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Abstract. In this paper, we consider the value distribution of the differential polynomials ϕ f 2 f ′−
1 where f is a transcendental meromorphic function and ϕ is a small function, and obtain a
precise inequality by the reduced counting function.

1. Introduction and results

Let f (z) be a meromorphic function in the complex plane, we say a(z) is a small
function if a(z) is a non-vanishing meromorphic function such that T (r,a) = S(r, f )
and S(r, f ) denotes o(T (r, f )) (r → ∞) , possibly outside a set of r of finite linear
measure. We assumed that the reader is familiar with the notations of Nevanlinna theory
(see, e.g., [1, 6, 7]).

DEFINITION 1. Let k be a positive integer, for any constant a in the complex
plane. We denote by Nk)(r,1/( f −a)) the counting function of a -points of f with mul-
tiplicity � k , by N(k(r,1/( f − a)) the counting function of a -points of f with multi-
plicity � k , by Nk(r,1/( f −a)) the counting function of a -points of f with multiplicity
of k . and denote the reduced counting function by Nk)(r,1/( f −a)) , N(k(r,1/( f −a))
and Nk(r,1/( f −a)) , respectively.

In 1979, E. Mues [1] proved that for a transcendental meromorphic function f in
the open plane, f 2 f ′ −1 has infinitely many zeros. This is a qualitative result. In 1992,
Q. Zhang [8] has obtained a quantitative result and proved the following theorem.

THEOREM A. Let f be transcendental meromorphic in the complex plane, then

T (r, f ) � 6N

(
r,

1
f 2 f ′ −1

)
+S(r, f ). (1)

In [4], Xu, Yi and Zhang improved Theorem A by the reduced counting function
and proved the following.
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THEOREM B. Let f be a transcendental meromorphic function. Then

T (r, f ) � 6N

(
r,

1
f 2 f ′ −1

)
+S(r, f ). (2)

In the value distribution theory, it is a very important problem whether we can use
the small function to instead of the constant in the counting function (or the reduced
counting function)? For example, K. Yamanoi proved the second Nevanlinna main
theorem for small functions in [5]. It’s one of the most important work in the value
distribution theory in the recent years.

In 1993, Q. Zhang [9] studied the zeros of f 2(z) f ′(z)−a(z) , where a(z) �≡ 0 is a
small function, and improved Theorem A.

THEOREM C. Let f (z) be transcendental meromorphic in the complex plane and
ϕ(z)(�≡ 0) be a small function, then

T (r, f ) � 6N

(
r,

1
ϕ f 2 f ′ −1

)
+S(r, f ). (3)

Corresponding Theorem B, it is naturally to consider the value distribution of
ϕ f 2 f ′− by the reduced counting function. In fact, we proved the following result.

THEOREM 1. Let f (z) be a transcendental meromorphic function and ϕ(z)(�≡ 0)
be a small function. Then

T (r, f ) � 6N

(
r,

1
ϕ f 2 f ′ −1

)
+S(r, f ). (4)

Obviously, our result improves the conclusion of Q. D. Zhang in [8, 9] and Xu, Yi
and Zhang in [4] greatly.

2. Proof of the theorem 1

In order to prove our result, we need the following lemma.

LEMMA 1. Let f be a transcendental meromorphic function, and let ϕ(z)(�≡ 0)
be a small function. Then

3T (r, f ) � N(r, f )+2N

(
r,

1
f

)
+N

(
r,

1
ϕ f 2 f ′ −1

)

−N0

(
r, 1

(ϕ f 2 f ′)′

)
+S(r, f ),

(5)

where N0

(
r, 1

(ϕ f 2 f ′)′

)
denotes the counting function of the zeros of (ϕ f 2 f ′)′ , not of

f (ϕ f 2 f ′ −1) .
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Proof. We first claim that ϕ f 2 f ′ �≡ constant. If ϕ f 2 f ′ ≡C , where C is a constant.
Obviously, C �= 0. Then

1
f 3 ≡ ϕ

C
f ′

f
,

1
f 2 f ′

≡Cϕ .

Therefore,

m

(
r,

1
f

)
� 1

3
m

(
r,

1
C

ϕ
f ′

f

)

� 1
3
m(r,ϕ)+

1
3
m

(
r,

f ′

f

)
+O(1) = S(r, f ),

N

(
r,

1
f

)
� N

(
r,

1
f 2 f ′

)

= N

(
r,

1
C

ϕ
)

= S(r, f ).

From the above, we have T (r, f ) = S(r, f ) . It is a contradiction. Hence ϕ f 2 f ′ is not
equivalent to a constant.

Let
1
f 3 ≡ ϕ f 2 f ′

f 3 − (ϕ f 2 f ′)′

f 3

ϕ f 2 f ′ −1
(ϕ f 2 f ′)′

,

we have

3m
(
r, 1

f

)
= m

(
r,

1
f 3

)

� m

(
r,

ϕ f 2 f ′ −1
(ϕ f 2 f ′)′

)
+m

(
r,ϕ

f ′

f

)
+m

(
r,

(ϕ f 2 f ′)′

f 3

)
+O(1)

� N

(
r,

(ϕ f 2 f ′)′

ϕ f 2 f ′ −1

)
−N

(
r,

ϕ f 2 f ′

(ϕ f 2 f ′)′

)
+S(r, f )

= N(r,(ϕ f 2 f ′)′)+N

(
r,

1
ϕ f 2 f ′ −1

)
−N

(
r,

1
(ϕ f 2 f ′)′

)

−N(r,ϕ f 2 f ′)+S(r, f )

= N(r, f )+N

(
r,

1
ϕ f 2 f ′ −1

)
−N

(
r,

1
(ϕ f 2 f ′)′

)
+S(r, f ).

