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COMMUTATORS OF MARCINKIEWICZ INTEGRALS
ASSOCIATED WITH SCHRODINGER OPERATOR
ON GENERALIZED WEIGHTED MORREY SPACES

VAGIF S. GULIYEV, ALI AKBULUT, VUGAR H. HAMZAYEV AND OKAN KUZU

(Communicated by R. Oinarov)

Abstract. Let L= —A+V be a Schrodinger operator, where A is the Laplacian on R", while
nonnegative potential V' belongs to the reverse Holder class. Let also Q € L,,(S”’l) be a homo-
geneous function of degree zero with ¢ > 1 and have a mean value zero on $"~!. In this paper,
we study the boundedness of the Marcinkiewicz operators uﬁg and their commutators Nﬁg‘b
with rough kernels associated with Schrodinger operator on generalized weighted Morrey spaces
M, (w). We find the sufficient conditions on the pair (¢1,¢2) with ¢’ < p <o and w€ A,y
or 1 <p<gq and wl= e A /¢ Which ensures the boundedness of the operators #ﬁg from
one generalized weighted Morrey space M, o, (w) to another M), o, (w) for 1 < p < eo. We find
the sufficient conditions on the pair (@1, ¢2) with b€ BMO(R") and ¢’ < p <o, wE€ A,y or
1<p<gq, wl=r' ¢ Ay Which ensures the boundedness of the operators #/I’:Q#h ,Ji=1,....n
from M), o, (W) to M, , (w) for 1 < p < eo. In all cases the conditions for the boundedness of
the operators ujLQ s #/I’:Qﬁ’ Jj=1,...,n are given in terms of Zygmund-type integral inequalities
on (@;,¢2) and w, which do not assume any assumption on monotonicity of @;(x,r), @2(x,r)
inr.

1. Introduction

It is well-known that the commutator is an important integral operator and it plays
a key role in harmonic analysis. In 1965, Calderon [5, 6] studied a kind of commutators,
appearing in Cauchy integral problems of Lip-line. Let K be a Calder6n-Zygmund sin-
gular integral operator and b € BMO(R"). A well known result of Coifman, Rochberg
and Weiss [9] states that the commutator operator [b,K]f = K(bf) —bKf is bounded
on L,(R") for 1 < p < eo. The commutator of Calderén-Zygmund operators plays
an important role in studying the regularity of solutions of elliptic partial differential
equations of second order (see, for example, [7]-[&], [10], [17], [18]).

The classical Morrey spaces were originally introduced by Morrey in [37] to study
the local behavior of solutions to second order elliptic partial differential equations.
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For the properties and applications of classical Morrey spaces, we refer the readers to
[17, 18,22, 37]. Mizuhara [36] introduced generalized Morrey spaces. Later, Guliyev
[22] defined the generalized Morrey spaces M), , with normalized norm. Recently,
Komori and Shirai [33] considered the weighted Morrey spaces LP*(w) and studied
the boundedness of some classical operators such as the Hardy-Littlewood maximal
operator, the Calderén-Zygmund operator on these spaces. Guliyev [23] gave a concept
of generalized weighted Morrey space M), ,(w) which could be viewed as extension of
both generalized Morrey space M), , and weighted Morrey space L”*(w). In [23]
Guliyev also studied the boundedness of the classical operators and its commutators in
these spaces M), ,(w), see also Guliyev et al. [28, 29, 32].

Let " ! = {x € R": |x| = 1} the unit sphere of R" (n > 2) equipped with the
normalized Lebesgue measure do = do(x').

Suppose that Q satisfies the following conditions.

(i) € is a homogeneous function of degree zero on R”. That is,

Q(tx) = Q(x) (1.1)

forall # >0 and x € R".
(ii) Q has mean zero on §"~!. That is,

IQQWMQU:Q (1.2)
sn=
where X' = x/|x| for any x # 0.

The Marcinkiewicz integral operator of higher dimension (g is defined by

o 1/2
por )= ([ 1R P )

where

Fauf= [ S sy

oyl o=y

It is well known that the Littlewood-Paley g-function is a very important tool in
harmonic analysis and the Marcinkiewicz integral is essentially a Littlewood-Paley g-
function. In this paper, we will also consider the commutator g j; which is given by
the following expression

_ 2\ 172
pass ) = ([T IR WS )

where

Q(x—y)

Ry = [ )~ S )dy.
-yl<e [x =l

On the other hand, the study of Schrodinger operator L = —A+V recently at-

tracted much attention. In particular, Shen [39] considered Lp estimates for Schrédinger

operators L with certain potentials which include Schrédinger Riesz transforms R? =
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%L*% , j=1,...,n. Then, Dziubanniski and Zienkiewicz [16] introduced the Hardy
J

type space HL1 (R") associated with the Schrodinger operator L, which is larger than
the classical Hardy space H'(R").
Similar to the classical Marcinkiewicz function, we define the Marcinkiewicz
functions U q associated with the Schrodinger operator L by
) dl) 1/2
3 ’

it (x) = ( |

where KjL(x,y) = KjL(x,y)\x—y| and KjL(x,y) is the kernel of R; = %L‘l , =

/\,(_y|<t [Q(x =) K] (x,3)f (4)dy

1,...,n. In particular, when V =0, K3 (x,y) :If(v,?‘(x,y)\x—y\ w and KA( y)

pe—y[r=1

is the kernel of R; = 8 A3 , j=1,...,n. In this paper, we write K;(x,y) = Kj?‘(x,y)

_ 2, 1/2
.uj,Qf(x):</0 z_3> :

Obviously, u;q are classical Marcinkiewicz functions with rough kernel. There-
fore, it will be an interesting thing to study the property of u Q- The main purpose of
this paper is to show that Marcinkiewicz operators with rough kernel associated with
Schrodinger operators k- iq» J=1,...,n are bounded from one generalized weighted
Morrey space M), y, (w) to another M), o, (W), 1 < p < eo.

