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GENERALIZED OPIAL––TYPE INEQUALITIES FOR

DIFFERENTIAL AND INTEGRAL OPERATORS WITH

SPECIAL KERNELS IN FRACTIONAL CALCULUS

G. FARID, J. PEČARIĆ AND Ž. TOMOVSKI

(Communicated by T. Burić)

Abstract. In this paper we give Opial–type inequalities for two functions and multiple Opial–
type inequalities by using generalized fractional differential and integral operators with special
kernels. Also, we deduce some results that already have been proved in [9, 10].

1. Introduction

Mathematical inequalities which involve derivatives and integrals of functions are
of great interest. Opial’s inequality [14] is of great importance in mathematics with re-
spect to applications in theory of differential equations and difference equations. Many
researchers have been published its improvements and generalizations, one can see (for
instance, [1, 2]) and references there in. In 1960. Opial established the following inte-
gral inequality.

Let x(t) ∈C(1)[0,h] be such that x(0) = x(h) = 0, and x(t) > 0 in (0,h) .
Then ∫ h

0
|x(t)x′(t)|dt � h

4

∫ h

0

(
x′(t)

)2
dt, (1.1)

where constant h
4 is the best possible.

Agarwal and Pang [1] studied Opial-type inequalities involving ordinary deriva-
tives and their applications in differential equations and difference equations. Iqbal et
al. in [9] gave Opial-type inequalities for two functions for general kernels and provided
a connection between their results and results in [6]. They presented fractional versions
of Opial-type inequalities regarding fractional derivatives of Riemann-Liouville, Ca-
puto and Canavati type.

By Cm [a,b] we denote the space of all functions which have continuous deriva-
tives up to order m, and AC [a,b] is the space of all absolutely continuous functions on
[a,b] . By ACm [a,b] we denote the space of all functions f ∈Cm−1 [a,b] with f (m−1) ∈
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AC [a,b] . By Lp [a,b] , 1 � p < ∞, we denote the space of all Lebesgue measurable
functions f for which | f |p is Lebesgue integrable on [a,b], and by L∞[a,b] the set of
all functions measurable and essentially bounded on [a,b] . Clearly, L∞[a,b]⊂ Lp [a,b]
for all p � 1. We say that a function g : [a,b] −→ R belongs to the class U( f ,K) if it
admits the representation

g(x) �
∫ x

a
K(x,t) f (t)dt,

where f is a continuous function and K is an arbitrary non-negative kernel such that
f (x) > 0 implies g(x) > 0 for every x ∈ [a,b]. We also assume that all integrals under
consideration exist and that they are finite.

Iqbal et al. in [9] proved following Opial-type inequalities involving two functions
for general kernel with related extreme case.

THEOREM 1.1. Let g1 ∈ U ( f1,K) , g2 ∈ U ( f2,K) . Let ϕ > 0, w � 0 be mea-
surable functions on [a,x], and K be a non-negative measurable kernel. Let r > 1,
r > q > 0 and p � 0. Let f1, f2 ∈ Lr [a,b] . Then the following inequality holds:

x∫
a

w(t)(|g1(t)|p | f2(t)|q + |g2(t)|p | f1(t)|q)dt (1.2)

� 21− q
r

(
q

p+q

) q
r (

d p
q
−2−

p
q

) q
r

×
⎛⎝ x∫

a

[h(t)]
r

r−q dt

⎞⎠
r−q
r
⎛⎝ x∫

a

ϕ (τ) [| f1 (τ)|r + | f2 (τ)|r]dτ

⎞⎠
p+q
r

,

where

h(t) = w(t)

⎡⎣ t∫
a

K (t,τ)
r

r−1 ϕ (τ)
1

1−r dτ

⎤⎦
p(r−1)

r

[ϕ(t)]
−q
r , (1.3)

and

d p
q

=

{
21− p

q , 0 � p � q

1, p � q.
(1.4)

THEOREM 1.2. Let gi ∈U ( f1,Ki) , g̃i ∈U ( f2,Ki) , (i = 1,2) . Let w � 0 be mea-
surable function on [a,x] and p,q1,q2 � 0 and f1, f2 ∈ L∞ [a,b] . Then the following
inequality holds:
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x∫
a

w(t) [|g1(t)|q1 |g̃2(t)|q2 | f1(t)|p + |g2(t)|q2 |g̃1 (t)|q1 | f2(t)|p]dt (1.5)

� ‖w‖∞

x∫
a

⎛⎝ t∫
a

K1 (t,τ)dτ

⎞⎠q1
⎛⎝ t∫

a

K2 (t,τ)dτ

⎞⎠q2

dt

×1
2

[
‖ f1‖2(q1+p)

∞ +‖ f1‖2q2
∞ +‖ f2‖2q2

∞ +‖ f2‖2(q1+p)
∞

]
.

THEOREM 1.3. Let g1 ∈ U ( f1,K) , g2 ∈ U ( f2,K) . Let ϕ > 0, w � 0 be mea-
surable functions on [a,x], and K be a non-negative measurable kernel. Let r < 0,
q > 0 and p � 0. Let f1, f2 ∈ Lr [a,b] each of which is of fixed sign a.e. on [a,b] , with
1
f1

, 1
f2
∈ Lr [a,b] . Then the following inequality holds:

x∫
a

w(t)(|g1(t)|p | f2(t)|q + |g2(t)|p | f1(t)|q)dt (1.6)

� 21− q
r

(
q

p+q

) q
r (

c p
q
−2−

p
q

) q
r

×
⎛⎝ x∫

a

[h(t)]
r

r−q dt

⎞⎠
r−q
r
⎛⎝ x∫

a

ϕ (τ) [| f1 (τ)|r + | f2 (τ)|r]dτ

⎞⎠
p+q
r

,

where h is defined by (1.3) and

c p
q

=

{
1, 0 � p � q

21− p
q , p � q.

(1.7)

2. Fractional differential and integral operators

Fractional calculus is a theory of integral and differential operators of non-integer
order (real or complex number powers). Several mathematicians contributed to this
subject over years. People like Liouville, Riemann, and Weyl made major contributions
to the theory of fractional calculus. The story on the fractional calculus continued with
contributions from Fourier, Abel, Lacroix, Leibniz, Grunwald and Letnikov. For a
historical survey the reader may see [11, 12].

Fractional integral inequalities are useful in establishing the uniqueness of solu-
tions for certain fractional partial differential equations. They also provide upper and
lower bounds for solutions of fractional boundary value problems. These considera-
tions have led various researchers in the field of integral inequalities to explore certain
extensions and generalizations by involving fractional calculus operators.

Many authors have established Opial–type integral inequalities for different kinds
of fractional derivatives and fractional integral operators for example Riemann-Liou-
ville, Caputo, Canvati etc. In this paper we give Opial–type integral inequalities for
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Hilfer differential operator and fractional integral operator containing a generalized
Mittag–Leffler function in the kernel [10, 11, 12, 15, 16, 17, 18, 19].

