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Abstract. In this paper, we introduce several new subclasses of the class of m -fold symmetric
bi-univalent functions and obtain estimates of the Taylor-Maclaurin coefficients |am+1| , |a2m+1|
and Fekete-Szegö functional problems for functions in these new subclasses. The results pre-
sented in this paper improve the earlier results of Ali et al. [1], Frasin and Aouf [6], and Srivas-
tava et al. [14] in terms of the bounds as well as the ranges of the parameter under consideration.
Our results also further generalize the results of Peng et al. [19].

1. Introduction and definitions

Let A denote the class of functions of the form:

f (z) = z+
∞

∑
n=2

anz
n (z ∈ U), (1.1)

which are analytic in the open unit disk

U = {z : z ∈ C and |z| < 1}.

Further, by S we denote the class of all functions in A which are univalent in U . For
more details on univalent functions, see (for example) [5]. It is well known that every
function f ∈ S has an inverse f−1 defined by

f−1( f (z))= z (z ∈ U) (1.2)

and

f
(
f−1(w)

)
= w

(
|w| < r0( f ); r0( f ) � 1

4

)
. (1.3)

Indeed, the inverse function may have an analytic continuation to U , with

f−1(w) = w−a2w
2 +(2a2

2−a3)w3− (5a3
2−5a2a3 +a4)w4 + · · · . (1.4)
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A function f ∈ A is said to be bi-univalent in U if both f (z) and f−1(z) are
univalent in U . Let Σ denote the class of bi-univalent functions in U , which are nor-
malized by the equation (1.1).

An analytic function f is subordinate to another analytic function g , written
f (z) ≺ g(z) , provided that there is an analytic function w defined on U with

w(0) = 0 and |w(z)| < 1

satisfying the following condition:

f (z) = g
(
w(z)

)
.

Lewin [7] investigated the class Σ of bi-univalent functions and obtained a coeffi-
cient bound given by

|a2| � 1.51.

Subsequently, motivated by the work of Lewin [7], Brannan and Clunie [3] conjectured
that

|a2| �
√

2.

Some examples of bi-univalent functions are given as follows (see also Srivastava et al.
[14]):

z
1− z

,
1
2

log

(
1+ z
1− z

)
and − log(1− z).

The coefficient estimate problem for each of the following Taylor-Maclaurin co-
efficients:

|an| (n ∈ N; n � 3)

is still open (see, for details, [14]). In fact, in recent years, the study of bi-univalent
functions was revived by (and has gained momentum) due mainly to the pioneering
work of Srivastava et al. [14]. Many researchers (see [6, 12, 13, 14, 16, 17, 18, 20])
recently investigated several interesting subclasses of the class Σ and found non-sharp
estimates on the first two Taylor-Maclaurin coefficients |a2| and |a3| . For each function
f in S , the function h given by

h(z) = m
√

f (zm) (m ∈ N)

is univalent and maps the unit disk U into a region with m-fold symmetry. A function
is said to be m-fold symmetric (see [9]; see also [15]) if it has the following normalized
form:

f (z) = z+
∞

∑
k=1

amk+1z
mk+1 (m ∈ N; z ∈ U). (1.5)

We denote the class of m-fold symmetric univalent functions by Sm , which are nor-
malized by the above series expansion (1.5). In fact, the functions in the class S are
one-fold symmetric (that is, m = 1). Analogous to the concept of m-fold symmet-
ric univalent functions, one can think of the concept of m-fold symmetric bi-univalent
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functions in a natural way. Each function f in the class Σ generates an m-fold sym-
metric bi-univalent function for each positive integer m . The normalized form of f is
given as in (1.5) and f−1 is given as follows:

g(w) = w−am+1w
m+1 +

[
(m+1)a2

m+1−a2m+1
]
w2m+1

−
[
1
2
(m+1)(3m+2)a3

m+1− (3m+2)am+1a2m+1 +a3m+1

]
w3m+1 + · · · ,

(1.6)

where f−1 = g . We denote the class of m-fold symmetric bi-univalent functions by
Σm . For m = 1, the formula (1.6) coincides with the formula (1.4) of the class Σ . Here,
in this paper, we also denote by P the class of analytic functions of the form:

p(z) = 1+ p1z+ p2z
2 + · · · (z ∈ U)

such that
ℜ
(
p(z)

)
> 0 (z ∈ U).

In view of the work of Pommerenke [9], the m-fold symmetric function p in the class
P is of the form:

p(z) = 1+ cmzm + c2mz2m + c3mz3m + · · · . (1.7)

Throughout our present investigation, it is assumed that ϕ is an analytic function
with positive real part in the unit disk U such that

ϕ (0) = 1 and ϕ ′ (0) > 0

and ϕ (U) is symmetric with respect to the real axis. Such a function has a series
expansion of the form:

ϕ (z) = 1+B1z+B2z
2 +B3z

3 + · · · (B1 > 0) . (1.8)

Let u(z) and v(z) be two analytic functions in the unit disk U with

u(0) = v(0) = 0 and max{|u(z)| , |v(z)|} < 1.

We suppose also that

u(z) = bmzm +b2mz2m +b3mz3m + · · · (1.9)

and

v(w) = cmwm + c2mw2m + c3mw3m + · · · . (1.10)

We observe that

|bm| � 1, |b2m| � 1−|bm|2, |cm| � 1 and |c2m| � 1−|cm|2. (1.11)
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By simple computations, we have

ϕ
(
u(z)

)
= 1+B1bmzm +(B1b2m +B2b

2
m)z2m + · · · (|z| < 1) (1.12)

and

ϕ
(
v(w)

)
= 1+B1cmwm +(B1c2m +B2c

2
m)w2m + · · · (|w| < 1). (1.13)

Motivated essentially by the work of Ma and Minda [8], we introduce here some
new subclasses of m-fold symmetric bi-univalent functions and obtain bounds for the
Taylor-Maclaurin coefficients |am+1| and |a2m+1| and Fekete-Szegö functional prob-
lems for functions in these new classes. The results presented in this paper improve the
earlier results of Ali et al. [1], Frasin and Aouf [6], and Srivastava et al. [14] in terms of
the bounds as well as the ranges of the parameter under consideration and also further
generalize the results of Peng et al. [19].