Hence

3T (r, f ) = 3m

(
r,

1
f

)
+3N

(
r,

1
f

)
+O(1)

= N(r, f )+3N

(
r,

1
f

)
+N

(
r,

1
ϕ f 2 f ′ −1

)
−N

(
r,

1
(ϕ f 2 f ′)′

)
+S(r, f ).

(6)
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Let

N

(
r,

1
(ϕ f 2 f ′)′

)
= N000

(
r,

1
(ϕ f 2 f ′)′

)
+N00

(
r,

1
(ϕ f 2 f ′)′

)
+N0

(
r,

1
(ϕ f 2 f ′)′

)
,

(7)

where N000

(
r, 1

(ϕ f 2 f ′)′

)
denotes the counting function of the zeros of (ϕ f 2 f ′)′ , which

come from the zeros of ϕ f 2 f ′ − 1, N00

(
r, 1

(ϕ f 2 f ′)′

)
denotes the counting function of

the zeros of (ϕ f 2 f ′)′ , which come from the zeros of f . Hence we have

N

(
r,

1
ϕ f 2 f ′ −1

)
−N000

(
r,

1
(ϕ f 2 f ′)′

)
= N

(
r,

1
ϕ f 2 f ′ −1

)
. (8)

Supposed that z0 is a zero of f with multiplicity q and the pole of ϕ with multi-
plicity of t .

Case I. Supposed that t � 2q− 1. If q = 1, then z0 is a zero of (ϕ f 2 f ′)′ with
multiplicity at least 2q−1− t ; if q � 2, then z0 is a zero of (ϕ f 2 f ′)′ with multiplicity
at least 3q−2− t .

Case II. Supposed that t � 2q , z0 is at most the pole of ϕ2 .
Hence we have

3N

(
r,

1
f

)
−N00

(
r,

1
(ϕ f 2 f ′)′

)
� N1)

(
r,

1
f

)
+N1)

(
r,

1
f

)
+2N(2

(
r,

1
f

)
+N(r,ϕ2)

= N1)

(
r,

1
f

)
+N

(
r,

1
f

)
+N(2

(
r,

1
f

)
+S(r, f ).

(9)
Combining (6)–(9), we have

3T (r, f ) � N(r, f )+N

(
r,

1
f

)
+N1)

(
r,

1
f

)
+N(2

(
r,

1
f

)

+N

(
r,

1
ϕ f 2 f ′ −1

)
−N0

(
r,

1
(ϕ f 2 f ′)′

)
+S(r, f ).

This completes the proof of the lemma. �
Now we begin to prove Theorem 1.
Let F(z) = ϕ(z) f 2(z) f ′(z)−1 and

h(z) =
F ′(z)
f (z)

= ϕ(z){2 f ′2(z)+ f (z) f ′′(z)}+ ϕ ′(z) f (z) f ′(z).

Obviously, h(z) �≡ 0. Also let

G(z) = 13

(
F ′(z)
F(z)

)2

+20

(
F ′(z)
F(z)

)′
−24

F′(z)
F(z)

h′(z)
h(z)

+8

(
h′(z)
h(z)

)2

−8

(
h′(z)
h(z)

)′

−4
ϕ ′(z)
ϕ(z)

F ′(z)
F(z)

+8
ϕ ′(z)
ϕ(z)

h′(z)
h(z)

−8

(
ϕ ′(z)
ϕ(z)

)′
.
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By Lemmas 4 and 7 in [9], we know G(z) �≡ 0 and the simple poles of f (z) are the
zeros of G(z) .

By differentiating the equation F = ϕ f 2 f ′ −1, we get

fβ = −F ′

F
, (10)

where

β = ϕ ′ f f ′ +2ϕ( f ′)2 + ϕ f f ′′ −ϕ f f ′
F ′

F
, h = −βF. (11)

Note that the poles of G(z) whose multiplicity are at most two come from the
multiple poles of f (z) , F(z) or the zeros of h(z) .

We consider the poles of β 2G . We can see the zeros of h either are the zeros of
F , or the zeros of β . From the above we know that the multiple poles of f with the
multiplicity q(� 2) are the zeros of β with the multiplicity of q−1. Hence the poles
of β 2G only come from the zeros of F , and the multiplicity is at most 4. Hence,

N(r,β 2G) � 4N(r,1/F).

Note that m(r,G) = S(r, f ) , therefore m(r,β 2G) = S(r, f ) . Hence

T (r,β 2G) � 4N(r,1/F).

Since the multiple zeros of f with the multiplicity p(� 2) are the multiple zeros
of β with multiplicity at least 2p−2, therefore, are at least the zeros of β 2G with the
multiplicity 2(2p−2)−2 = 4p−6. Also note that the simple poles of f are the zeros
of β 2G . Hence we have

N1)(r, f )+2N

(
r,

1
f

)
−2N

(
r,

1
f

)
� N

(
r,

1
β 2G

)
� T (r,β 2G) � 4N

(
r,

1
F

)
. (12)

From (5), we have

m(r, f )+N(r, f )−N(r, f )+2m

(
r,

1
f

)
+2N

(
r,

1
f

)
−2N

(
r,

1
f

)
� N

(
r,

1
F

)
+S(r, f ).

(13)
Combining the twice times of (13) and (12), we have

T (r, f )+N(2(r, f )−2N(2(r, f )+m(r, f )+4m

(
r,

1
f

)
+6N

(
r,

1
f

)
−6N

(
r,

1
f

)

� 6N

(
r,

1
F

)
+S(r, f ),

Hence we have

T (r, f ) < 6N

(
r,

1
ϕ f 2 f ′ −1

)
+S(r, f ).
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