The commutator of the classical Marcinkiewicz function with rough kernel is de-
fined by

Ujapf(x) = (/Om

The commutator ,uﬁg , formed by b € BUO(R") and the Marcinkiewicz function
with rough kernel i, is defined by

= 2 di 2
#ﬁg,hf(x) = (/0 t_3> .

Let f € LI°°(R"). The maximal operator with rough kernel Mg is defined by
1 P

and

[ etk oa

[ 190K lbt) - b0y

/,HK, [Q(x = )IKF () [b(x) = b)]F(v)dy

Mo () =suplBLen)| ! [ j00e )70y

t>0

It is obvious that when Q =1, Mg is the Hardy-Littlewood maximal operator M .
For b € LIIOC(R") the commutator of the maximal operator Mg j, is defined by

Mo, f(x) = suplB(x,t)I‘l/ [b(x) = b(y)[1Q(x =) £ (v)|dy.
>0 B(x,t)
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We find the sufficient conditions on the pair (¢;,¢2) with b € BMO(R") and
g <p<o,we Ap/q/ orl<p<yq, wi=r' e Ap /g which ensures the boundedness
of the operators ;,L ‘aps J=1,....n from Mp o (W) to M), (w) for 1 < p < eo. Note
that, in [25] was studled the boundedness of the parametric Marcinkiewicz operator and
its commutators on generalized Morrey spaces M, .

2. Preliminaries

We say that Q € Lip,, (S"7!), 0 < o < 1 if there exists a constant C > 0 such that
1Q(x) — Q)| < Clx¥ —y'|* forall X,y € §" !,

The operator g was first defined by Stein [41]. And Stein proved that if is con-
tinuous and satisfies a Lip, (S"~!) (0 < o < 1) condition, then g is an operator of
type (p,p) (1 < p <2) and of weak type (1,1). In [4], Benedek, Calderén and Pan-
zone proved that if Q € C'(S"~1), then g is bounded on L,(R") for 1 < p < co.
The L, boundedness of Lo has been studied extensively. See [4, 30, 41, 42], among
others. A survey of past studies can be found in [11]. Ding, Fan and Pan [12] proved
the weighted L, (R") boundedness with A, weighs for a class of rough Marcinkiewicz
integrals. Recently, Ding, Fan and Pan [13] improved the results mentioned above and
showed that if Q belongs to the Hardy space on the unit sphere, thatis Q € H!(§"~1),
then pg is still a bounded operator on L,(R") for 1 < p < eo. In [43], Xu, Chen and
Ying proved the same result as [13] using a different method.

THEOREM 2.1. ([15]) Suppose that Q satisfies the conditions (1.1) and Q €
Ly(S™™1), 1< g <oo. Then forevery ¢ <p<eo, p#1 andw €A,y 0r1<p<yq

and w'=P' € Ap g there is a constant C independent of f such that
HMQf”LpM g CHf”LpM'

THEOREM 2.2. ([3]) Suppose that Q satisfies the conditions (1.1) and Q €
Ly(S"™1), 1< g< oo Letalso be BMO(R"). Then for every ¢ < p <o, p#1
and w €A,y or 1 <p<gqand wl=r e A o' /¢ » there is a constant C independent of
f such that

1Mo fllLy < ClISlLy-

THEOREM 2.3. ([12]) Suppose that Q satisfies the conditions (1.1), (1.2) and
Qe Lq(S”_l), 1 < g < oo. Thenforevery ¢ < p < oo and w €Ap/y or 1 <p<gqand

wl=r' e Ap g there is a constant C independent of f such that
s, < ClIFlL,..

THEOREM 2.4. ([14]) Suppose that Q satisfies the conditions (1.1), (1.2) and
QeLy(S""), 1<q<oo. Letalso b€ BMO(R"). Then for ¢ < p <eoandw €A,y

or 1< p<gqand wi=F ¢ Ap g there is a constant C > 0 independent of f such that

|u.Q,bf||Lp‘w g CHf”LpM'
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Note that a nonnegative locally L, integrable function V(x) on R” is said to be-
long to B, (1 < g < o) if there exists C > 0 such that the reverse Holder inequality

( m /BW) Vq(y)dy> v <C <m /B o V(y)dy) 2.1)

holds for every x € R" and r > 0, where B(x,r) denotes the open ball centered at x
with radius r; see [39]. It is worth pointing out that, if V € B, for some g > 1, then
there exists € > 0, which depends only on n and the constant C in (2.1), such that
V € B¢ . Throughout this paper, we always assume that 0 £V € B,,.