2. Coefficient bounds for the function class HΣ,m (ϕ)

DEFINITION 1. A function f (z), given by (1.5), is said to be in the class HΣ,m (ϕ) ,
if the following conditions are satisfied:

f ∈ Σm, f ′ (z) ≺ ϕ (z) and g′ (w) ≺ ϕ (w)
(
g(w) = f−1 (w)

)
,

where the function g(w) is defined by (1.6).

For various special choices of the function ϕ(z) and for the case when m = 1, our
function class HΣ,m (ϕ) reduces to the following known function classes.

1. For m = 1, the function class given by

HΣ,m (ϕ) ≡ HΣ,1 (ϕ) = HΣ (ϕ)

was studied by Ali et al. [1].

2. For m = 1 and

ϕ(z) =
(

1+ z
1− z

)γ
(0 � γ < 1),

the function class given by

HΣ,m (ϕ) ≡ HΣ,1

((
1+ z
1− z

)γ
)

was studied by Srivastava et al. [14].

3. For m = 1 and

ϕ(z) =
1+(1−2γ)z

1− z
(0 � γ < 1),
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the function class given by

HΣ,m (ϕ) ≡ HΣ,1

(
1+(1−2γ)z

1− z

)

was studied by Srivastava et al. [14].

We first state and prove the following theorem.

THEOREM 1. Let the function f (z), given by (1.5), be in the class HΣ,m (ϕ) .
Then

|am+1| � B1
√

2B1√
(m+1)

[
2(m+1)B1 +

∣∣(2m+1)B2
1−2(1+m)B2

∣∣] (2.1)

and |a2m+1|

�

⎧⎪⎪⎨
⎪⎪⎩

(
1− 2(m+1)

(2m+1)B1

)
B3

1

[2(m+1)B1+|(2m+1)B2
1−2(m+1)B2|] + B1

2m+1

(
B1 � 2(m+1)

2m+1

)

B1
2m+1

(
B1 < 2(m+1)

2m+1

)
.

(2.2)

Proof. Let f ∈ HΣ,m (ϕ) and g = f−1 . Then there are analytic functions u : U →
U and v : U → U , with

u(0) = v(0) = 0,

satisfying the following conditions:

f ′ (z) = ϕ
(
u(z)

)
and g′ (w) = ϕ

(
v(w)

)
. (2.3)

Since
f ′ (z) = 1+(m+1)am+1z

m +(2m+1)a2m+1z
2m + · · ·

and

g′ (w) = 1− (m+1)am+1w
m +(2m+1)

[
(m+1)a2

m+1−a2m+1
]
w2m + · · · ,

it follows from (1.12), (1.13) and (2.3) that

(m+1)am+1 = B1bm, (2.4)

(2m+1)a2m+1 = B1b2m +B2b
2
m, (2.5)

− (m+1)am+1 = B1cm (2.6)

and
(2m+1)

[
(m+1)a2

m+1−a2m+1
]
= B1c2m +B2c

2
m. (2.7)
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From (2.4) and (2.6), we get
cm = −bm. (2.8)

By adding (2.5) and (2.7) and, upon some computations using (2.4) and (2.8), we get

(m+1)
[
(2m+1)B2

1−2(1+m)B2
]
a2

m+1 = B3
1 (b2m + c2m) . (2.9)

Further, the equations (2.8) and (2.9), together with the equation (1.11), yield∣∣(m+1)
[
(2m+1)B2

1−2(1+m)B2
]
a2

m+1

∣∣� 2B3
1

(
1−|bm|2

)
. (2.10)

Now, from (2.4) and (2.10), we get

|am+1| � B1
√

2B1√
(m+1)

[
2(m+1)B1 +

∣∣(2m+1)B2
1−2(1+m)B2

∣∣] ,
as asserted in (2.1).

By subtracting (2.7) from (2.5), we get

2(2m+1)a2m+1 = (m+1)(2m+1)a2
m+1 +B1 (b2m − c2m) . (2.11)

From (1.11), (2.4), (2.8) and (2.11), it follows that

|a2m+1| � (m+1)
2

|am+1|2 +
B1

2(2m+1)
(|b2m|+ |c2m|)

� (m+1)
2

|am+1|2 +
B1

(2m+1)

(
1−|bm|2

)

=

(
m+1

2
− (m+1)2

(2m+1)B1

)
|am+1|2 +

B1

2m+1
,

which implies the assertion (2.2). This completes the proof of Theorem 1. �

REMARK 1. For the case of one-fold symmetric functions, Theorem 1 reduces to
the corresponding results of Peng et al. [19], which we recall here as Corollary 1 below.

COROLLARY 1. (see [19]) Let the function f (z), given by (1.5), be in the class
HΣ (ϕ) . Then

|a2| � B1
√

B1√
4B1 +

∣∣3B1
2−4B2

∣∣ (2.12)

and

|a3| �
⎧⎨
⎩
(
1− 4

3B1

)
B3

1

(4B1+|3B2
1−4B2|) + B1

3

(
B1 � 4

3

)
B1
3

(
B1 < 4

3

)
.

(2.13)
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For the case of one-fold symmetric functions and for the class of strongly starlike
functions, the function ϕ is given by

ϕ (z) =
(

1+ z
1− z

)γ
= 1+2γz+2γ2z2 + · · · (0 < γ � 1) , (2.14)

which gives
B1 = 2γ and B2 = 2γ2.

Hence Theorem 1 gives the following corollary.

COROLLARY 2. Let the function f (z), given by (1.5), be in the class HΣ,1

(( 1+z
1−z

)γ
)

.

Then

|a2| � γ
√

2√
2+ γ

(2.15)

and

|a3| �

⎧⎪⎪⎨
⎪⎪⎩

8γ2

6+3γ
(

2
3 � γ � 1

)
2γ
3

(
0 < γ < 2

3

)
.

(2.16)

REMARK 2. The estimate for |a3| asserted by Corollary 2 is more accurate than
those given by Theorem 2 in Srivastava et al. [14].

Next, for the case of one-fold symmetric functions and for the class of starlike
functions of order γ , the function ϕ is given by

ϕ (z) = 1+2(1− γ) z+2(1− γ)z2 + · · · ,

so that
B1 = B2 = 2(1− γ) ,

and Theorem 1 would lead us to the following corollary.

