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HERMITE INTERPOLATION OF COMPOSITION
FUNCTION AND STEFFENSEN-TYPE INEQUALITIES

ASFAND FAHAD, JOSIP PECARIC AND MARJAN PRALJAK

(Communicated by A. Horwitz)

Abstract. Hermite interpolation of composition function and some related inequalities are given.
The obtained inequalities are closely related to a generalization of Steffensen’s inequality given
by the current authors in [2].

1. Introduction

Steffensen [7] proved the following inequality: if f,%: [a,f] =R, 0< A< 1 and
f is decreasing, then

a+y

B B
/f(t)h(t)dt< F)dr, wherey:/ h()dr. (1)

o
A few hundred papers are devoted to studying generalizations of Steffensen’s in-
equality (1). One recent is given by Rabier [0].

THEOREM 1. Let ¢ : [0,00) — R be convex and continuous with ¢(0) = 0. If
b>0and h € L*(0,b),h >0 and ||h|| < 1, then h¢V) € L'(0,b) and

(p(/obh(t)dt) < /Obh(t)q)(l)(t)dt 2

In fact, Rabier’s result is closely related to another generalization of Steffensen’s
inequality given by Pecari¢ [4].

THEOREM 2. Let g : [a,b] — R be a nondecreasing and differentiable function
and f : I — R be a nondecreasing function (I is an interval in R such that a,b,g(a),

gb)el).
(a) If g(x) <x, then
b
/ f()gM (@) dr > / fle)dr. 3)
@ g
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(b) If g(x) = x, then the reverse of the above inequality holds.

The assumptions of Theorem 2 can be weakened and differentiability of g can be
replaced with absolute continuity. Indeed, for a nondecreasing function f, the function
F(x) = [* f(t)dt is well defined and satisfies F(!) = f at all except at most countably
many points. For absolutely continuous nondecrasing function g the substitution z =
g(¢) in the integral is justified (see [3, Corollary 20.5]), so

()
Plee) - Fata) = [ 1z = [ rle)sVOar < [ o0 @

where the last inequality holds when g(r) < 7.

Steffensen’s inequality (1) follows from Theorem 2 by making substitutions g(x) —
Jih(t+a—a)dt+a and f(x) — —f(x+a—a) and taking b = — o +a.

Moreover, a convex function ¢ from Theorem | has a nondecreasing right-sided
derivative q)J(rl) such that ¢(x) = [3 q)J(rl)(t)dt. Furthermore, for a function A : [0,b] —
[0, 1], the function g(x) = [ h(t)dt is absolutely continuous and satisfies g(x) < x and
g = h. Therefore, by taking a =0, f = d)J(rl) and g(x) = [3 h(t)dt in Theorem 2
(under the weaker assumptions) we get Theorem 1.

By replacing the equality

(%)
Flg() = Flg(@) + [ r)a

with the n-th order Taylor expansion of the composition F o g, Fahad, Pecari¢ and
Praljak [2] obtained the following generalization of Theorem 2.

THEOREM 3. Let n€N. Let g: [a,b] =R and F : I — R (where I is an interval
in R such that a,b,g(a),g(b) € I) be two n times differentiable functions such that
gW.g@ g FO) FQ@  F® are nondecreasing functions. If g(x) < x, then

(b—a)
il

n—1 n—1
F(g(b)) < F(g(a))+ 2 FO(g(a)) Y Bix(gM(a),....s" TV (a))
i=k
n 1 n
+/ EF 2D, g * (1)) dr

where By (g (1), ..., " V(t)) are the Bell polynomials.

The Bell polynomial By, x(xX1,X2, ..., Xm—i+1) With variables x1,x2,..., X, k41 is

m! 1\ /X2 )2 Xm—k+1 Jm—k+t
B ) PR - - E . . . < ) < )
m7k(XI 2 o k+1) ]l!]2!"']m—k+l! 1! 2! (”l k 1)'

where the sum is taken over all sequences ji, j2,...,jm—ks+1 Of non-negative integers
such that
Jitjp+...=k and ji+2p+3j3+...=
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For the ease of notation later on, we also set Boog =1 and B, 0 =0 for m > 1.

The Bell polynomials appear in Faa di Bruno’s formula which gives higher order
derivatives of composition function F o g

D pe)) = 3 FO (g(0)Bra(g™ (1), g™ * (). )

dx™

In this paper we will derive integral identities and related inequalities by replacing
Taylor’s expansion with Hermite interpolation.