We will use the following statements on the boundedness of the weighted Hardy
operators

H,g(r) ::/ gtyw(t)de, 0 <t < oo
and

Hg(r) = /rw (1+105) gowyar, 0<1 <o

where w is a fixed function non-negative and measurable on (0,0).
The following theorem was proved in [26, 27].

THEOREM 2.5. ([26, 27]) Let vy, v and w be positive almost everywhere and
measurable functions on (0,0). The inequality

ess supva(t)H,g(t) < Cess supv (t)g(r) (2.2)

t>0 t>0
holds for some C > 0 for all non-negative and non-decreasing g on (0,°) if and only
if
= d
B :=ess supvz(t)/ _wislds _ <
t

>0 ess supvy ()
§<T<o0

Moreover, the value C = B is the best constant for (2.2).

The following theorem was proved in [23].

THEOREM 2.6. ([23]) Let vi, v» and w be positive almost everywhere and mea-
surable functions on (0,0). The inequality

ess supvo(r)Hyyg(r) < Cess supvy(r)g(r) (2.3)
r>0 r>0

holds for some C > 0 for all non-negative and non-decreasing g on (0,°°) if and only

if

* t w(t)dt

B :=supv r/ l4In-) ———— < oo, 2.4)
r>lg 2(r) r ( r> Supt<s<oovl(s)

Moreover, the value C = B is the best constant for (2.2).
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REMARK 2.1. In (2.2)—(2.4) it is assumed that 0-c0c = 0.

By A < D we mean that A < CD with some positive constant C independent of
appropriate quantities. If A <D and D < A, we write A = D and say that A and D are
equivalent.

3. Generalized weighted Morrey spaces

The classical Morrey spaces M), ; were originally introduced by Morrey in [37]
to study the local behavior of solutions to second order elliptic partial differential equa-
tions. For the properties and applications of classical Morrey spaces, we refer the read-
ers to [20, 34].

We denote by M, ; =M,
L?C(R”) with finite quasinorm

2 (R™) the Morrey space, the space of all functions f €

f = sup £y B(x,r
£l = 50 F 1l
where 1 < p<<x>and0 A<n.

Note that M, o = L,(R") and M, = Loo(R"). If A <O or A >n, then M,,; =0,
where © is the set of all functions equivalent to 0 on R”".

We recall that a weight function w is in the Muckenhoupt class A, [38], 1 < p <
oo, if

Wla, : = SI;P[W]A,,(B)

—su p<|;|/ (x)dx) (%/Bw(x)lpldx)pl 3.1)

where the sup is taken with respect to all the balls B and 11; + 1% = 1. Note that, for all
balls B using Holder’s inequality, we have that

1 1 _
[W]A{,p = B |wll,.{ i w2l ) > 1. (3.2)

For p =1, the class A; is defined by the condition Mw(x) < Cw(x) with [w]y, =

(()) and for p=co Aw =Uj<pcedp and [w]s, = 22 Wla, -

sup
xeR?

REMARK 3.2. Itis known that

W € Ay g = I = B ),

Ay g ( W' /gy (B)

Moreover, we can write w' 7' € Ay g = wi=r' ¢ A,y because of wi=r ¢ Ay )y C
Ay Therefore, we get

W1 4 cA //q/:>w - EA/
1 1
= 0y = B 1y Pl B3)

But the opposite is not true.
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REMARK 3.3. Let’s write w! ™7 € A /¢ and used the definitions A, classes we
get the following

q(p=1) q(p—1)
— / —
W €Ay = P = wwmewnq%%W@
1 -2 1 1
= D =B L G

P

where the following equalities are provided.

|y P d_ a4 _ap-1) (g)’: q (g’)’:p(q—l).
p’ plg—=1)" p' plg—1) \p g—p \¢ q—p

Then from eq.(3.3) and eq.(3.4) we have

~

LS

= |

1-p 1-p 1/p'
w EAP//‘I, = [W ]A o d

1 1 1
= B0y Iy IS G

r

DEFINITION 3.1. ([22]) Let ¢(x,r) be a positive measurable function on R” x
(0,00) and 1 < p < eo. We denote by M, , = M), »,(R") the generalized Morrey space,
the space of all functions f € L}?C(R") with finite quasinorm

£l = _Sup o(x,r) " |B(xr)|” PHfllL,, B(x.r)-

nr>0

Also by WM, , = WM,, ,(R") we denote the weak generalized Morrey space of all
functions f € WLS(R") for which

I fllwat,o = sup  @(x,r) "' [B(x,r)|” 7 1AW, Ber) <o

x€R™ r>0

where WL,(B(x,r)) denotes the weak L, -space consisting of all measurable functions
f for which

1 WLy Ber) = 1 Xgen Wi, ey <o

Also the spaces L;OC(R") and WL;’C (R") endowed with the natural topology are de-
fined as the sets of all functions f suchthat fy, € L,(R") and fy, € WL,(R") for all
balls B C R", respectively.