COROLLARY 3. Let the function f (z), given by (1.5), be in the class

HΣ,1

(
1+(1−2γ)z

1−z

)
. Then

|a2| �
√

2(1− γ)√
2+ |1−3γ| (2.17)

and

|a3| �
{ 8−12γ

9

(
0 � γ � 1

3

)
2(1−γ)

3

(
1
3 < γ < 1

)
.

(2.18)
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REMARK 3. The estimates for |a2| and |a3| asserted by Corollary 3 are more
accurate than those given by Theorem 2 in Srivastava et al. [14].

REMARK 4. For the case of one-fold symmetric functions, the estimates for |a2|
and |a3| given by the equations (2.1) and (2.2) are smaller than that given by Theorem
2.1 in Ali et al. [1].

THEOREM 2. Let the function f (z), given by (1.5), be in the class HΣ,m (ϕ) .
Then

∣∣a2m+1− δa2
m+1

∣∣�
⎧⎨
⎩

B1
2m+1 for 0 � |h(δ )| < 1

2(2m+1)

2B1 |h(δ )| for |h(δ )| � 1
2(2m+1)

, (2.19)

where

h(δ ) =
B2

1 (m+1−2δ)
2(m+1)

[
(2m+1)B2

1−2(1+m)B2
] .

Proof. From the equations (2.9) and (2.11), we get

a2
m+1 =

B3
1 (b2m + c2m)

(m+1)
[
(2m+1)B2

1−2(1+m)B2
] (2.20)

and

a2m+1 =
(m+1)

2
a2

m+1 +
B1 (b2m− c2m)

2(2m+1)
. (2.21)

From the equations (2.20) and (2.21), it follows that

a2m+1− δa2
m+1 = B1

[(
h(δ )+

1
2(2m+1)

)
b2m +

(
h(δ )− 1

2(2m+1)

)
c2m

]
,

where

h(δ ) =
B2

1 (m+1−2δ)
2(m+1)

[
(2m+1)B2

1−2(1+m)B2
] .

Since all Bi are real and B1 > 0, which implies the assertion (2.19). This completes
the proof of Theorem 2. �

For the case of one-fold symmetric functions, Theorem 2 reduces to the following
Corollary 4.

COROLLARY 4. Let the function f (z), given by (1.5), be in the class HΣ (ϕ) .
Then ∣∣a3− δa2

2

∣∣�
⎧⎨
⎩

B1
3 for 0 � |h(δ )| < 1

6

2B1 |h(δ )| for |h(δ )| � 1
6

.



THE F-S FUNCTIONAL PROBLEMS FOR m -FOLD SYMMETRIC BI-UNIVALENT FUNCTIONS 1071

Taking δ = 1 and δ = 0 in Theorem 2, we have the following corollaries.

COROLLARY 5. Let the function f (z), given by (1.5), be in the class HΣ,m (ϕ) .
Then ∣∣a2m+1−a2

m+1

∣∣�
⎧⎨
⎩

B1
2m+1 for 0 � |h(δ )| < 1

2(2m+1)

2B1 |h(δ )| for |h(δ )| � 1
2(2m+1)

.

For the case of one-fold symmetric functions, Corollary 5 reduces to the following
corollary.

COROLLARY 6. Let the function f (z), given by (1.5), be in the class HΣ,1 (ϕ) .
Then ∣∣a3−a2

2

∣∣� B1

3
.

COROLLARY 7. Let the function f (z), given by (1.5), be in the class HΣ,m (ϕ) .
Then

|a2m+1| �

⎧⎪⎨
⎪⎩

B1
2m+1 for B2

B2
1
∈ (−∞,0)∪ ( 2m+1

m+1 ,∞
)

B3
1

(2m+1)B2
1−2(1+m)B2

for B2
B2

1
∈
(

2m+1
2(m+1) ,

2m+1
m+1

)
∪
(
0, 2m+1

2(m+1)

) .

For the case of one-fold symmetric functions, Corollary 7 reduces to the following
corollary.

COROLLARY 8. Let the function f (z), given by (1.5), be in the class HΣ,1 (ϕ) .
Then

|a3| �
⎧⎨
⎩

B1
3 for B2

B2
1
∈ (−∞,0)∪ ( 3

2 ,∞
)

B3
1

3B2
1−4B2

for B2
B2

1
∈ ( 3

4 , 3
2

)∪ (0, 3
4

) .

3. Coefficient bounds for the function class NΣ,m(λ ,ϕ)

DEFINITION 2. A function f (z), given by (1.5), is said to be in the class NΣ,m (λ ,ϕ)
if the following conditions are satisfied:

f ∈ Σm,
z f ′ (z)
f (z)

+
λ z2 f ′′ (z)

f (z)
≺ ϕ (z)

and

wg′ (w)
g(w)

+
λw2g′′ (w)

g(w)
≺ ϕ (w)

(
g(w) = f−1 (w)

)
,

where the function g(w) is defined by (1.6).
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For various special choices of the function ϕ(z) , and for the case when m = 1 and
λ = 0, the above-defined class NΣ,m(λ ,ϕ) reduces to the following function classes.

1. For m = 1, the class given by

NΣ,m (λ ,ϕ) ≡ NΣ,1 (λ ,ϕ)

was studied by Ali et al. [1].

2. For m = 1, λ = 0 and

ϕ(z) =
(

1+ z
1− z

)γ
(0 � γ < 1),

the class given by

NΣ,m

(
0,

(
1+ z
1− z

)γ
)

≡ S T ∗
Σ(γ)

coincides with the class of bi-strongly starlike functions of order γ , which was
studied by Brannan and Taha [4].

3. For m = 1, λ = 0 and

ϕ(z) =
1+(1−2γ)z

1− z
(0 � γ < 1),

the class given by

NΣ,m

(
0,

1+(1−2γ)z
1− z

)
≡ S ∗

Σ (γ)

coincides with the class of bi-starlike functions of order γ , which was also stud-
ied by Brannan and Taha [4].

For functions belonging to the class NΣ,m (λ ,ϕ) , we prove the following theorem.

