

∫ 1

−1
‖|x1−t zy1+s|r‖E(M ) · ‖|x1+tzy1−s|r‖E(M )dsdt

� 1
2
[‖|x2z|r‖E(M )‖|zy2|r‖E(M ) +‖|x2zy2|r‖E(M )‖|z|r‖E(M )].

2. If r > 0 , p,q ∈ [0,1] and p �= 1
2 , q �= 1

2 , then we have

‖|x 1
2 zy

1
2 |r‖2

E(M ) �
∣∣∣ 1
1−2p

1
1−2q∫ 1−p

p

∫ 1−q

q
‖|xt zy1−s|r‖E(M ) · ‖|x1−tzys|r‖E(M )dsdt

∣∣∣
� 1

2
[‖|xpzy1−q|r‖E(M ) · ‖|x1−pzyq|r‖E(M )

+‖|x1−pzy1−q|r‖E(M ) · ‖|xpzyq|r‖E(M )].
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