We will first mention some results regarding Hermite interpolation used in this
paper (for details see, e. g., [1]). Let —cc<a<a; <ay <---<ar<b<o. For
H € C"[a,b] there exists a unique polynomial Py of degree n— 1, called the Hermite
interpolating polynomial of the function H, satisfying

Pg)(aj) :H(i)(aj), 0<i<k;,1<j<n ij—kr:n.
Jj=1

Explicit expression for Py is

r kj .
Pu(x) =Y, > Hij(x)H(q)),
j=1i=0
where H;; are the polynomials
b — L) Y1 gk ((x a,)"“) rea)f
AT, (x—aj)fitt=i k‘ dxk w(x) x=a; 7

where

The error of the interpolation can be expressed as

b
en(x) = H(x) — Pu(x) = / G (x,5)H™ (s),

where Gg is Green’s function for Hermite interpolation given by

L —i—1
)y 121 0 a’ uk o Hij(x),  s<x,
Gu(x,s) = (n= ’als)n 0 6)
I

z; l+lzl 0 (n—i— 1) Hij()C),SZ.X

forall ¢y <s<apyy, 1=0,1,...,r (ag =a,a,+1 =Db).
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Following are some special cases of Hermite interpolation of functions:

(i) Taylor’s two-point condition: m €e N, n=2m, r=2, ay =a, ap=>b and k; =
ko =m — 1. In this case

T (’“:“)[“;”"<z:z>'"<z:z>"ﬂ~><a>

i=0 k=0

D Y (Y 0]+ [ Gt 1O s,

where Green’s function G,, is of the form

(1 [P Iy () =" gk (xs), s <,
(2m—1) ( )zm 1( l)(s—x)m_l_kpk(x,s),x<s7

G(x,s) = (7

where p(x,s) = % and q(x,s) = p(s,x).

(ii) (m,n—m) conditions: r=2, a1 =a,ay=b, l<m<n—1,k =m—1 and
ko =n—m— 1. In this case

m—1 n—m—1
H(x) = ;)T,-(x)H(")(a)—i- ZO ni(x)HD (b) + /athm(x,s)H(”)(s)ds,

R L= BN (M (=

k=0

= M ey [ =)

k=0

and Green’s function G, is of the form

S [spmad (o) () e Y ()

1 —m—1—i (mtq—1Y [ b—x 1| (x=b) (b—s)"~i~! a
—sppt s (e (B2) ] e (r) L s2x
3)
The following lemma describes positivity of Green’s function (6) (see Lemma
2.3.3, page 75, in [1]).

Gmpn(x,s) =

LEMMA 1. Green’s function Gy given by (6) satisfies

>0, forai<x<ara <s<a.
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In this paper we will give Hermite interpolation of composition functions. More-
over, by using positivity of Green’s function of Hermite interpolation and its special
cases, we will give generalized Steffensen-type inequalities.

2. Main results
The following lemma gives Hermite interpolation for composition functions.

LEMMA 2. Let —o<a<ay<ay<--<a<b<eo, Y kj+r=n,andlet
g:la,b] = I and F : I — R be two n times differentiable functions. Then

ki kj—i -
R 1 dF (x—aj) J
Fosts ;Zuz % itk! dit ( w(x) >x:u,(x @) k+1 = kZF
Bi,z(g(l)(aj)7.. I+ +/ Gy (x,s) 2 g(l)(s)’...7g(nfl+1)(s))ds.

Proof. The proof of lemma can be obtained by applying Hermite interpolation for
the function H = F o g and then using Faa di Bruno’s formula. [

We also have the following two identities corresponding to special cases of Her-
mite interpolation.

(i) Two-point Taylor form:

P = 88 ("SR G G

i!

X ZF(I)(g(a))Bi,z(g(l)(a)» 8 ()
i=0

Y — i x— ki
(=) (Go5) BP0 o), s 0)
+ [ Guler) 3 FO (5 Bana (6 (6),---. 84D ())ds

Pos) = % 1) 3 PO (a(a)Bu (s ). e
=0
ﬁo ZZO (e(0)Bis (g (B).....g ) (5))
b
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The following theorem gives our main result.

THEOREM 4. Let —o<aj <ap <---<a,<eo, ¥ kj+r=n, g:[aj,a;] —
R and F : I — R (where I is an interval in R such that ay,a,,g(a1),g(a,) € I) be
two n times differentiable functions such that g,g"V,...g"=1), FO) FQ  F® gre
nondecreasing functions. Then:

(@) If g(y) <y and ky, ks, ...,k are odd, then for every x € |ay,a;]

ro Kk gk (x_aj)kj"‘l
Foglx g;%ﬁﬁ( w(x) )

w(x)
kj+1—i—k

x=aj (x —aj)"

i

x Y FO(g(a)Bis( (@), a))

(b) If g(y) <y and kp,k3,...,k,—1 are odd and k, is even, then reverse of the in-
equality in (a) holds.