THEOREM 3. Let the function f (z), given by (1.5), be in the class NΣ,m (λ ,ϕ) .
Also let λ � 0. Then

|am+1| � B1
√

B1√∣∣∣(1+2λ +2λm)B2
1− [1+ λ (m+1)]2B2

∣∣∣+[1+ λ (m+1)]2B1

(3.1)

and

|a2m+1|

�

⎧⎪⎪⎨
⎪⎪⎩

(m+1)B1
2m2(1+2λ+2λm) (|B2| � B1)

(m+1)|(1+2λ+2λm)B2
1−[1+λ (m+1)]2B2|B1+(m+1)[1+λ (m+1)]2|B2|B1

2m2(1+2λ+2λm)(|(1+2λ+2λm)B2
1−[1+λ (m+1)]2B2|+[1+λ (m+1)]2B1)

(|B2| > B1) .

(3.2)
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Proof. Let f ∈ NΣ,m (λ ,ϕ) . Then there are analytic functions u : U → U and
v : U → U , with

u(0) = v(0) = 0,

satisfying the following conditions:

z f ′ (z)
f (z)

+
λ z2 f ′′ (z)

f (z)
= ϕ

(
u(z)

)
(3.3)

and
wg′ (w)
g(w)

+
λw2g′′ (w)

g(w)
= ϕ (v(w))

(
g(w) = f−1 (w)

)
. (3.4)

Since

z f ′ (z)
f (z)

+
λ z2 f (z)

f (z)
= 1+m [1+ λ (m+1)]am+1z

m

+
(
2m [1+ λ (2m+1)]a2m+1−m [1+ λ (m+1)]a2

m+1

)
z2m + · · ·

and

wg′ (w)
g(w)

+
λw2g′′ (w)

g(w)
= 1−m [1+ λ (m+1)]am+1w

m

+
(

[m(2m+1)+ λm(m+1)(4m+1)]a2
m+1−2m [1+ λ (2m+1)]a2m+1

)
w2m + · · · ,

from (1.12), (1.13), (3.3) and (3.4), we find that

m [1+ λ (m+1)]am+1 = B1bm, (3.5)

2m [1+ λ (2m+1)]a2m+1−m [1+ λ (m+1)]a2
m+1 = B1b2m +B2b

2
m, (3.6)

−m [1+ λ (m+1)]am+1 = B1cm (3.7)

and

[m(2m+1)+ λm(m+1)(4m+1)]a2
m+1−2m [1+ λ (2m+1)]a2m+1

= B1c2m +B2c
2
m. (3.8)

From (3.5) and (3.7), we get
cm = −bm. (3.9)

By adding the equations (3.6) and (3.8) and, upon some computations using (3.5) and
(3.9), we obtain

2m2
[
(1+2λ +2λm)B2

1− (1+ λ (m+1))2B2

]
a2

m+1 = B3
1 (b2m + c2m) . (3.10)

Further, the equations (3.9), (3.10), together with the equation (1.11), yield∣∣∣∣m2
(

(1+2λ +2λm)B2
1− [1+ λ (m+1)]2B2

)
a2

m+1

∣∣∣∣= B3
1

(
1−|bm|2

)
. (3.11)
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Now, from the equations (3.5) and (3.11), we get

|am+1| � B1
√

B1√∣∣∣(1+2λ +2λm)B2
1− [1+ λ (m+1)]2B2

∣∣∣+[1+ λ (m+1)]2B1

.

as asserted in (3.1).
By simple calculations from (3.6) and (3.8), and using the equations (3.5) and

(3.9), we find that

4m2 [1+ λ (2m+1)](1+2λ +2λm)a2m+1

= [2m+1+ λ (m+1) (4m+1)]B1b2m

+(1+ λ (m+1))B1c2m +2
(
1+ λ +m+3λm+2λm2)B2b

2
m. (3.12)

Thus, by using the equation (1.11) in (3.12), we get

2m2 [1+ λ (2m+1)](1+2λ +2λm) |a2m+1|
�
[
1+ λ +m+3λm+2λm2]B1−

(
1+ λ +m+3λm+2λm2)B1|bm|2

+
[
1+ λ +m+3λm+2λm2] |B2| |bm|2. (3.13)

Since

|bm|2 � [1+ λ (m+1)]2B1∣∣∣(1+2λ +2λm)B2
1− [1+ λ (m+1)]2B2

∣∣∣+[1+ λ (m+1)]2B1

, (3.14)

upon substituting from (3.14) into (3.13), we are led easily to the assertion (3.2) of
Theorem 3. This evidently completes the demonstration of Theorem 3. �

For the case of one-fold symmetric functions, Theorem 3 reduces to the results of
Peng et al. [19].

COROLLARY 9. (see [19]) Let the function f (z), given by (1.5), be in the class
NΣ,1 (λ ,ϕ) . Then

|a2| � B1
√

B1√∣∣∣(1+4λ)B1
2− (1+2λ)2B2

∣∣∣+(1+2λ)2B1

and

|a3| �

⎧⎪⎨
⎪⎩

B1
1+4λ (|B2| � B1)

|(1+4λ )B2
1−(1+2λ )2B2|B1+(1+2λ)2|B2|B1

(1+4λ )(|(1+4λ )B2
1−(1+2λ )2B2|+(1+2λ)2B1)

(|B2| > B1) .
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For the case of one-fold symmetric functions with λ = 0 and for the class of
strongly starlike functions, the function ϕ is given by

ϕ (z) =
(

1+ z
1− z

)γ
= 1+2γz+2γ2z2 + ... (0 < γ � 1) (3.15)

which gives
B1 = 2γ and B2 = 2γ2.

Hence Theorem 3 reduces to the following result.

COROLLARY 10. (see [4]) Let the function f (z), given by (1.5), be in the class
S T ∗

Σ(γ). Then

|a2| � γ√
1+ γ

(3.16)

and
|a3| � 2γ. (3.17)

REMARK 5. The estimate for |a3| given by Corollary 10 is more accurate than
the bound given by Theorem 2.1 in Brannan and Taha [4].