For any f ∈ L1 [a,b] the Riemann-Liouville fractional integral of f of order ν is
defined by(

Iν
a+ f

)
(s) =

1
Γ(ν)

∫ s

a
(s− t)ν−1 f (t)dt = ( f ∗Kν)(s) , s ∈ [a,b] , ν > 0, (2.1)

where Kν (s) = (s−t)ν−1

Γ(ν) . The Riemann-Liouville fractional derivative of f ∈ L1 [a,b]
of order ν is defined by(

Dν
a+ f

)
(x) =

dn

dxn

(
In−ν
a+ f

)
(x) , (ν > 0, n = [ν]+1) . (2.2)

Let μ > 0 and μ �∈ {1,2, ...} , m = [μ ]+1, f ∈ ACm [a,b] . The Caputo derivative
of order μ is defined as

(CDμ
a+ f

)
(x) =

(
Im−μ
a+

dm

dxm f

)
(x) =

1
Γ(m− μ)

x∫
a

(x− s)m−μ−1 dm

dsm f (s)ds. (2.3)

If μ = m ∈ {1,2, ...} and usual derivative f (m)(x) of order m exists, then Caputo
derivative

(
CDμ

a+ f
)
(x) coincides with f (m)(x) (see, [11, p. 92]).

DEFINITION 2.1. [18] Let f ∈ L1 [a,b] , f ∗K(1−ν)(1−μ) ∈ AC [a,b] . The frac-
tional derivative operator Dμ,ν

a+ of order 0 < μ < 1 and type 0 � ν � 1 with respect to
x ∈ [a,b] is defined by(

Dμ,ν
a+ f

)
(x) =

(
Iν(1−μ)
a+

d
dx

(
I(1−ν)(1−μ)
a+ f

))
(x) (2.4)

whenever the right hand side exists.

This generalization gives the classical Riemann-Liouville fractional differentiation
operator if ν = 0. For ν = 1 it gives the fractional differential operator introduced by
Caputo. We denote it by Dμ,1

a+ f =C Dμ
a+ f .

Several authors (see [7, 16, 17]) called (2.4) the Hilfer fractional derivative. Ap-
plications of Dμ,ν

a+ are given in [7, 16, 17, 18].
The purpose of this paper is to give Opial-type integral inequalities involving dif-

ferent kinds of fractional differential operators. For 0 < μ < 1 and 0 < ν � 1, the
Hilfer fractional differentiation operator Dμ,ν

a+ can be rewritten in the form(
Dμ,ν

a+ f
)
(x) =

(
Iν(1−μ)
a+

(
Dμ+ν−μν

a+ f
))

(x) (2.5)

=
1

Γ(ν (1− μ))

x∫
a+

(x− τ)ν(1−μ)−1
(
Dμ+ν−μν

a+ f
)

(τ)dτ.

Definition of the generalized fractional integral operator containing Mittag–Leffler
function is as follows.
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DEFINITION 2.2. (Prabhakar [15]) Let μ ,ν,γ be positive real numbers and ω ∈
R . Then the generalized fractional integral operator εγ

μ,ν,ω,a+ for a real-valued contin-
uous function f is defined by:

(εγ
μ,ν,ω,a+ f )(x) =

x∫
a+

(x− t)ν−1Eγ
μ,ν(ω(x− t)μ) f (t)dt, (2.6)

where the function Eγ
μ,ν is generalized Mittag–Leffler function defined as

Eγ
μ,ν(t) =

∞

∑
n=0

(γ)n

n!Γ(μn+ ν)
tn, (2.7)

and (γ)n is the Pochhammer symbol: (γ)n = γ(γ +1)...(γ +n−1), (γ)0 = 1.

Let eγ
μ,ν (t,ω) = tν−1Eγ

μ,ν (ωtμ) . The integral operator εγ
μ,ν,ω,a+ is bounded in the

space C(I) where I is an interval in R , with a finite norm ‖ f‖C = max
x∈I

| f (x)| , and

there exists a positive constant M > 0, such that (see [10])∥∥∥εγ
μ,ν,ω,a+ f

∥∥∥
C

� M ‖ f‖C .

We define a variant of Sobolev space:

Wm,1 [a,b] =
{

f ∈ L1 [a,b] :
dm

dtm
f ∈ L1 [a,b]

}
. (2.8)

DEFINITION 2.3. (Prabhakar derivative [15]) Let f ∈ L1 [0,b] , 0 < t < b � ∞,
μ ,ν,γ > 0, and f ∗ e−γ

μ,m−ν,ω ∈ Wm,1 [0,b] , m = [ν] then the Prabhakar derivative is
defined by following relation(

Dγ
μ,ν,ω,0+ f

)
(t) =

dm

dtm
ε−γ

μ,m−ν,ω,0+ f (t) . (2.9)

DEFINITION 2.4. (Caputo-Prabhakar derivative [15]) Let f ∈ L1 [0,b] , 0 < t <
b � ∞, μ ,ν,γ > 0, m = [ν] then the Caputo-Prabhakar derivative for f ∈ ACm [0,b] is
defined by following relation(

CDγ
μ,ν,ω,0+ f

)
(t) = ε−γ

μ,m−ν,ω,0+
dm

dtm
f (t) (2.10)

=
(
Dγ

μ,ν,ω,0+ f
)

(t)−
m−1

∑
k=0

tk−μE−γ
μ,k−ν+1 (ωtμ) f (k) (0+) .

REMARK 2.5. Let μ ,ν,γ > 0 and f ∈ ACm [0,b] , 0 < t < b � ∞, then

(
CDγ

μ,ν,ω,0+ f
)

(t) = Dγ
μ,ν,ω,0+

(
f (t)−

m−1

∑
k=0

tk

k!
f (k) (0+)

)
. (2.11)
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Moreover, if f (k) (0+) = 0, k = 0,1,2, ...m−1, then(
CDγ

μ,ν,ω,0+ f
)

(t) =
(
Dγ

μ,ν,ω,0+ f
)

(t).

Definition of the generalized fractional integral operator containing Mittag–Leffler
function with six parameters is as follows.

DEFINITION 2.6. [16] Let μ ,ν,δ ,k, l,γ be positive real numbers, ω ∈ R. Then
the generalized fractional integral operator containingMittag–Leffler function εγ,δ ,k

μ,ν,l,ω,a+

for a real-valued continuous function f is defined by:

(εγ,δ ,k
μ,ν,l,ω,a+ f )(x) =

∫ x

a
(x− t)ν−1Eγ,δ ,k

μ,ν,l (ω(x− t)μ) f (t)dt, (2.12)

where the function Eγ,δ ,k
μ,ν,l is generalized Mittag–Leffler function defined as

Eγ,δ ,k
μ,ν,l (t) =

∞

∑
n=0

(γ)kn

Γ(μn+ ν)
tn

(δ )ln
. (2.13)

If δ = l = 1 in (2.12), then the integral operator εγ,δ ,k
μ,ν,l,ω,a+ reduces to an integral

operator containing generalized Mittag–Leffler function Eγ,1,k
μ,ν,1 = Eγ,k

μ,ν introduced by
Srivastava and Tomovski in [17]. Along δ = l = 1 in addition if k = 1 (2.12) reduces
to an integral operator εγ

μ,ν,ω,a+ defined by Prabhakar in [15] containing Mittag-Leffler

function Eγ,1,1
μ,ν,1 = Eγ

μ,ν . For ω = 0 in (2.12), integral operator εγ,δ ,k
μ,ν,l,ω,a+ would cor-

respond essentially to the right-handed Riemann-Liouville fractional integral operator(
Iν
a+ f

)
(x).