According to this definition, we recover the space M,, ; under the choice ¢(x,r) =
A—n

re o
M, 5 =Mpeo —n 5
o(x.r)=r P
WM, , =WM n
pA PPl o) 5

We define the generalized weighed Morrey spaces as follows.
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DEFINITION 3.2. ([23]) Let 1 < p < oo, ¢ be a positive measurable function on
R" x (0,20) and w be non-negative measurable function on R". We denote by M), ,(w)
the generalized weighted Morrey space, the space of all functions f € Li,oﬁv(R") with
finite norm

1
1ty = sup @Cr,) " W(B(x, 7)) 7 [ fll,(800):

xeR™ r>0

where L, (B(x,r)) denotes the weighted L,-space of measurable functions f for
which

»
Ly (BCer)) = 1 Xser Ly o (®) = (/B(x , f(y)|pW(y)dy)

Furthermore, by WM, ,(w) we denote the weak generalized weighted Morrey
space of all functions f € WLS,(R") for which

_1
Hf”WM,,#q,(w) = Sup (p(xvr)_lw(B(xvr)) p ”fHWL,,)w(B(x,r)) < oo,
x€R™ r>0

where WL, ,,(B(x,r)) denotes the weak L, -space of measurable functions f for
which

»
J(B(x,r)) w(R?) = Su t / w d) .
vttt = Ut ey =sope ([t

REMARK 3.4. (1) If w=1, then M, o(1) = M, , is the generalized Morrey
space.
K—1
(2) If ¢(x,r) =w(B(x,r)) 7 ,then M), o(w) =L, «(w) is the weighted Morrey
space.
K 1
(3) If @(x,r) =v(B(x,r))?w(B(x,r)) 7, then M), o(Ww) = Lp x(v,w) is the two
weighted Morrey space.
4) Ifw=1and @(x,r)=7r 7 with 0 <A <n, then My (w) =L, (R") is
the classical Morrey space and WM), o(w) = WL, ; (R") is the weak Morrey space.
(5) If @(x,r) =w(B(x, r))fé ,then M), o (w) =L,,,,(R") is the weighted Lebesgue
space.

Suppose that T represents a linear or a sublinear operator, such that that for any
f € Li(R") with compact support and x & supp f

Q
ITof(x) / i y|n £y, (3.6)

where ¢ is independent of f and x.
For a function b, suppose that the commutator operator Tg ; represents a linear or
a sublinear operator, such that for any f € L;(R") with compact support and x ¢ supp f

ol <ao [, 1669~ b0) = )1y 67
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where ¢ is independent of f and x.

We point out that the condition (3.6) in the case £ =1 was first introduced by
Soria and Weiss in [40]. The condition (3.6) are satisfied by many interesting operators
in harmonic analysis, such as the Calderén-Zygmund operators, Carleson’s maximal
operator, Hardy-Littlewood maximal operator, C. Fefferman’s singular multipliers, R.
Fefferman’s singular integrals, Ricci-Stein’s oscillatory singular integrals, the Bochner—
Riesz means and so on (see [35], [40] for details).

The following statement, was proved in [32], see also [23, 28].

THEOREM 3.7. Let 1 < p <oo, w€ A, and (@1, 9;) satisfy the condition
1
w ess inf @ (x, T)w(B(x,7)) 7 4,

[ == : L <coinn), (3.8)
g w(B(x,1))”

where C does not depend on x and r. Let T = T; be a sublinear operator satisfy-
ing condition (3.6) with Q =1 bounded on L, ,,(R") for p > 1, and bounded from
Ly, (R") to WLy ,,(R"). Then the operator T is bounded from M), o, (W) to M), o, (W)
for p>1 and from M o (W) to WM, ¢,(w).

The following statement, was proved in [28], see also [23].

THEOREM 3.8. Let 1 < p <o, we Ay, b€ BUO(R") and (¢1,¢2) satisfy the
condition

. L
ess inf @y (x, )w(B(x,7)) 7 4

/w (1+ln5) — 1 — <Copx,r), (3.9)
’ d w(B(x,1))? !

where C does not depend on x and r. Let T, = T, be a sublinear commutator opera-
tor satisfying condition (3.7) with Q =1 bounded on L, ,,(R"). Then the operator T,
is bounded from M, o, (W) to M o, (W).

Note that, in the case w = 1 Theorem 3.7 was proved in [24] and for the operators
M and K in [1].

4. Sublinear operator with rough kernels Tg in the spaces M), ,(w)

In the following lemma we get local estimate (see, for example, [21, 22] in the
case w =1 and [23] in the case w € A,) for the operator Tg, .

LEMMA 4.1. Suppose that Q be satisfies the conditions (1.1), (1.2) and Q €
Lq(S"’l), 1 < g < oo, Let Tg be a sublinear operator satisfying condition (3.6), and
bounded on L,(R") for 1 < p < ee.

Ifd <p<oeandwe Ap/q - then the inequality

L[ 1 dt
1Ty 50 S WBG0 ) [ 10000 w(B0,0) 7
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holds for any ball B(xy,r), and for all f € Li?ﬁv(R”).
If1<p<gqand wl=r e Ay g then the inequality

1/p ﬂ

Gy Blxg.) I

1
1Taflepuiinrn S 005 L1 tstnsn W

q B

holds for any ball B(xq,r), and for all f € Lloc c (R").