For the case of one-fold symmetric functions with λ = 0 and for the class of bi-
starlike functions, the function ϕ is given by

ϕ (z) = 1+2(1− γ) z+2(1− γ)z2 + · · · ,
so that

B1 = B2 = 2(1− γ) .

Thus, clearly, Theorem 3 yields the following result.

COROLLARY 11. (see [4]) Let the function f (z), given by (1.5), be in the class
S ∗

Σ (γ). Then

|a2| � 2(1− γ)√
1+ |1−2γ| (3.18)

and
|a3| � 2(1− γ) . (3.19)

REMARK 6. The estimate for |a2| given by Corollary 11 is more accurate than
the bound given by Theorem 3.1 in Brannan and Taha [4].

REMARK 7. For the case of one-fold symmetric functions, the estimates for |a2|
and |a3| given by the equations (3.1) and (3.2) are smaller than those given by Theorem
3.1 in Ali et al. [1].
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THEOREM 4. Let the function f (z), given by (1.5), be in the class NΣ,m (λ ,ϕ) .
Also let λ � 0. Then

∣∣a2m+1− δa2
m+1

∣∣�
⎧⎨
⎩

B1
2m(2λm+λ+1) for 0 � |h(δ )| < 1

4m(2λm+λ+1)

2B1 |h(δ )| for |h(δ )| � 1
4m(2λm+λ+1)

, (3.20)

where

h(δ ) =
B2

1 (m+1−2δ)

4m2
[
(2λm+2λ +1)B2

1− (λm+ λ +1)2B2

] .

Proof. From the equation (3.10), we get

a2
m+1 =

B3
1 (b2m + c2m)

2m2
[
(2λm+2λ +1)B2

1 − (λm+ λ +1)2B2

] . (3.21)

Subract (3.6) from the (3.8), we get

a2m+1 =
(m+1)

2
a2

m+1 +
B1 (b2m− c2m)

4m(2λm+ λ +1)
. (3.22)

From the equations (3.21) and (3.22), it follows that

a2m+1−δa2
m+1=B1

[(
h(δ )+

1
4m(2λm+λ+1)

)
b2m+

(
h(δ )− 1

4m(2λm+λ+1)

)
c2m

]
.

where

h(δ ) =
B2

1 (m+1−2δ)

4m2
[
(2λm+2λ +1)B2

1− (λm+ λ +1)2B2

] .
Since all Bi are real and B1 > 0, which implies the assertion (3.20). This completes
the proof of Theorem 4. �

For the case of one-fold symmetric functions, Theorem 4 reduces to the following
Corollary 12.

COROLLARY 12. Let the function f (z), given by (1.5), be in the class NΣ,1 (λ ,ϕ) .
Then ∣∣a3− δa2

2

∣∣�
⎧⎨
⎩

B1
2(3λ+1) for 0 � |h(δ )| < 1

4(3λ+1)

2B1 |h(δ )| for |h(δ )| � 1
4(3λ+1)

.

Taking δ = 1 and δ = 0 in Theorem 4, we have the following corollaries.
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COROLLARY 13. Let the function f (z), given by (1.5), be in the class NΣ,m (λ ,ϕ) .
Also let λ � 0 . Then

∣∣a2m+1−a2
m+1

∣∣�
⎧⎨
⎩

B1
2m(2λm+λ+1) for 0 � |h(δ )| < 1

4m(2λm+λ+1)

2B1 |h(δ )| for |h(δ )| � 1
4m(2λm+λ+1)

.

For the case of one-fold symmetric functions, Corollary 13 reduces to the follow-
ing corollary.

COROLLARY 14. Let the function f (z), given by (1.5), be in the class NΣ,1 (λ ,ϕ) .
Then ∣∣a3−a2

2

∣∣� B1

2(3λ +1)
.

COROLLARY 15. Let the function f (z), given by (1.5), be in the class NΣ,m (λ ,ϕ) .
Also let λ � 0 . Then

|a2m+1|�

⎧⎪⎨
⎪⎩

B1
2m(2λm+λ+1) for B2

B2
1
∈
(
−∞,− 1

m(λm+λ+1)

)
∪ (σ1,∞)

(m+1)B3
1

2m2[(2λm+2λ+1)B2
1−(λm+λ+1)2B2]

for B2
B2

1
∈
(
− 1

m(λm+λ+1) ,σ2

)
∪ (σ2,σ1)

.

where

σ1 =
4λm2 +5λm+2m+ λ +1

m(λm+ λ +1)2

and

σ2 =
(2λm+2λ +1)

(λm+ λ +1)2 .

For the case of one-fold symmetric functions, Corollary 15 reduces to the follow-
ing corollary.

COROLLARY 16. Let the function f (z), given by (1.5), be in the class NΣ,1 (λ ,ϕ) .
Then

|a3| �

⎧⎪⎨
⎪⎩

B1
2(3λ+1) for B2

B2
1
∈
(
−∞,− 1

1+2λ

)
∪
(

10λ+3
(1+2λ)2

,∞
)

B3
1

(4λ+1)B2
1−(1+2λ)2B2

for B2
B2

1
∈
(
− 1

1+2λ , 4λ+1
(1+2λ)2

)
∪
(

4λ+1
(1+2λ)2

, 10λ+3
(1+2λ)2

) .

For the case of one-fold symmetric functions and λ = 0, Corollary 16 reduces to
the following corollary.
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COROLLARY 17. Let the function f (z), given by (1.5), be in the class NΣ,1 (0,ϕ) .
Then

|a3| �

⎧⎪⎨
⎪⎩

B1
2 for B2

B2
1
∈ (−∞,−1)∪ (3,∞)

B3
1

B2
1−B2

for B2
B2

1
∈ (−1,1)∪ (1,3)

.

4. Coefficient bounds for the function class MΣ,m(λ ,ϕ)

DEFINITION 3. A function f (z), given by (1.5), is said to be in the class
MΣ,m(λ ,ϕ) if the following conditions are satisfied:

f ∈ Σm, (1−λ)
z f ′ (z)
f (z)

+ λ
(

1+
z f ′′ (z)
f ′ (z)

)
≺ ϕ (z)

and

(1−λ)
wg′ (w)
g(w)

+ λ
(

1+
wg′′ (w)
g′ (w)

)
≺ ϕ (w)

(
g(w) = f−1(w)

)
,

where the function g(w) is defined by (1.6).