3. Opial-type inequalities for two functions

Here in this section we are interested to give Opial-type inequalities for different
kinds of integral and differential operators. For example Hilfer differential operator,
Prabhakar integral operator, Caputo Prabhakar derivative, generalized fractional inte-
gral operator. Also we have constructed some examples. First we give results for Hilfer
differential operator and its special cases.

THEOREM 3.1. Let 0 < μ < 1 and 0 < ν � 1, r > 1, r > q > 0 and p � 0. Then
let ϕ > 0, w � 0 be measurable functions on [a,x], and Dμ+ν−μν

a+ f1, Dμ+ν−μν
a+ f2 ∈

Lr [a,b] . Then the following inequality holds:

x∫
a

w(t)
(∣∣(Dμ,ν

a+ f1
)
(t)

∣∣p ∣∣∣(Dμ+ν−μν
a+ f2

)
(t)

∣∣∣q (3.1)

+
∣∣(Dμ,ν

a+ f2
)
(t)

∣∣p ∣∣∣(Dμ+ν−μν
a+ f1

)
(t)

∣∣∣q)dt
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� 21− q
r

(Γ(ν (1− μ)))p

(
q

p+q

) q
r (

d p
q
−2−

p
q

) q
r

⎛⎝ x∫
a

[h(t)]
r

r−q dt

⎞⎠
r−q
r

×
⎛⎝ x∫

a

ϕ (τ)
[∣∣∣(Dμ+ν−μν

a+ f1
)

(τ)
∣∣∣r +

∣∣∣(Dμ+ν−μν
a+ f2

)
(τ)

∣∣∣r]dτ

⎞⎠
p+q
r

,

where

h(t) = w(t)

⎡⎣ t∫
a

(t− τ)[ν(1−μ)−1] r
r−1 ϕ (τ)

1
1−r dτ

⎤⎦
p(r−1)

r

[ϕ(t)]
−q
r , (3.2)

and d p
q

is defined by (1.4).

Proof. If we take g1(t) =
(
Dμ,ν

a+ f1
)
(t) and g2(t) =

(
Dμ,ν

a+ f2
)
(t) in Theorem 1.1,

by applying the integral representation (2.5) and using that the kernel

K (t,τ) =

⎧⎨⎩ (t−τ)ν(1−μ)−1

Γ(ν(1−μ)) : a � τ � t

0 : t < τ � b

is a non-negative measurable kernel for τ ∈ [a,t] , we obtain (3.1). �
Specially, for ν = 1, we obtain the following corollary.

COROLLARY 3.2. Let 0 < μ < 1 , r > 1, r > q > 0 and p � 0. Then let ϕ > 0,
w � 0 be measurable functions on [a,x], and f ′1, f ′2 ∈ Lr [a,b] . Then the following
inequality holds:

x∫
a

w(t)
(∣∣(CDμ

a+ f1
)
(t)

∣∣p ∣∣ f ′2(t)∣∣q +
∣∣(CDμ

a+ f2
)
(t)

∣∣p ∣∣ f ′1(t)∣∣q)dt (3.3)

� 21− q
r

(Γ(1− μ))p

(
q

p+q

) q
r (

d p
q
−2−

p
q

) q
r

⎛⎝ x∫
a

[h(t)]
r

r−q dt

⎞⎠
r−q
r

×
⎛⎝ x∫

a

ϕ (τ)
[∣∣ f ′1 (τ)

∣∣r +
∣∣ f ′2 (τ)

∣∣r]dτ

⎞⎠
p+q
r

,

where h and d p
q

are defined by (3.2) and (1.4), respectively.

EXAMPLE 3.3. If we take w(t) = 1, ϕ(t) = 1, μ = 1
4 , r = 2, a = 0, in (3.4) we

obtain

h(t) =

⎛⎝ t∫
0

dτ√
t− τ

dτ

⎞⎠
p
2

=
(
2
√

t
) p

2
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and

⎛⎝ x∫
0

[h(t)]
2

2−q dt

⎞⎠
2−q
2

=

⎛⎝ x∫
0

(
2
√

t
) p

2−q dt

⎞⎠
2−q
2

=
2

p
2(

p
2(2−q) +1

) 2−q
2

x
p+4−2q

4 .

where 0 < q < 2 and p � 0. If f ′1, f ′2 ∈ L2 [a,b] , then for all x ∈ [a,b] we obtain:

x∫
0

(∣∣(CDμ
a+ f1

)
(t)

∣∣p ∣∣ f ′2(t)∣∣q +
∣∣(CDμ

a+ f2
)
(t)

∣∣p ∣∣ f ′1(t)∣∣q)dt (3.4)

� 21− q
2 + p

2(
Γ
( 3

4

))p

(
q

p+q

) q
2
(
d p

q
−2−

p
q

) q
2

(
p

2(2−q) +1
) 2−q

2

x
p+4−2q

4

⎛⎝ x∫
a

[∣∣ f ′1 (τ)
∣∣2 +

∣∣ f ′2 (τ)
∣∣2]dτ

⎞⎠
p+q
2

.

Analogously, by applying the Theorem 1.3 and using the technique of a proof of
Theorem 3.1, we obtain:

THEOREM 3.4. Let 0 < μ < 1 , 0 < ν � 1, r < 0, q > 0 and p � 0. Then let ϕ >
0, w � 0 be measurable functions on [a,x], and Dμ+ν−μν

a+ f1, Dμ+ν−μν
a+ f2 ∈ Lr [a,b]

each of which is of fixed sign a.e. on [a,b] , with 1
Dμ+ν−μν

a+ f1
, 1

Dμ+ν−μν
a+ f2

∈ Lr [a,b] . Then

the following inequality holds:

x∫
a

w(t)
(∣∣(Dμ,ν

a+ f1
)
(t)

∣∣p ∣∣∣(Dμ+ν−μν
a+ f2

)
(t)

∣∣∣q (3.5)

+
∣∣(Dμ,ν

a+ f2
)
(t)

∣∣p ∣∣∣(Dμ+ν−μν
a+ f1

)
(t)

∣∣∣q)dt

� 21− q
r

(Γ(ν (1− μ)))p

(
q

p+q

) q
r (

c p
q
−2−

p
q

) q
r

⎛⎝ x∫
a

[h(t)]
r

r−q dt

⎞⎠
r−q
r

×
⎛⎝ x∫

a

ϕ (τ)
[∣∣∣(Dμ+ν−μν

a+ f1
)

(τ)
∣∣∣r +

∣∣∣(Dμ+ν−μν
a+ f2

)
(τ)

∣∣∣r]dτ

⎞⎠
p+q
r

,

h and c p
q

are defined by (3.2) and (1.7), respectively.