(c) If g(y) =y and ky,ks,... k. are odd, then the reverse of the inequality in (a)
holds.

(d) If g(y) >y and ko, k3,... k.1 are odd and k, is even, then the inequality in (a)
holds.

Proof. Applying Lemma 2 with a = a; and b = a, we get

ro ki kj—i 1 dF ( _a,.)k./'H
Fog(x ( : )
g‘ S iso ilk! dx* w(x)

< 3 FO () Buy (6 a8 a)
=0

w(x)
kj+1—i—k

x=aj (x —a;)"

l
+/a, Gr(x,5) 3, F(g(5))Bui(8'(s),....8" ) (s5))ds.
@ =1

By the assumptions of the theorem, g() > 0 for i = 1,...,n, so the Bell polynomials
evaluated at the derivatives of g in the above expression are nonnegative. Furthermore,
the assumptions in part (a) or (c) yield w(x) > 0, so Gg(x,s) > 0 by Lemma 1.
Therefore, if g(y) <y we have
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while the inequality is reversed if g(y) >y, which proves parts (a) and (c¢). Simi-
larly, the assumptions in part (b) or (c¢) yield w(x) < 0, so we obtain the opposite
inequalities. [

By using the two-point Taylor form we obtain the following result.

COROLLARY 1. Let m € N. Let g:[a,b] > R and F : 1 — R (where I is an
interval in R such that a,b,g(a),g(b) € I) be two 2m times differentiable functions
such that g,g(l), . ,g(2m’l), F(l),F(z), . ,F(2m) are nondecreasing functions. Then:

(a) If g(y) <y and m is even, then for every x € |a, D]

s 3 (M) G

i=0 k=0

% 3 FO(g(a))Biy(eV(@),...80 ) (a)
=0

—b)! rx—a\™x—b\F{ ;
() () SO e®)Bal B0

i!

+ [ Gutes zF Ban (g V(6), .. g2 (5))ds.

(b) If g(y) <y and m is odd, then the above inequality is reversed.
(¢) If g(y) =y and m is even, then the reverse of inequality in (a) holds.
(d) If g(y) =y and m is odd, then the inequality given in part (a) holds.

By using the (m,n —m) conditions we obtain the following result.

COROLLARY 2. Let myn € N. Let g: [a,b] - R and F : I — R (where I is an
interval in R such that a,b,g(a),g(b) € I) be two n times differentiable functions such
that g,g(l), . ,g("), F(l),F(z), . ,F(") are nondecreasing functions. Then:

(a) If g(y) <y and n—m is even, then

m—1 i
Fog(x) < ¥ ux) Y, FV(g(a)Bii(e"(),....s" " (a))
i=0 =0
n—m—1 i
+ Z ni(x) Y, FY(g(0))Bis(gM(b),....g" V(b))
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(b) If g(y) <y and n—m is odd, then reverse of the above inequality holds.
(¢) If g(y) =y and n—m is even, then reverse of the inequality in part (a) holds.
(d) If g(y) =y and n—m is odd, then the inequality in part (a) holds.

Further, by using the two-point Taylor and (m,n —m) conditions we obtain the
following results.

COROLLARY 3. Let m€ N and let h: [0,b] — [0,+) and F : I — R (where 1
is an interval in R such that 0,b, fé’h(t)dt € I) be two functions such that h,hV) ..
pem=2) F) F@)  FCm gre nondecreasing functions. Then:

(a) If [§h(t)dt <y and m is even, then for every x € [0,D]

P([[or) < Zo Z <m+k ) [%Ziw(o)gi,l(h(o),...,h<"—’><0>>

+( 1)ix™(b— xz+kl (/h )B (h(b),...,h" (b))

il pm+k

+ /  Gnls) lz FO(5)Bas (h(s), ... ,.h" D (5))ds.
a =1

(b) If [ h(t)dt <y and m is odd, then reverse of the above inequality holds.
(¢) If [§h(t)dt >y and m is even, then reverse of the inequality in (a) holds.

(d) If [§h(t)dt >y and m is odd, then the inequality from (a) holds.

Proof. Follows from Corollary 1 by taking a =0 and g(y) = [§ h(t)dr. O

COROLLARY 4. Let m,n € N andlet h:[0,b] — [0,+e) and F : 1 — R (where 1
is an interval in R such that 0,b, fé’h(t)dt € 1) be two functions such that h,h'V, ...,
hn=2), F(l),F(z),...,F(") are nondecreasing functions. Then:

(a) If [§h(t)dt <y and n—m is even, then for every x € [0,b]

X m—1 i )
P ([ i) < S 50 3 P08 0.1 0)

=0

n—m—1 i

+ 3 ) PO ([ h0)an) o). 00
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(b) If [§h(t)dt <y and n—m is odd, then reverse of the above inequality holds.
(¢) If g h(t)dt >y and n—m is even, then reverse of the inequality in (a) holds.
(d) If Jgh(r)dt >y and n—m is odd, then the inequality from (a) holds.