Following the case of one-fold symmetric functions, a function in the class
MΣ,m(λ ,ϕ) is called bi-Mocanu-convex function of Ma-Minda type that essentially
unifies the classes S ∗

Σ (ϕ) and CΣ(ϕ) studied by Ali et al. [1] for the case of bi-
univalent functions.

For various special choices of the function ϕ(z) and the parameter λ , and for
the case when m = 1, the above-defined class MΣ,m(λ ,ϕ) reduces to the following
function classes.

1. For m = 1, the function class given by

MΣ,m(λ ,ϕ) ≡ MΣ,1(λ ,ϕ) = MΣ (ϕ)

was studied by Ali et al. [1].

2. For m = 1, λ = 1 and

ϕ(z) =
(

1+ z
1− z

)γ
(0 < γ � 1),

the function class given by

MΣ,1

(
1,

(
1+ z
1− z

)γ
)

≡ S T ∗
Σ(γ)

coincides with the class of strongly bi-starlike functions of order γ , which was
studied by Brannan and Taha [4].



THE F-S FUNCTIONAL PROBLEMS FOR m -FOLD SYMMETRIC BI-UNIVALENT FUNCTIONS 1079

3. For m = 1, λ = 0 and

ϕ(z) =
(

1+ z
1− z

)γ
(0 < γ � 1),

the function class given by

MΣ,1

(
1,

(
1+ z
1− z

)γ
)

≡ CV Σ(γ) (0 < γ � 1)

coincides with the class of strongly bi-convex functions of order γ , which was
studied by Brannan and Taha [4].

4. For m = 1, λ = 1 and

ϕ(z) =
1+(1−2γ)z

1− z
(0 � γ < 1),

the function class given by

MΣ,1

(
1,

1+(1−2γ)z
1− z

)
≡ CΣ(γ) (0 � γ < 1)

coincides with the class of bi-convex functions of order γ , which was studied by
Brannan and Taha [4].

5. For m = 1, λ = 0 and

ϕ(z) =
1+(1−2α)z

1− z
(0 � γ < 1),

the function class given by

MΣ,1

(
1,

1+(1−2γ)z
1− z

)
≡ S ∗

Σ (γ) (0 � γ < 1)

cincides with the class of bi-starlike functions of order α , which was studied by
Brannan and Taha [4].

THEOREM 5. Let the function f (z), given by (1.5), be in the class MΣ,m(λ ,ϕ).
Also let λ � 0. Then

|am+1| � B1
√

B1

m
√

(1+ λm)
∣∣B1

2 − (1+ λm)B2
∣∣+(1+ λm)2B1

(4.1)

and

|a2m+1| �

⎧⎪⎨
⎪⎩

(1+m)B1
2m2(1+λm) (|B2| � B1)

(1+m)|B2
1−(1+λm)B2|B1+(1+m)(1+λm)|B2|B1

2m2(1+λm)(|B2
1−(1+λm)B2|+(1+λm)2B1)

(|B2| > B1) .
(4.2)
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Proof. Let f ∈ MΣ,m(λ ,ϕ) . Then there are analytic functions u : U → U and
v : U → U , with

u(0) = v(0) = 0

satisfying the following conditions:

(1−λ)
z f ′ (z)
f (z)

+ λ
(

1+
z f ′′ (z)
f ′ (z)

)
= ϕ

(
u(z)

)
(4.3)

and

(1−λ)
wg′ (w)
g(w)

+ λ
(

1+
wg′′ (w)
g′ (w)

)
= ϕ

(
v(w)

)
. (4.4)

Since

(1−λ)
z f ′ (z)
f (z)

+ λ
(

1+
z f ′′ (z)
f ′ (z)

)
= 1+m(1+ λm)am+1z

m

+
[
2m(1+2λm)a2m+1−m

(
1+2λm+ λm2)a2

m+1

]
z2m + · · ·

and

(1−λ)
wg′ (w)
g(w)

+ λ
(

1+
wg′′ (w)
g′ (w)

)
= 1−m(1+ λm)am+1w

m

+
[
m
(
1+2λm+2m+3λm2)a2

m+1−2m(1+2λm)a2m+1
]
w2m + · · · ,

from (1.12), (1.13), (4.3) and (4.4), we find that

m(1+ λm)am+1 = B1bm, (4.5)

2m(1+2λm)a2m+1−m
(
1+2λm+ λm2)a2

m+1 = B1b2m +B2b
2
m, (4.6)

−m(1+ λm)am+1 = B1cm (4.7)

and

m
(
1+2λm+2m+3λm2)a2

m+1−2m(1+2λm)a2m+1 = B1c2m +B2c
2
m. (4.8)

Equations (4.5) and (4.7) now yield

cm = −bm. (4.9)

By adding the equations (4.6) and (4.8), and after some computations using (4.5) and
(4.9), we get

2m2 (1+ λm)
(
B1

2− (1+ λm)B2
)
a2

m+1 = B3
1 (b2m + c2m) . (4.10)

Further, from the equations (4.9) and (4.10), together with (1.11), we have

∣∣m2 (1+ λm)
(
B1

2− (1+ λm)B2
)
a2

m+1

∣∣� B3
1

(
1−|bm|2

)
. (4.11)
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Now, from (4.5) and (4.11), we get

|am+1| � B1
√

B1

m
√

(1+ λm)
∣∣B1

2− (1+ λm)B2
∣∣+(1+ λm)2B1

as asserted in (4.1).
By simple calculations using (4.6) and (4.8), together with the equations (4.5) and

(4.9), we obtain

4m2 (1+2λm)(1+ λm)a2m+1 =
(
1+2m+2λm+3λm2)B1b2m

+
(
1+2λm+ λm2)B1c2m +2(m+1) (1+2λm)B2bm2. (4.12)

Thus, by using the equation (1.11) in (4.12), we get

|a2m+1| � (1+m)B1

2m2 (1+ λm)
+

(1+m) (|B2|−B1) |bm|2
2m2 (1+ λm)

. (4.13)

Since

|bm|2 � m2(1+ λm)2B1

m2 (1+ λm)
(∣∣B2

1− (1+ λm)B2
∣∣+(1+ λm)2B1

) , (4.14)

upon substituting from (4.14) into (4.13), we are led fairly easily to the assertion (4.2)
of Theorem 5. Our demonstration of Theorem 5 is thus completed. �

REMARK 8. For the case of one-fold symmetric functions, Theorem 5 reduces to
the following known results due to Peng et al. [19].