COROLLARY 3.5. Let 0 < μ < 1 , r < 0, q > 0 and p � 0. Then let ϕ > 0, w � 0
be measurable functions on [a,x], and f ′1, f ′2 ∈ Lr [a,b] each of which is of fixed sign
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a.e. on [a,b] , with 1
f ′1

, 1
f ′2
∈ Lr [a,b] . Then the following inequality holds:

x∫
a

w(t)
(∣∣(CDμ

a+ f1
)
(t)

∣∣p ∣∣ f ′2(t)∣∣q +
∣∣(CDμ

a+ f2
)
(t)

∣∣p ∣∣ f ′1(t)∣∣q)dt (3.6)

� 21− q
r

(Γ(1− μ))p

(
q

p+q

) q
r (

c p
q
−2−

p
q

) q
r

⎛⎝ x∫
a

[h(t)]
r

r−q dt

⎞⎠
r−q
r

×
⎛⎝ x∫

a

ϕ (τ)
[∣∣ f ′1 (τ)

∣∣r +
∣∣ f ′2 (τ)

∣∣r]dτ

⎞⎠
p+q
r

,

where h and c p
q

are defined by (3.2) and (1.7), respectively.

Let f1, f2 ∈ L∞[0,b], and 0 < μ < 1. Taking g1 (t) =
(
CDμ

0+ f1
)
(t) , g2(t) =(

CDμ
0+ f1

)
(t), g̃1(t) =

(
CDμ

0+ f2
)
(t), g̃2(t) =

(
CDμ

0+ f2
)
(t) and

K1 (t,τ) = K2 (t,τ) =

{
(t−τ)−μ

Γ(1−μ) : 0 � τ � t

0 : t < τ � b

in Theorem 1.2, by computation

x∫
0

⎛⎝ t∫
0

K1 (t,τ)dτ

⎞⎠q1
⎛⎝ t∫

0

K1 (t,τ)dτ

⎞⎠q2

dt

=
1

(Γ(1− μ))q1+q2

x∫
0

⎛⎝ t∫
0

dτ
(t− τ)μ

⎞⎠q1+q2

dt

=
x(q1+q2)(1−μ)+1

(Γ(2− μ))q1+q2 [(q1 +q2) (1− μ)+1]

we obtain the following inequality:

THEOREM 3.6. Let 0 < μ < 1 and p,q1,q2 � 0. If w � 0 is measurable function
on [0,x] , f ′1, f ′2 ∈ L∞[0,b], then the following inequality holds:

x∫
0

w(t)
[∣∣(CDμ

0+ f1
)
(t)

∣∣q1
∣∣(CDμ

0+ f2
)
(t)

∣∣q2 | f1(t)|p (3.7)

+
∣∣(CDμ

0+ f1
)
(t)

∣∣q2
∣∣(CDμ

0+ f2
)
(t)

∣∣q1 | f2(t)|p
]
dt

� ‖w‖∞
x(q1+q2)(1−μ)+1

(Γ(2− μ))q1+q2 [(q1 +q2) (1− μ)+1]

×1
2

[∥∥ f ′1
∥∥2(q1+p)

∞ +
∥∥ f ′1

∥∥2q2
∞ +

∥∥ f ′2
∥∥2q2

∞ +
∥∥ f ′2

∥∥2(q1+p)
]
.
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Next we give results for generalized fractional integral operator involving gener-
alized Mittag-Leffler function. Also we deduce results for Prabhakar integral operator,
Caputo Prabhakar derivative and their special cases are discussed.

THEOREM 3.7. Let μ ,ν,δ ,k, l,γ be positive real numbers, ω ∈ R, r > 1, r >
q > 0 and p � 0. Let ϕ > 0, w � 0 be measurable functions on [a,x], and let f1,
f2 ∈ Lr [a,b] . Then the following inequality holds:

x∫
a

w(t)
(∣∣∣εγ,δ ,k

μ,ν,l,ω,a+ f1(t)
∣∣∣p | f2(t)|q +

∣∣∣εγ,δ ,k
μ,ν,l,ω,a+ f2(t)

∣∣∣p | f1(t)|q)dt (3.8)

� 21− q
r

(
q

p+q

) q
r (

d p
q
−2−

p
q

) q
r

⎛⎝ x∫
a

[h(t)]
r

r−q dt

⎞⎠
r−q
r

×
⎛⎝ x∫

a

ϕ (τ) [| f1 (τ)|r + | f2 (τ)|r]dτ

⎞⎠
p+q
r

,

where

h(t) = w(t)

⎡⎣ t∫
a

[
(t− τ)ν−1Eγ,δ ,k

μ,ν,l (ω(t − τ)μ)
] r

r−1 ϕ (τ)
1

1−r dτ

⎤⎦
p(r−1)

r

[ϕ(t)]
−q
r , (3.9)

and d p
q

is defined by (1.4).

EXAMPLE 3.8. For δ = k = l = 1, w(t) = 1,ϕ(t) = 1,r = 2

h(t) =
[∫ t

a

[
(t− τ)ν−1Eγ

μ,ν(ω(t− τ)μ)
]2

dτ
] p

2

,

where 0 < q < 2 and p � 0. If f1, f2 ∈ L2 [0,b] , then for all x ∈ [a,b] we obtain:

x∫
a

(∣∣∣εγ
μ,ν,ω,a+ f1(t)

∣∣∣p | f2(t)|q +
∣∣∣εγ

μ,ν,ω,a+ f2(t)
∣∣∣p | f1(t)|q)dt

� 21− q
2

(
q

p+q

) q
2 (

d p
q
−2−

p
q

) q
2

⎛⎝ x∫
a

[∫ t

0

[
(t−τ)ν−1Eγ

μ,ν(ω(t−τ)μ)
]2

dτ
] p

2−q

dt

⎞⎠
2−q
2

×
⎛⎝ x∫

a

[
| f1 (τ)|2 + | f2 (τ)|2

]
dτ

⎞⎠
p+q
2

,
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in particular for μ = 2, w = −1, ν = γ = 1, a = 0 we have

h(t) =
[∫ t

0

[
E1

2,1(−(t− τ)2)
]2

dτ
] p

2

=
[∫ t

0
Cos2(t − τ)dτ

] p
2

=
[

t
2

+
Sin2t

4

] p
2

,

and

⎛⎝ x∫
0

[h(t)]
2

2−q dt

⎞⎠
2−q
2

=

⎛⎝ x∫
0

(
t
2

+
Sin2t

4

) p
2−q

dt

⎞⎠
2−q
2

x∫
0

(∣∣∣ε1
2,1,−1,0+ f1(t)

∣∣∣p | f2(t)|q +
∣∣∣ε1

2,1,−1,0+ f2(t)
∣∣∣p | f1(t)|q)dt

� 21− q
2

(
q

p+q

) q
2 (

d p
q
−2−

p
q

) q
2

⎛⎝ x∫
0

(
t
2

+
Sin2t

4

) p
2−q

dt

⎞⎠
2−q
2

×
⎛⎝ x∫

a

[
| f1 (τ)|2 + | f2 (τ)|2

]
dτ

⎞⎠
p+q
2

.