Proof. Let Q be satisfies the conditions (1.1), (1.2) and Q € Lq(S"‘l), 1 <g<eo.
Note that

q
26 imonn =, 190)ay)
X—X05

() Qo) ) @)
B(0,t4|x—x0])

14| x—xp| é
([ [ jeoiaon))

0 sn—1

1
=co ||l (sn-1) [B(0,1 + [x —xol) |,

N

where co = (nv,) "9 and v, = |B(0,1)].
For arbitrary xop € R", set B = B(xo,r) for the ball centered at x( and of radius r,
2B = B(x¢,2r). We represent f as

f=h+rf, h)=r)xsb), fz(y)Zf(y)Xc(zB)(y)» r>0 (4.2)

and have
1Taflz,..8) < I Tafillz,..8) + | Taf2lle, . 8)

Since fi € Lp,w(R"), Tafi € Ly ,w(R") and from the boundedness of Tg in L, ,, (R")

forweA,, and q' < p < o (see Theorem 2.3) it follows that

ITafillL,..z) < [TafillL,, @

1
SR -1y Ws, Ifillz, )
q/

1
~ HQHLq(s*H) wlx Hf||L,W(2B)~

a
q

C L
It’s clear that x € B, y € '(2B) implies 1|xo —y| < |x—y| < 3[xo —y|. Then by
the Minkowski inequality and conditions on Q, we get

Qx = YIIf W)
Taf2(x) S /3(23) Wdy
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By Fubini’s theorem we have

frogy S a0l [ s
“om) oyl |t”+l
dt
= Q(x— dy—
| /2 ROy

* dt
< Qx— d .
S L, 1RGOl

By applying Holder’s inequality for ¢’ < p < e and w € A p/q » We get

eI, - [ i
TRl M G IRy 1y PR e

|xo—y|"
1
q/p||d dt
1@ ryis) M patbaony 9 PE gy 1B+ = sol) ¥ o
% _1 5 dt
1@y WIE, [ Iy aiay wB0.0)) ™ Blao,)| 1B
‘1
5 _idt
G PECH o o WAy atnany (Bl 7 5 “3)
Moreover, for all p € (1,e0) the inequality
: 1o _1dt
T lys) S 192051y 12, WCBYP [ 1Ay (B Cr0,0)) 7
l]’ r
is valid. Thus
1
1Tas lys) S 190251y 015, (11, 0025
ql
Ldt
B [ 1ty a0y wBG0) 7 ).
On the other hand,
< dt
1 lepiom 2 1B g [ oy
i dt
S |B|/2r AN e (Bxon)) pre)
L o dt
S B IW e my [ 1 eptaiaos T
1 _ dt
B [ 1 e ptatcom 1977 0 T
% 1 _1dt
S WL, B [ 1 apiaingay B0 P @)
l]’ r
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Thus
1TafL,.8)

5 1
19Uy sy W12, WBF [l 000 WBa0,1))

J
1 _Ldt
SB[ 1y a0y (B0 T 5

Letalso 1 < p<gqand w7 €A »/q - Since fi € Ly o(R"), Tofi € Ly(R")

and from the boundedness of Tg in L,,,(R") for wl P e Ap g and 1 < p < g (see
Theorem 2.3) it follows that

1

1Tafille, ,.8) < 1Tafillz, @) S QL -1 ad ]X 1f1llL,, ()

ql

1
T
~ ||Q||Lq(S"*l) [Wl p]f’x Hf”pr (2B)-
/

q

If 1 <p<gqand wlr e A p'/q » then Minkowski theorem and Holder inequality,

Tt < (f, ([, @6l (x)dx)’l’

dt

< o 190 o PO
dt

S A P e e

5 1 dt
< ||9||Lq(sm> 15, o | oy BT o =Dy

1 > 1
SRy 190E, ) [, 1 s BO.+ 01 2

1 N 1 dt
Sy WL, (o L 10t oy WP B o
q—
1

i 1 dt
<||9||L,,snl|B|q||wHLL / gt 1997 17 g 1B Gi0s0) 7 7
-P

1
is obtained. By applying (3.3) for ||w1’1’/||£’1(3(w and (3.5) for ||WHL ] we have
=

the following inequality

1Tafallr,,.8)

M - dt
< 190y b 718 vl / 11yt 917, a0 7
—p

5 q
a &
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is valid. Thus

1

176 i) S 195y 7 IF, (151

q

oo -1 dt
+||wl| ’l ”fHL,w B(xo.1) ”WHLLP(B(XOJ)) 7)

Lw

On the other hand,

= dt
1l ~ BN epuiom) [, et

o dt
< 18] / AL Br0.)) 7ot

4 4 ! o dt

_ 7
= 0 T B U ) 102 I et g
1 1
1—p'1 -
S0 S IIE
p

dt

1
p —
715 (B0

1
SIVIE ) f, I satacon I
P

Thus

1TafllL,,.8)
1

1
- dt

_p !
ammmﬂw”mpwm%®énm%wm il ?, 2

v L5 Bloa) 1

ql

Thus we complete the proof of Lemma 4.1. [

L
o o W) BG0O1 19 I, ) T
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THEOREM 4.9. Suppose that Q be satisfies the conditions (1.1), (1.2) and Q €
Lq(S"_l), 1 < g<oo. Let To be a sublinear operator satisfying condition (3.6), and

bounded on L,(R") for 1 < p <eo. Let also, for ¢ < p <e, weA,,

/ the pair

(1, ¢2) satisfies the condition (3.8) and for 1 < p < q, w' A »'/q the pair (@1, )

satisfies the condition

. 1/p
essinfoy(x,7)||w L
0 t<T<eo o1 (5, )il L5 Br) dt w(B(x,r))?
- gc%(xar) 9
- 1/p t 1
wll, wl?
W(B(X’)) L q

a5 (B

where C does not depend on x and r.
Then the operator Tq is bounded from M, o, (w) to M, o,(w). Moreover