COROLLARY 18. (see [19]) Let the function f (z), given by (1.5), be in the class
MΣ,1(λ ,ϕ). Then

|a2| � B1
√

B1√
(1+ λ)

∣∣B1
2 − (1+ λ)B2

∣∣+(1+ λ)2B1

and

|a3| �

⎧⎪⎨
⎪⎩

B1
1+λ (|B2| � B1)

|B2
1−(1+λ )B2|B1+(1+λ )|B2|B1

(1+λ)[|B2
1−(1+λ )B2|+(1+λ )B1]

(|B2| > B1) .

REMARK 9. For the case of one-fold symmetric functions, the estimates for |a2|
and |a3| given by the equations (4.1) and (4.2) are smaller than those given by Theorem
2.3 in Ali et al. [1].
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THEOREM 6. Let the function f (z), given by (1.5), be in the class MΣ,m(λ ,ϕ).
Also let λ � 0. Then

∣∣a2m+1− δa2
m+1

∣∣�
⎧⎨
⎩

B1
2m(2λm+1) for 0 � |h(δ )| < 1

4m(2λm+1)

2B1 |h(δ )| for |h(δ )| � 1
4m(2λm+1)

, (4.15)

where

h(δ ) =
B2

1 (m+1−2δ)

4m2
[
(λm+1)B2

1− (λm+1)2B2

] .

Proof. From the equation (4.10), we get

a2
m+1 =

B3
1 (b2m + c2m)

2m2
[
(λm+1)B2

1− (λm+1)2B2

] . (4.16)

Subract (3.6) from the (3.8), we get

a2m+1 =
(m+1)

2
a2

m+1 +
B1 (b2m− c2m)
4m(2λm+1)

. (4.17)

From the equations (4.16) and (4.17), it follows that

a2m+1−δa2
m+1 = B1

[(
h(δ )+

1
4m(2λm+1)

)
b2m +

(
h(δ )− 1

4m(2λm+1)

)
c2m

]
.

where

h(δ ) =
B2

1 (m+1−2δ)

4m2
[
(λm+1)B2

1− (λm+1)2B2

] .
Since all Bi are real and B1 > 0, which implies the assertion (4.15). This completes
the proof of Theorem 6. �

For the case of one-fold symmetric functions, Theorem 6 reduces to the following
corollary.

COROLLARY 19. Let the function f (z), given by (1.5), be in the class MΣ,1(λ ,ϕ) .
Then ∣∣a3− δa2

2

∣∣�
⎧⎨
⎩

B1
2(2λ+1) for 0 � |h(δ )| < 1

4(2λ+1)

2B1 |h(δ )| for |h(δ )| � 1
4(2λ+1)

.

Taking δ = 1 and δ = 0 in Theorem 6, we have the following corollaries.



THE F-S FUNCTIONAL PROBLEMS FOR m -FOLD SYMMETRIC BI-UNIVALENT FUNCTIONS 1083

COROLLARY 20. Let the function f (z), given by (1.5), be in the class MΣ,m(λ ,ϕ).
Also let λ � 0. Then

∣∣a2m+1−a2
m+1

∣∣�
⎧⎨
⎩

B1
2m(2λm+1) for 0 � |h(δ )| < 1

4m(2λm+1)

2B1 |h(δ )| for |h(δ )| � 1
4m(2λm+1)

.

For the case of one-fold symmetric functions, Corollary 20 reduces to the follow-
ing corollary.

COROLLARY 21. Let the function f (z), given by (1.5), be in the class MΣ,1(λ ,ϕ) .
Then ∣∣a3−a2

2

∣∣� B1

2(2λ +1)
.

COROLLARY 22. Let the function f (z), given by (1.5), be in the class MΣ,m(λ ,ϕ).
Also let λ � 0. Then

|a2m+1| �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

B1
2m(2λm+1)

for B2
B2

1
∈
(
−∞,−m(2λm+λ+1)

(λm+1)2

)
∪
(

2λm2+3λm+m+2
(λm+1)2

,∞
)

(m+1)B3
1

2m2[(λm+1)B2
1−(λm+1)2B2]

for B2
B2

1
∈
(
−m(2λm+λ+1)

(λm+1)2
, 1

(λm+1)

)
∪
(

1
(λm+1) ,

2λm2+3λm+m+2
(λm+1)2

)
.

For the case of one-fold symmetric functions, Corollary 22 reduces to the follow-
ing corollary.

COROLLARY 23. Let the function f (z), given by (1.5), be in the class MΣ,1(λ ,ϕ) .
Then

|a3| �

⎧⎪⎨
⎪⎩

B1
2(2λ+1) for B2

B2
1
∈
(
−∞,− (1+3λ)

(1+λ)2

)
∪
(

5λ+3
(1+λ )2

,∞
)

B3
1

(λ+1)B2
1−(1+λ)2B2

for B2
B2

1
∈
(
− (1+3λ)

(1+λ )2
, 1

1+λ

)
∪
(

1
1+λ , 5λ+3

(1+λ )2

) .

For the case of one-fold symmetric functions and λ = 0, Corollary 23 reduces to
the following corollary.

COROLLARY 24. Let the function f (z), given by (1.5), be in the class MΣ,1(0,ϕ) .
Then

|a3| �

⎧⎪⎨
⎪⎩

B1
2 for B2

B2
1
∈ (−∞,−1)∪ (3,∞)

B3
1

B2
1−B2

for B2
B2

1
∈ (−1,1)∪ (1,3)

.
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For the case of one-fold symmetric functions and λ = 1, Corollary 23 reduces to
the following corollary.

COROLLARY 25. Let the function f (z), given by (1.5), be in the class MΣ,1(1,ϕ) .
Then

|a3| �

⎧⎪⎨
⎪⎩

B1
6 for B2

B2
1
∈ (−∞,−1)∪ (2,∞)

B3
1

2B2
1−4B2

for B2
B2

1
∈ (−1, 1

2

)∪ ( 1
2 ,3
) .