THEOREM 3.9. Let μ ,ν,δ ,k, l,γ be positive real numbers, ω ∈ R, r < 0, q > 0
and p � 0. Let ϕ > 0, w � 0 be measurable functions on [a,x], and let f1, f2 ∈ Lr [a,b]
each of which is of fixed sign a.e. on [a,b] , with 1

f1
, 1

f2
∈ Lr [a,b] . Then the following

inequality holds:

x∫
a

w(t)
(∣∣∣εγ,δ ,k

μ,ν,l,ω,a+ f1(t)
∣∣∣p | f2(t)|q +

∣∣∣εγ,δ ,k
μ,ν,l,ω,a+ f2(t)

∣∣∣p | f1(t)|q)dt (3.10)

� 21− q
r

(
q

p+q

) q
r (

c p
q
−2−

p
q

) q
r

⎛⎝ x∫
a

[h(t)]
r

r−q dt

⎞⎠
r−q
r

×
⎛⎝ x∫

a

ϕ (τ) [| f1 (τ)|r + | f2 (τ)|r]dτ

⎞⎠
p+q
r

,

where h and c p
q

are defined by (3.9) and (1.7), respectively.

COROLLARY 3.10. Let ν > 0, r > 1, r > q > 0 and p � 0. If ϕ > 0, w � 0
are measurable functions on [a,x], and f1, f2 ∈ Lr [a,b] , then the following inequality
holds:
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x∫
a

w(t)
(∣∣(Iν

a+ f1
)
(t)

∣∣p | f2 (t)|q +
∣∣(Iν

a+ f2
)
(t)

∣∣p | f1(t)|q)dt (3.11)

� 21− q
r

(
q

p+q

) q
r (

d p
q
−2−

p
q

) q
r

⎛⎝ x∫
a

[h(t)]
r

r−q dt

⎞⎠
r−q
r

×
⎛⎝ x∫

a

ϕ (τ) [| f1 (τ)|r + | f2 (τ)|r]dτ

⎞⎠
p+q
r

,

where h and d p
q

are defined by (3.9) and (1.4), respectively.

THEOREM 3.11. Let ν > 0, r < 0, q > 0 and p � 0. Let ϕ > 0, w � 0 be
measurable functions on [a,x], and let f1, f2 ∈ Lr [a,b] each of which is of fixed sign
a.e. on [a,b] , with 1

f1
, 1

f2
∈ Lr [a,b] . Then the following inequality holds:

x∫
a

w(t)
(∣∣(Iν

a+ f1
)
(t)

∣∣p | f2 (t)|q +
∣∣(Iν

a+ f2
)
(t)

∣∣p | f1(t)|q)dt (3.12)

� 21− q
r

(
q

p+q

) q
r (

c p
q
−2−

p
q

) q
r

⎛⎝ x∫
a

[h(t)]
r

r−q dt

⎞⎠
r−q
r

×
⎛⎝ x∫

a

ϕ (τ) [| f1 (τ)|r + | f2 (τ)|r]dτ

⎞⎠
p+q
r

,

where h and c p
q

are defined by (3.9) and (1.7), respectively.

For f1, f2 ∈L∞[0,b], μ ,ν,δ ,k, l,γ ∈R
+ , ω � 0 if we take g1(t)= (εγ,δ ,k

μ,ν,l,ω,0+ f1)(t) ,

g2(t) = (εγ
μ,ν,,ω,0+ f1)(t), g̃1(t) =

(
εγ,δ ,k

μ,ν,l,ω,0+ f2
)

(t), g̃2(t) =
(

εγ
μ,ν,,ω,0+ f2

)
(t) and

K1 (t,τ) =

{
(t− τ)ν−1Eγ,δ ,k

μ,ν,l (ω(t− τ)μ) : 0 � τ � t

0 : t < τ � b
,

K2 (t,τ) =

{
(t− τ)ν−1Eγ

μ,ν(ω(t− τ)μ) : 0 � τ � t

0 : t < τ � b
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in Theorem 1.2, by computation

x∫
0

⎛⎝ t∫
0

K1 (t,τ)dτ

⎞⎠q1
⎛⎝ t∫

0

K2 (t,τ)dτ

⎞⎠q2

dt

=
x∫

0

⎛⎝ t∫
0

(t− τ)ν−1Eγ,δ ,k
μ,ν,l (ω(t − τ)μ)dτ

⎞⎠q1
⎛⎝ t∫

0

(t− τ)ν−1Eγ
μ,ν (ω(t− τ)μ)dτ

⎞⎠q2

dt

=
x∫

0

(
tνEγ,δ ,k

μ,ν+1,l (ωtα)
)q1

(
eγ

μ,ν+1 (ωtα)
)q2

dt

we obtain the following theorem.

THEOREM 3.12. Let μ ,ν,δ ,k, l,γ,R+, ω , p,q1,q2 � 0. If w � 0 is measurable
function on [0,x] and f1, f2 ∈ L∞ [0,b] , then the following inequality holds:

x∫
0

w(t)
[∣∣∣(εγ,δ ,k

μ,ν,l,ω,0+ f1)(t)
∣∣∣q1

∣∣∣(εγ
μ,ν,,ω,0+ f2

)
(t)

∣∣∣q2 | f1 (t)|p (3.13)

+
∣∣∣(εγ

μ,ν,ω,0+ f1)(t)
∣∣∣q2

∣∣∣(εγ,δ ,k
μ,ν,l,ω,0+ f2

)
(t)

∣∣∣q1 | f2(t)|p
]
dt

� ‖w‖∞

x∫
0

(
tνEγ,δ ,k

μ,ν+1,l (ωtα)
)q1

(
eγ

μ,ν+1 (ωtα)
)q2

dt

×1
2

[
‖ f1‖2(q1+p)

∞ +‖ f1‖2q2
∞ +‖ f2‖2q2

∞ +‖ f2‖2(q1+p)
]
.