1T f 14, g, o) S 11104, ()

4.5)
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Proof: When ¢’ < p <oo, w €Ap/y by Lemma4.1 and Theorem 2.5 with v»(r) =
_1
@00,r)" i) = @ilr) T 'wB((xr) 7. g(r) = |IfllL, .80 and w(r) =
w(B(x, r))_%r‘1 we have

_1
HTQf”Mp‘(pz (w)y = Sup (pz(x,r)flw(B(x, r)) r ||.LLQfHLp,w(B(x,r))

x€R™ r>0

- _1
S s @) [l wBGD)

xeR", r>0

_1
< sup @i(n,r) T wB@) P IIf L, .00

x€R™ r>0

di
t

= 11.f 1132,y ) -

For the case of 1 < p < g, w! 7 cA p'/¢» by Lemma 4.1 and Theorem 2.5

with va(0) = 5r) w(BGr) F I, ) = i) w(Bn)

1
§0) = 11l (ae) a0 wlr) = [l 7, 7! we have

_ 1
| Taf sy ) = sup @206,7) " w(B,7)) "7 | fllL,,. (e

x€R™ r>0

- 1 dt
< su ) Y w(BG, )7 ||w||? / wll, ? -
NxeRniOq)z( 1) w(B(x,r) 7| ”LLP(B) 1120 B0 W1l L'a o 1

1
S sup @i (nr) T w(BG )P LB

x€R™ r>0
— 1l o0 O

5. Commutator of sublinear operator with rough kernels T, ,
in the spaces M, ,(w)

REMARK 5.5. ([31])

(1) The John-Nirenberg inequality : There are constants C;, C; > 0, such that
forall b€ BMO(R") and 3 >0

{x e B : |b(x) —bp| > B} < C1|Ble” PP vB c R™.

(2) The John-Nirenberg inequality implies that

5
) (5.1)

blls~ su / — by
ol s (o 0D =B

for 1 < p <oco.
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(3) Let b€ BMO(R"). Then there is a constant C > 0 such that
t
b8y = bpes)| < C||b||*ln; for 0 <2r<t, (5.2)

where C is independent of b, x, r and ¢.

In the following lemma we get local estimate (see, for example, [23]) for the com-
mutator operator Tg j, .

LEMMA 5.2. Suppose that Q be satisfies the conditions (1.1), (1.2) and Q €
Ly(S™™1), 1 < g < eo. Let b€ BUO(R"), Tq, be a commutator sublinear operator
satisfying condition (3.7), and bounded on L,(R") for 1 < p < eo.

Ifd <p<oeandwe Ap/q - then the inequality

1 Tab |2, (Bxo.r)

Lo t _1dt
S ollw(Bleo,r)? [ (1410l W (Bl0s0) 55

holds for any ball B(xg,r), and for all f € L}gﬁv(R”).

Ifl<p<gqand wli=P' e Apr g then the inequality

|| TQ,beLp,w(B(xOJ))

o t Y dt
< |jwl|/? / (l +ln—> w P —
~ H ”L#(B(XOJ)) 5, P Hf”L,,MB(xo,t)) H “Lﬁw(w)) P

holds for any ball B(xy,r), and for all f € Li?ﬁv(R”).

Proof. Let p € (1,00) and b € BMUO(R"). For arbitrary xo € R", set B = B(xy, r)
for the ball centered at xy and of radius r, 2B = B(xo,2r). We represent f as (4.2) and
have

1Tapfllz,,.) < | Tapfillz,,.») + | TapflL, . o)
Since fi € Lp,w(R"), Tapfi € Lpw(R") and from the boundedness of T, in
Lyw(R") forwe A, and q' < p < oo (see Theorem 2.4) it follows that

ITapfillz,.8) < |TapfillL,,@m
1

SNz 1y W15, 1814 1 f1 e
q/

1
R Ry 51y WX, 18141511z, 28)-
q

For x € B we have

Topfa(x) S,A |b(y) — b(x)||Q(x — )| lf )| d

(2B) lxo — y|"
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Then

1Tanf2llL,,.o)

<(f(f o PO —b 0=y dy)pw(x)dx> '
< () (o 01—l L0 ) wiga)
([ (o 0= bmti0ta -3 05 ) )

=L +5.

Let us estimate /.

=@ [ ) - bty 2

(2B) |xo — |
o 0)=baal@G-ll 0 [
Capy Y PR gy i &
dt
—bp.w||Q
B [, oO) = brall Q)
1 dt
B[] 1b0) - bl Q- 0y
2r JB(xp,t) 1
Applying Holder’s inequality and by (5.2), we get
Lo t dt
6w @7 [ (1) 190 = ey 000 1 50000 57
1
19 gy Bl wB) P [ (110 ) 10

1
_ 7
X |lw q/”ll

==

~ w(B)

'u\'—

1B(xo, + 1)

) B(xo,t)) n+l

60 w(B)F [ (1410 2) 1 o) (B Cr0,0))

In order to estimate I, note that

L= (/B |b(x) — bB,W|pw(x)dx> g A(2B) IQ(XL)Hf(yﬂdy.