By inserting the Bell polynomials and Green’s function we get explicit forms of
the inequalities from Corollary 1.
The relevant Bell polynomials are equal to:
n=2:By (x1,x) =x2, Bas(x))=x3,
n=4: Byy(x1,%,%3,%4) =X4, Bap(x1,%2,x3) = 3x3x3 +3x3

Bys(x1,x2) = 6x3x2, Baa(xi) =x]

Consequently, for m = 1 we have

F < —
0g(x) b

and for m = 2 we have

—x)?
Fog(x) < %((b—|—2x—3a)F(g(a))+(b—a)(x—a)F(1)(g(a))>
X—a 2
+ Ea — b;3 ((a +2x—3b)F(g(b))+ (a—b)(x— b)F(l)(g(b))>

)2 g
+%/ﬂ (s=a)*((x—3)(b—a) +2(x~a)(b—s))
% (FU(5)g ¥ (5) + 3F P (5) (80 ()8 s) + ¢ (s))

3
+6F 3 (5)g(5)°g@ (s) + F ) (5)gV(s5)" ) s

(x—a)®

m/xb(b—s)z((s—x)(b—a)+2(s—a)(b—x)>

% (FO(5)g® () +3F D () (619767 (5) +¢(s)')
2

+

+6FO (5)gW (5)*¢@ (5) +F(4)(S)g(l)(5)4>ds-

COROLLARY 5. Let m, h and F be as in Corollary 3 and k : [0,b] — [0, +eo).
Then:
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(a) If [§h(t)dt <y and m is even, then for every x € [0,b]
/ K(x ( / h(y dy) dx
—1lm—i—1 k—1 i+k b—x)" i )
< [z s (") [ SO 0m o) o)

Lym ) k i '
+= )z’b(nlirk " ZF (/ df)Bi,z(h(b)7...,h(‘_l)(b)) dx

b rb 2m
+/ / k(x)Gp(x,s ZF 8)Bom 1 (h(s), - hP0 (9))dxds.
0 Jo

(b) If [gh(t)dt <y and m is odd, then reverse of the above inequality holds.
(¢) If [y h(r)dt >y and m is even, then reverse of the inequality in (a) holds.
(d) If [ h(r)dt >y and m is odd, then the inequality from (a) holds.
Proof. Multiplying the inequality from Corollary 3 by k(x) > 0, integrating with

respect to x from O to b and applying Fubini’s theorem on the right hand side we obtain
the stated inequality. [J

Similarly, using the (m,n —m) conditions, we obtain the following result.

COROLLARY 6. Let m, n, h and F be as in Corollary 4 and k : [0,b] — [0, +eo).
Then:

(a) If [gh(t)dt <y and n—m is even, then for every x € [0,b]

b X
k(x)F ( h(y)dy ) dx
0 0
b m—1 i
S/O k(x){zTi(x)zF()(O)B,;(h(O), ,h(’_l)(O))
i=0 =0
n—m—1 i b
x) Y FY 0o ] dx
+ ,:Z(') i )Z(,)Fl </0 h(t)dt)Bll(h(b), h l(b))]d

(b) If [§ h(t)dt <y and n—m is odd, then reverse of the above inequality holds.
(¢) If [y h(t)dt >y and n—m is even, then reverse of the inequality in (a) holds.

(d) If Jgh(r)dt >y and n—m is odd, then the inequality from (a) holds.
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EXAMPLE 5. Applying Corollary 5(a) with F(t) =1tP, p > 2m, we obtain the
inequality

/Ohk(x) (/xh(t)dt>p dx
/ [mzjmil<m+k 1)()1';'Z++ZWX
() s
b rb

) k<x>cm<x,s>2<p>,sp "Boug (h(s),...,h*" =D (s))dxds,
=1

where (p);=p(p—1)---(p—1+1) is the Pochhammer symbol.

EXAMPLE 6. Applying Corollary 6 (a) with F(t) =t?, p > n, and using the ex-
plicit expression for nM;(x), we obtain the inequality

/Obk(x) (/Oxh(t)dt)pdx

< /bk(x) {n—i—ln—rrii—l <m+k— 1) (_l)i).cm(b_x)i_,_k
0

| m+k
i=0 k=0 k ih

d b p-1
- (i) n
xg(,)(p)z (/0 h(t)dt) Biy(h(b),....h l(b))}d
b b

0 Jo .' =1

where (p);=p(p—1)---(p—1+1) is the Pochhammer symbol.
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