COROLLARY 3.13. Let μ ,ν,γ ∈ R
+, ω , p,q1,q2 � 0. If f1, f2 ∈ L∞ [0,b] , then

the following inequality holds:

x∫
0

[∣∣∣(εγ
μ,ν,ω,0+ f1)(t)

∣∣∣q1
∣∣∣(εγ

μ,ν,ω,0+ f2
)

(t)
∣∣∣q2 | f1(t)|p (3.14)

+
∣∣∣(εγ

μ,ν,ω,0+ f1)(t)
∣∣∣q2

∣∣∣(εγ
μ,ν,ω,0+ f2

)
(t)

∣∣∣q1 | f2(t)|p
]
dt

�

⎛⎝ x∫
0

(
eγ

μ,ν+1 (ωtα)
)q1+q2

dt

⎞⎠ 1
2

[
‖ f1‖2(q1+p)

∞ +‖ f1‖2q2
∞ +‖ f2‖2q2

∞ +‖ f2‖2(q1+p)
]
.

Taking ω = 0 in (3.14), we get:
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COROLLARY 3.14. Let ν > 0, p,q1,q2 � 0. If w � 0 is measurable function on
[0,x] and f1, f2 ∈ L∞ [0,b] , then the following inequality holds:

x∫
0

w(t)
[∣∣(Iν

0+ f1)(t)
∣∣q1

∣∣(Iν
0+ f2

)
(t)

∣∣q2 | f1 (t)|p (3.15)

+
∣∣(Iν

0+ f1)(t)
∣∣q2

∣∣(Iν
0+ f2

)
(t)

∣∣q1 | f2(t)|p
]
dt

� ‖w‖∞
(Γ(ν +1))q1+q2

xν(q1+q2)+1

ν (q1 +q2)+1

×1
2

[
‖ f1‖2(q1+p)

∞ +‖ f1‖2q2
∞ +‖ f2‖2q2

∞ +‖ f2‖2(q1+p)
]
.

THEOREM 3.15. Let μ ,ν,γ > 0, r > 1, r > q > 0, p � 0. If ϕ > 0, w � 0 are
measurable functions on [0,x], f1, f2 ∈ Lr [0,b] and f1, f2 ∈ ACm [0,b] , m = [ν] , then
the following inequality holds:

x∫
0

w(t)
(∣∣∣(CDγ

μ,ν,ω,0+ f1
)

(t)
∣∣∣p ∣∣∣∣ dm

dtm
f2(t)

∣∣∣∣q (3.16)

+
∣∣∣(CDγ

μ,ν,ω,0+ f2
)

(t)
∣∣∣p ∣∣∣∣ dm

dtm
f1 (t)

∣∣∣∣q)dt

� 21− q
r

(
q

p+q

) q
r (

d p
q
−2−

p
q

) q
r

⎛⎝ x∫
0

[h(t)]
r

r−q dt

⎞⎠
r−q
r

×
⎛⎝ x∫

0

ϕ (τ)
[∣∣∣∣ dm

dτm f1 (τ)
∣∣∣∣r +

∣∣∣∣ dm

dτm f2 (τ)
∣∣∣∣r]dτ

⎞⎠
p+q
r

,

where

h(t) = w(t)

⎡⎣ t∫
0

[
e−γ

μ,m−ν (t − τ,ω)
] r

r−1 ϕ (τ)
1

1−r dτ

⎤⎦
p(r−1)

r

[ϕ(t)]
−q
r , (3.17)

and d p
q

is defined by (1.4).

THEOREM 3.16. Let μ ,ν,γ > 0, r > 1, r > q > 0, p � 0. If ϕ > 0, w �
0 be measurable functions on [0,x], f (m)

1 , f (m)
2 ∈ Lr [0,b] and f1, f2 ∈ ACm [0,b] ,

f1 ∗ e−γ
μ,m−ν,ω , f2 ∗ e−γ

μ,m−ν,ω ∈ Wm,1 [0,b] , m = [ν] , f (k)
1 (0+) = f (k)

2 (0+) = 0, k =
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0,1,2, ...m−1, then the following inequality holds:

x∫
0

w(t)
(∣∣∣(Dγ

μ,ν,ω,0+ f1
)

(t)
∣∣∣p ∣∣∣∣ dm

dtm
f2(t)

∣∣∣∣q (3.18)

+
∣∣∣(Dγ

μ,ν,ω,0+ f2
)

(t)
∣∣∣p ∣∣∣∣ dm

dtm
f1(t)

∣∣∣∣q)dt

� 21− q
r

(
q

p+q

) q
r (

d p
q
−2−

p
q

) q
r

⎛⎝ x∫
0

[h(t)]
r

r−q dt

⎞⎠
r−q
r

×
⎛⎝ x∫

0

ϕ (τ)
[∣∣∣∣ dm

dτm f1 (τ)
∣∣∣∣r +

∣∣∣∣ dm

dτm f2 (τ)
∣∣∣∣r]dτ

⎞⎠
p+q
r

,

where h and d p
q

are defined by (3.17) and (1.4), respectively.

THEOREM 3.17. Let μ ,ν,γ,ω > 0 p,q1,q2 � 0 , w � 0 be measurable function

on [0,x] and f (m)
1 , f (m)

2 ∈ L∞ [0,b] , m = [ν]+1. Then the following inequality holds:

x∫
0

w(t)
[∣∣(CDν

0+ f1
)
(t)

∣∣q1
∣∣∣(CDγ

μ,ν,ω,0+ f2
)

(t)
∣∣∣q2

∣∣∣∣ dm

dtm
f1(t)

∣∣∣∣p (3.19)

+
∣∣∣(CDγ

μ,ν,ω,0+ f1
)

(t)
∣∣∣q2 ∣∣(CDν

0+ f2
)
(t)

∣∣q1

∣∣∣∣ dm

dtm
f2(t)

∣∣∣∣p]dt

� ‖w‖∞
(Γ(m−ν +1))q1

x∫
0

t(m−ν)q1

(
e−γ

μ,m−ν+1 (ωtμ)
)q2

dt

×1
2

[∥∥∥ f (m)
1

∥∥∥2(q1+p)

∞
+
∥∥∥ f (m)

1

∥∥∥2q2

∞
+
∥∥∥ f (m)

2

∥∥∥2q2

∞
+
∥∥∥ f (m)

2

∥∥∥2(q1+p)

∞

]
.

Proof. If we take g1(t) =
(
CDν

0+ f1
)
(t), g2(t) =

(
CDγ

μ,ν,ω,0+ f2
)

(t), g̃1 (t) =(
CDν

0+ f1
)
(t), g̃2(t) =

(
CDγ

μ,ν,ω,0+ f2
)

(t),

K1 (t,τ) =

⎧⎨⎩
(t−τ)m−ν−1

Γ(m−ν) : 0 � τ � t

0 : t < τ � τ
,

K2 (t,τ) =

{
e−γ

μ,m−ν
(
ω (t− τ)μ) : 0 � τ � t

0 : t < τ � τ
,
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since

x∫
0

⎛⎝ t∫
0

K1 (t,τ)dτ

⎞⎠q1
⎛⎝ t∫

0

K2 (t,τ)dτ

⎞⎠q2

dt

=
1

(Γ(m−ν))q1

x∫
0

⎛⎝ t∫
0

(t− τ)m−ν−1 dτ

⎞⎠q1
⎛⎝ t∫

0

e−γ
μ,m−ν

(
ω (t− τ)μ)dτ

⎞⎠q2

dt

=
1

(Γ(m−ν +1))q1

x∫
0

t(m−ν)q1

(
e−γ

μ,m−ν+1 (ωtμ)
)q2

dt,

by applying the Theorem 1.2 we obtain (3.19). �

4. Multiple Opial-type inequalities

In this section we give multiple Opial-type inequalities for Hilfer differential op-
erator, Prabhakar integral operator, Caputo Prabhakar derivative, generalized fractional
integral operator. Iqbal et al. in [10] proved the following new multiple Opial-type
inequalities for general kernels, which proofs are based on a technique from [5].