o — y|"
By (4.3) and (5.2), we get
1 Qx—
L S ||bll.w(B)? /E Q=IO

(2B> xo — y|

pla
1
Sz, -1 w4

==

- &

a
q

1 1
<1951 L:ﬁubu*w P Uyt w(Ba0.0)) 7
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Summing up I; and I, for all p € (1,e) we get

|Tasf2llz,..8)
1 D d t _1dt
SRy ] 151wB)F [ (1410 ) 1l a0 w(Bla0:0) 5
7 2r r t
Thus
1
16ty ) S 1951y WL, 181 (11,08

P
e
1 [ 1dt
F 0B [ (1410 D)1y gy (B0, P ).
On the other hand, by (4.4) we get
1Tonf L8

5 L[ _idt
S 19Uy 12, 181w(B)7 [ (1102 ) i) w(BCr0,0) 7

— s

1 t _1dt
< 6l w(Blx0,1) 7 [ (110 )1y 00 w(B0,0) 7 5

With similar techniques for 1 < p < g, w7 e Ay g can be achieved and the
proof is finished. [J

THEOREM 5.10. Suppose that Q be satisfies the conditions (1.1), (1.2) and Q €
Ly(S"™1), 1 < g< oo Let b€ BMUO(R"), Ty be a commutator sublinear operator
satisfying condition (3.7), and bounded on L,(R") for 1 < p < es. Let also, for q' <
p <o, wEA, the pair (Q,¢) satisfies the condition (3.9) and for 1 < p < g,

wl=? ¢ Ay g the pair (@1, @) satisfies the condition

1/p
ess inf oy (x, 7)[|w|| ’
- P L x1) dt B b
/ <1+1n;> — 1/p e T<C<Pz(x»r)w’ (3-3)
r w /
Il Lt ) “WHi]ﬁ(W’))

where C does not depend on x and r.
Then the operator Tq, is bounded from My, o, (W) to M) o, (W).

1Tapf 1M g 0) S 11F 1y, (0)-

Proof. When ¢’ <p<eo,w€A,,
_1
@0,r) " i) = @) wB, ) 7, g(r) = (£l e and w(r) =

+, by Lemma 5.2 and Theorem 2.6 with v, (r) =
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1
w(B(x,r)) 7r~! we have

_1
HTQ,bf”Mp.(pz (w) = sup (pz(xvr)ilw(B(x} V)) b ||”Q.,beLp,w x,r))

x€R™ r>0

_1ldt
Sl s o)™ [ (10 )1l o wlB) P
xR r>0 r

SIBlle sup @i(er) w(B) 1A 2B

x€R™ >0

= [1Bl1+11.f 11, , ()

For the case of 1 < p < g, w! nd 6 Ap g, by Lemma 4.1 and Theorem 2.6
1 S
with va(r) = @2(x,r) "' w(B(x,r)) "7 IIWHL”

aLp (Bl

1
8(r) = f e (ery) and w(r) =[w %, r!

L vi(r) = @1 (r,r) " hw(B(x, ) 7,

we have

_1
1o fmy gy 00 = SUP @20x0,r) " w(B(,1) "7 [0 fIlL, ()

xeR™, r>0
_ 1 1
S osup o) w(B(xr) e wllf
xeR™, r>0 q— P(B)
_1 dt
X 1+1 ) »
JA R [ P I P

< s i) wBR) F (1l e

x€R" r>0

= [1£ 11,9, (ow)

6. Marcinkiewicz operator with rough kernels “/LQ and
its commutator .LlﬁQ’ » in the spaces M), ,(w)

In this section, we prove the boundedness of the Marcinkiewicz operator IJ,L on
M, o(w) spaces. For x € R", the function p(x) is defined by

: /
X) =supqr: Vydygl}.
peo=sup{ri s [ Vo)

LEMMA 6.3. ([39]) Let V € By with q

> n/2. Then there exists ly > 0 such that

(53 "epg e i)

In particular, p(x) = p(y), if |[x—y| < Cp(x).
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LEMMA 6.4. ([39]) Let V € B, with g > n/2. For any | >0, there exists C; >0
such that

C 1
Kf()@y)‘ g ! 1 |x_ |n717
l+ ‘X7Y| y
p(x)
and .
plx)”
KJ‘L()C’}’) _Kj(x_}’)‘ < C#~

The following theorem in the case w = 1 was proved in [2].

THEOREM 6.11. Suppose that Q € L, (8"71), 1 < g < oo satisfies the conditions
(1.1), (1.2) and V € B,,. Then for every ¢ <p <o and w€ A, or 1 < p <q and

wir c A p'/q there is a constant C independent of f such that

r/q

H‘LLJL-:Qf”LIRW < CHf”LpA,w'

Proof. The proof follows from the boundedness of the operators Mq and ;o on
L, (R™) for p > 1 and the validity of the following inequality

uiof(x) S ujaf(x)+Mof(x), ae xeR”,
which was proved in the proof of [2, Theorem 5]. [J

Note that the operators Mq and ;o which are sublinear operators satisfies the
condition (3.6) and bounded on L, ,,(R") for p > 1. Statements of the Lemma 4.1
for the operators Mg and ;o is provided. Then we get that the statements of the
Lemma 4.1 also true for the operators .LlﬁQ, j=1,...,n . Therefore, by Lemma 4.1
and Theorem 6.11 the following corollaries are obtained.

COROLLARY 6.1. Suppose that Q € Lq(S"’l), 1 < g < oo satisfies the conditions
(1.1), (1.2) and V € B,,.
If ¢ <p<eoandwe€Ay,,, then the inequality

L[ _1dt
1145 Q11 B0,y S W(B(X0,7)) 7 /2r 112 (Bxo 00y WB(x0,2)) 7 —
holds for any ball B(xy,r), and for all f € L}giV(R”).
If 1l <p<gqand wl=r' e Ap g » then the inequality
1/p 1/p dt
H.u] QfHLpW B(xq,r)) < HW” Lp (Bl / ||fHpr B(xg,t) || HL q S (Blso) T

holds for any ball B(xy,r), and for all f € L}giV(R”).
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COROLLARY 6.2. Suppose that Q € L,(S"~'), 1 < g < o satisfies the conditions
(1.1), (1.2) and V € By,. Let also, for ¢ < p <o, w € Ap)q the pair (@1, 2) satis-
fies the condition (3.8) and for 1 < p < q, w'™ V' € Ay g the pair (@1,@) satisfies
the condition (5.3). Then the operator ,uﬁg is bounded from M), o (W) to M o, (W).
Moreover

1850 Ny gy ) S 1 bt )

The following theorem in the case w = 1 was proved in [2].

THEOREM 6.12. Suppose that Q € L,(S"~'), 1 < g < oo satisfies the conditions
(1.1), (1.2) and V € By. Let also b € BMO(R"). Then for every ¢ < p <o, w€ A

orl <p<yq, wi=" e A

p/d
i there is a constant C independent of [ such that

H”JL;Q,hf”LpM < CHf”LpA,w'

P'/a
Proof. In the proof we used the idea in [19]. It suffices to show that

i pf(x) < tjapf(x) +CMayf(x), ae xeR", (6.1)

where Mg, denotes the commutator of the commutator of Hardy-Littlewood operator
with rough kernel.
2\ 2
dt
3

Fixing x € R” and let r = p(x). Then
/‘| Q=) K} (x,9) D) = b()]f (v)dly

Hhauf() < ( A
([
([
< ( [
+( /O’

/‘x,yK, Q= y)IKF (x,2) [ () = )L () dly

/<|x Vi<t Q¢ = y)IKF (x,9)[b(x) = b()]f (v)dy

/‘x,ylg, |Q(x = y)I[KF(x.y) = K;(x,y)][b(x) = b()] £ (v)dy

[, 126 lb(s) =L

. 2 3
- ‘x 1) QU IKF ) PO )| T
. 2 3
- <|x st Q= Y)IKG (x,y)[bx) = bO) W)y -5

=E+E,+E3+E;.
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For E;, by Lemma 6.4, we have

|
. 2 .\ 2
El<c<A F el - L %)
< CMqp f (x).
Obviously,
Ey < pjopf(x).
For Ej, using Lemma 6.4 again, we get
|
=1 2dr\’
E3<<[ L el —b0) L g>

< CMqpf (x).

It remains to estimate £4. From Lemma 6.4, we obtain

- 2 %
Es<C (/r "/le e |Q(x —y)|[b(x) — b(y)] Lffy)?'nd %)
o |[logyt/r]+1 Zdt %
<Cr /r ,Za (Zkr) /|x—y\<2kr|9(x_y)|[b( 9 = bSOy t3

<Cr</

<Cr (/ ~Ma s f( )2dt> < CMqpf(x).

(%&U]+nmnﬂ>Fm)

Thus, Theorem 6.12 is proved. [

Note that the operators Mq 5 and [ o, which are sublinear operators satisfies the

condition (3.6) and bounded on L, ,,(R") for p > 1. Statements of the Lemma 5.2 for
the operators Mq 5, U;qp and also for the operators ;,L ‘ap> J=1,...,n are provided.
Therefore, by Lemma 5.2 and Theorem 6.12 the followmg corollarles are obtained.

COROLLARY 6.3. Suppose that Q € L,(S"~'), 1 < g < o satisfies the conditions

(1.1), (1.2) and V € B,. Let also b € BMUO(R").

If g <p<ooandw€A,,,, then the inequality

pld

|| ”.%Q,bf”Lp‘w (B(x0.r))
1 _

Sw(B0.)? [ (110 5) 1y a0y w(B0.0))

==

dr
t
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holds for any ball B(xy,r), and for all f € Li?ﬁv(R”).

Ifl<p<gqand wi=r ¢ Ap g > then the inequality

1145 0 f 12y (BGr0r))

1 1 dt
SN A (R [ PR I P

04)

holds for any ball B(xg,r), and for all f € Ll‘-’C ¢ (R").

COROLLARY 6.4. Suppose that Q € L,(S"™"), 1 < g < o satisfies the conditions

(1.1), (1.2) and b € BMO(R"), V € B,,. Let also, for q' < p <o, wE Ay the pair
(@1, 02) satisfies the condition (3.8) and for 1 < p < q, wi=r'eA /¢ the pair (@1, )
satisfies the condition (5.3). Then the operator ,uj.’Q’b is bounded from M), o, (W) to
M, o, (W). Moreover

11505 W31, g, 00) S 1110t g, (0)-
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