THEOREM 4.1. Let yi ∈ U (Ki, f ) , i = 1,2, ...,N, N ∈ N. Let w1 and w2 be

continuousweight functions on [a,x] with w1 � 0 and w2 > 0. Let ri � 0, r =
N
∑
i=1

ri > 0,

p > 0, q � 0, σ = 1
p+q < 1 and f ∈ Lp+q [a,b] . Then

x∫
a

w1(t)
N

∏
i=1

|yi(t)|ri p | f (t)|q dt (4.1)

�
(

q
rp+q

)σq
( x∫

a

[w1(t)]
1

σ p [w2 (t)]
−q
p

×
N

∏
i=1

⎛⎝ t∫
a

[w2 (τ)]−
σ

1−σ |Ki (t,τ)| 1
1−σ dτ

⎞⎠
(1−σ)ri

σ

dt

)σ p
⎛⎝ x∫

a

w2(t) | f (t)| 1
σ dt

⎞⎠σ(rp+q)

.

THEOREM 4.2. Suppose that assumptions of the Theorem 4.1 hold. Suppose also
that w1 is an increasing and w2 is decreasing functions. Then
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x∫
a

w1(t)
N

∏
i=1

|yi(t)|ri p | f (t)|q dt (4.2)

�
(

q
rp+q

)σq

w1 (x) [w2 (x)]−σ(rp+q)

×

⎛⎜⎜⎝
x∫

a

N

∏
i=1

⎛⎝ t∫
a

|Ki (t,τ)| 1
1−σ dτ

⎞⎠
(1−σ)ri

σ

dt

⎞⎟⎟⎠
σ p⎛⎝ x∫

a

w2(t) | f (t)| 1
σ dt

⎞⎠σ(rp+q)

.

Let Dμi+νi−μiνi
a+ f ∈ Lp+q [a,b] , 0 < μi < 1,0 < νi � 1, i = 1,2, ..N, p > 0, q � 0.

Replacing yi by Dμi,νi
a+ f , f by Dμi+νi−μiνi

a+ f , i = 1,2, ..,N and taking particular kernel

Ki (t,τ) =

⎧⎨⎩ (t−τ)νi(1−μi)−1

Γ(νi(1−μi))
, a � τ � t

0, t < τ � b
(4.3)

in Theorem 4.1 and Theorem 4.2. Then we get following multiple Opial-type inequali-
ties.

THEOREM 4.3. Let 0 < μi < 1,0 < νi � 1, i = 1,2, ..N , ω � 0, w1 and w2 be

continuousweight functions on [a,x] with w1 � 0 and w2 > 0. Let ri � 0, r =
N
∑
i=1

ri > 0,

p > 0, q � 0, σ = 1
p+q < 1 and Dμi+νi−μiνi

a+ f ∈ Lp+q [a,b] . Then

x∫
a

w1(t)
N

∏
i=1

∣∣(Dμi,νi
a+ f )(t)

∣∣ri p ∣∣∣Dμi+νi−μiνi
a+ f (t)

∣∣∣q dt (4.4)

�
(

q
rp+q

)σq
( x∫

a

[w1(t)]
1

σ p [w2 (t)]
−q
p

×
N

∏
i=1

⎛⎝ t∫
a

[w2 (τ)]−
σ

1−σ

∣∣∣∣∣ (t− τ)νi(1−μi)−1

Γ(νi (1− μi))

∣∣∣∣∣
1

1−σ

dτ

⎞⎠
(1−σ)ri

σ

dt

)σ p

×
⎛⎝ x∫

a

w2(t)
∣∣∣Dμi+νi−μiνi

a+ f
∣∣∣ 1

σ
dt

⎞⎠σ(rp+q)

.

Moreover, if w1 is an increasing and w2 is decreasing functions, then

x∫
a

w1(t)
N

∏
i=1

∣∣(Dμi,νi
a+ f )(t)

∣∣ri p ∣∣∣Dμi+νi−μiνi
a+ f (t)

∣∣∣q dt (4.5)

�
(

q
rp+q

)σq

w1 (x) [w2 (x)]−σ(rp+q)
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×

⎛⎜⎜⎝
x∫

a

N

∏
i=1

⎛⎝ t∫
a

∣∣∣∣∣(t− τ)νi(1−μi)−1

Γ(νi (1− μi))

∣∣∣∣∣
1

1−σ

dτ

⎞⎠
(1−σ)ri

σ

dt

⎞⎟⎟⎠
σ p

×
⎛⎝ x∫

a

w2(t)
∣∣∣Dμi+νi−μiνi

a+ f
∣∣∣ 1

σ
dt

⎞⎠σ(rp+q)

.

COROLLARY 4.4. [10] Let 0 < μi < 1, i = 1,2, ..N , ω � 0, w1 and w2 are

continuousweight functions on [a,x] with w1 � 0 and w2 > 0. Let ri � 0, r =
N
∑
i=1

ri > 0,

p > 0, q � 0, σ = 1
p+q < 1 and f ′ ∈ Lp+q [a,b] . Then

x∫
a

w1(t)
N

∏
i=1

∣∣(CDμi
a+ f )(t)

∣∣ri p ∣∣∣∣ d
dt

f (t)
∣∣∣∣q dt (4.6)

�
(

q
rp+q

)σq
( x∫

a

[w1(t)]
1

σ p [w2 (t)]
−q
p

×
N

∏
i=1

⎛⎝ t∫
a

[w2 (τ)]−
σ

1−σ

∣∣∣∣(t− τ)−μi

Γ(1− μi)

∣∣∣∣
1

1−σ

dτ

⎞⎠
(1−σ)ri

σ

dt

)σ p

×
⎛⎝ x∫

a

w2(t)
∣∣∣∣ d
dt

f (t)
∣∣∣∣ 1

σ
dt

⎞⎠σ(rp+q)

.

Moreover, if w1 is an increasing and w2 is decreasing functions. Then

x∫
a

w1(t)
N

∏
i=1

∣∣(CDμi
a+ f )(t)

∣∣ri p ∣∣∣∣ d
dt

f (t)
∣∣∣∣q dt (4.7)

�
(

q
rp+q

)σq

w1 (x) [w2 (x)]−σ(rp+q)

⎛⎜⎜⎝
x∫

a

N

∏
i=1

⎛⎝ t∫
a

∣∣∣∣ (t− τ)−μi

Γ(1− μi)

∣∣∣∣
1

1−σ

dτ

⎞⎠
(1−σ)ri

σ

dt

⎞⎟⎟⎠
σ p

×
⎛⎝ x∫

a

w2(t)
∣∣∣∣ d
dt

f (t)
∣∣∣∣ 1

σ
dt

⎞⎠σ(rp+q)

.

Let f ∈ Lp+q [a,b] , p > 0, q � 0. Then by replacing yi by (εγi ,δ ,k
μi ,νi,l,ω,a+ f )(t),

where μi,νi,γi, i = 1,2, ..,N , k, l,δ are positive real numbers, ω � 0 and taking
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particular kernel

Ki (t,τ) =

{
(t − τ)ν−1Eγi,δ ,k

μi,νi,l
(ω(t − τ)μ), a � τ � t

0, t < τ � b
(4.8)

in Theorem 4.1 and Theorem 4.2, we get:

THEOREM 4.5. Let μi,νi,γi, i = 1,2, ..,N , k, l,δ be positive real numbers, ω �
0, w1 and w2 be continuous weight functions on [a,x] with w1 � 0 and w2 > 0. Let

ri � 0, r =
N
∑
i=1

ri > 0, p > 0, q � 0, σ = 1
p+q < 1 and f ∈ Lp+q [a,b] . Then

x∫
a

w1(t)
N

∏
i=1

∣∣∣(εγi,δ ,k
μi,νi,l,ω,a+ f )(t)

∣∣∣ri p | f (t)|q dt (4.9)

�
(

q
rp+q

)σq
⎛⎝ x∫

a

[w1(t)]
1

σ p [w2 (t)]
−q
p

×
N

∏
i=1

⎛⎝ t∫
a

[w2 (τ)]−
σ

1−σ
∣∣∣(t− τ)νi−1Eγi,δ ,k

μi,νi,l
(ω(t − τ)μi)

∣∣∣ 1
1−σ

dτ

⎞⎠
(1−σ)ri

σ

dt

⎞⎟⎟⎠
σ p

×
⎛⎝ x∫

a

w2(t) | f (t)| 1
σ dt

⎞⎠σ(rp+q)

.

Moreover, if w1 is an increasing and w2 is decreasing functions. Then

x∫
a

w1(t)
N

∏
i=1

∣∣∣(εγi ,δ ,k
μi ,νi,l,ω,a+ f )(t)

∣∣∣ri p | f (t)|q dt (4.10)

�
(

q
rp+q

)σq

w1 (x) [w2 (x)]−σ(rp+q)

×

⎛⎜⎜⎝
x∫

a

N

∏
i=1

⎛⎝ t∫
a

∣∣∣(t − τ)νi−1Eγi,δ ,k
μi,νi,l

(ω(t− τ)μi)
∣∣∣ 1

1−σ
dτ

⎞⎠
(1−σ)ri

σ

dt

⎞⎟⎟⎠
σ p

×
⎛⎝ x∫

a

w2(t) | f (t)| 1
σ dt

⎞⎠σ(rp+q)

.

If we take ω = 0, we obtain the following corollary.
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COROLLARY 4.6. Let νi, i = 1,2, ..N , be positive real numbers, ω � 0, w1

and w2 are continuous weight functions on [a,x] with w1 � 0 and w2 > 0. Let ri � 0,

r =
N
∑
i=1

ri > 0, p > 0, q � 0, σ = 1
p+q < 1 and f ∈ Lp+q [a,b] . Then

x∫
a

w1(t)
N

∏
i=1

∣∣(Iνi
a+ f )(t)

∣∣ri p | f (t)|q dt (4.11)

�
(

q
rp+q

)σq
( x∫

a

[w1(t)]
1

σ p [w2 (t)]
−q
p

×
N

∏
i=1

⎛⎝ t∫
a

[w2 (τ)]−
σ

1−σ

∣∣∣∣(t − τ)νi−1

Γ(νi)

∣∣∣∣
1

1−σ
dτ

⎞⎠
(1−σ)ri

σ

dt

)σ p

×
⎛⎝ x∫

a

w2(t) | f (t)| 1
σ dt

⎞⎠σ(rp+q)

.

Moreover, if w1 is an increasing and w2 is decreasing functions. Then

x∫
a

w1(t)
N

∏
i=1

∣∣(Iνi
a+ f )(t)

∣∣ri p | f (t)|q dt (4.12)

�
(

q
rp+q

)σq

w1 (x) [w2 (x)]−σ(rp+q)

×

⎛⎜⎜⎝ x∫
a

N

∏
i=1

⎛⎝ t∫
a

∣∣∣∣(t− τ)νi−1

Γ(νi)

∣∣∣∣
1

1−σ
dτ

⎞⎠
(1−σ)ri

σ

dt

⎞⎟⎟⎠
σ p⎛⎝ x∫

a

w2(t) | f (t)| 1
σ dt

⎞⎠σ(rp+q)

.

In the following we emphasize that results in [10] can be seen for particular kernels as
more fractional multiple Opial-type inequalities

REMARK 4.7. Let N ∈ N , w be continuous positive weight function on [a,x] .

Let ri � 0, r =
N
∑
i=1

ri > 0, p > 0, q � 0, σ = 1
p+q < 1, Dμi+νi−μiνi

a+ f ∈ Lp+q [a,b] ,

yi = Dμi,νi
a+ f , 0 < μi < 1,0 < νi � 1, i = 1,2, ...,N and particular kernel Ki is given by

(4.3). Then by using Theorem 3.1 of [10] we can have multiple Opial-type fractional
inequalities for Hilfer, Prabhakar, Caputo Prabhakar operators. Moreover if r � 1, w
is decreasing function or A � w(t) � B, t ∈ [a,x] , then for the same functions yi and
same particular kernel Ki of (4.3) inequalities of Theorem 3.2 and Theorem 3.4 of [10]
appear as fractional multiple Opial-type inequalities. The same results of Theorem 3.1,
Theorem 3.2 and Theorem 3.4 of [10] provide multiple Opial-type fractional inequal-
ities containing Mittag–Leffler function if yi is replaced with generalized fractional
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integral operator (εγi ,δ ,k
μi ,νi,l,ω,a+ f )(t), where μi,νi,γi, i = 1,2, ..,N , k, l,δ are positive

real numbers, ω � 0, f ∈ Lp+q [a,b] and particular kernel Ki is given by (4.8). Theo-
rem 3.5 of [10] for non-weighted case of multiple Opial inequality also holds true in
both cases of yi and Ki,considered above.
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[18] Ž. TOMOVSKI, R. HILFER AND H. M. SRIVASTAVA, Fractional and operational calculus with gen-

eralized fractional derivative operators and Mittag-Leffler functions, Integral Transforms Spec. Funct.
21, 11 (2010), 797–814.



1040 G. FARID, J. PEČARIĆ AND Ž. TOMOVSKI
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