5. Coefficient bounds for the function class BΣ,m(λ ,ϕ)

We begin this section by introducing the function class BΣ,m(λ ,ϕ) as follows.

DEFINITION 4. A function f (z), given by (1.5), is said to be in the class BΣ,m(λ ,ϕ)
if the following conditions are satisfied:

f ∈ Σm, (1−λ)
f (z)
z

+ λ f ′ (z) ≺ ϕ (z)

and

(1−λ)
g(w)

w
+ λg′ (w) ≺ ϕ (w) ,

where the function g(w) is defined by (1.6).

For various special choices of the function ϕ(z) , and in the case when m = 1, the
above-defined function class BΣ,m(λ ,ϕ) reduces to the following function classes.

1. For m = 1, the function class given by

BΣ,m(λ ,ϕ) ≡ BΣ,1(λ ,ϕ)

was studied by Ali et al. [1].

2. For m = 1 and

ϕ(z) =
(

1+ z
1− z

)γ
(0 � γ < 1),

the function class given by

BΣ,m (λ ,ϕ) ≡ BΣ,1

(
λ ,

(
1+ z
1− z

)γ
)

was studied by Srivastava et al. [14].
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3. For m = 1 and

ϕ(z) =
1+(1−2γ)z

1− z
(0 � γ < 1),

the function class given by

BΣ,m (λ ,ϕ) ≡ BΣ,1

(
λ ,

1+(1−2γ)z
1− z

)

was studied by Srivastava et al. [14].

We first state and prove the following theorem.

THEOREM 7. Let the function f (z), given by (1.5), be in the class BΣ,m (λ ,ϕ) .
Then

|am+1| � B1
√

2B1√∣∣∣(m+1)(1+2λm)B2
1−2(1+ λm)2B2

∣∣∣+2(λm+1)2B1

(5.1)

and

|a2m+1|

�

⎧⎪⎨
⎪⎩

B1
1+2λm

(
B1 � 2(1+λm)2

(m+1)(1+2λm)

)
|(m+1)(1+2λm)B2

1−2(1+λm)2B2|B1+(m+1)(1+2λm)B3
1

(1+2λm)(|(m+1)(1+2λm)B2
1−2(1+λm)2B2|+2(λm+1)2B1)

(
B1 > 2(1+λm)2

(m+1)(1+2λm)

)
.

(5.2)

Proof. Let f ∈BΣ,m (λ ,ϕ) and g(w)= f−1(w) . Then there are analytic functions
u : U → U and v : U → U , with

u(0) = v(0) = 0,

satisfying the following conditions:

(1−λ)
f (z)
z

+ λ f ′ (z) = ϕ
(
u(z)

)
(5.3)

and

(1−λ)
g(w)

w
+ λg′ (w) = ϕ

(
v(w)

)
. (5.4)

Since

(1−λ)
f (z)
z

+ λ f ′ (z) = 1+(λm+1)am+1z
m +(2λm+1)a2m+1z

2m + · · ·
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and

(1−λ)
g(w)

w
+ λg′ (w)

= 1− (λm+1)am+1w
m +(2λm+1)

[
(m+1)a2

m+1−a2m+1
]
w2m + · · · ,

it follows from (1.12), (1.13), (5.3) and (5.4) that

(λm+1)am+1 = B1bm, (5.5)

(2λm+1)a2m+1 = B1b2m +B2b
2
m, (5.6)

− (λm+1)am+1 = B1cm (5.7)

and
(2λm+1)

[
(m+1)a2

m+1−a2m+1
]
= B1c2m +B2c

2
m. (5.8)

From (5.5) and (5.7), we obtain
cm = −bm. (5.9)

By adding (5.6) and (5.8), we get(
(m+1) (2λm+1)B2

1−2(1+ λm)2B2

)
a2

m+1 = B3
1 (b2m + c2m) . (5.10)

Also, the equations (5.9) and (5.10), together with (1.11), imply that∣∣∣((m+1)(2λm+1)B2
1−2(1+ λm)2B2

)
a2

m+1

∣∣∣� B3
1

(
1−|bm|2

)
. (5.11)

Now, from the equations (5.5) and (5.11), we deduce that

|am+1| � B1
√

2B1√∣∣∣(m+1)(1+2λm)B2
1−2(1+ λm)2B2

∣∣∣+2(λm+1)2B1

,

as asserted in (5.1).
Next, upon subtracting (5.8) from (5.6), we get

2(2λm+1)a2m+1 = (2λm+1)(m+1)a2
m+1 +B1 (b2m− c2m) . (5.12)

Using the equations (1.11) and (5.9) in (5.12), it follows that

2(2λm+1) |a2m+1| � (m+1) (2λm+1) |am+1|2 +B1 (|b2m|+ |c2m|) ,
which, in view of (5.5), implies that

2(2λm+1)B1|a2m+1|
�
(
(m+1) (2λm+1)B1−2(λm+1)2

)
|am+1|2 +2B2

1. (5.13)

Finally, by applying the equation (5.1) in (5.13), we arrive at the assertion (5.2) of
Theorem 7. This obviously completes the proof of Theorem 7. �
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REMARK 10. For the case of one-fold symmetric functions, Theorem 7 reduces
to the corresponding results of Peng et al. [19], which we recall here as Corollary 26
below.

COROLLARY 26. (see [19]) Let the function f (z), given by (1.5), be in the class
BΣ,1 (λ ,ϕ) . Then

|a2| � B1
√

B1√
(λ +1)2B1 +

∣∣∣(2λ +1)B1
2 − (λ +1)2B2

∣∣∣ (5.14)

and

|a3| �

⎧⎪⎨
⎪⎩

B1
1+2λ

(
B1 � (1+λ )2

1+2λ

)
|(1+2λ )B2

1−(1+λ )2B2|B1+(1+2λ)B3
1

(1+2λ)(|(1+2λ )B2
1−(1+λ )2B2|+(λ+1)2B1)

(
B1 > (1+λ )2

1+2λ

)
.

(5.15)

For the case of one-fold symmetric functions and for the class of strongly starlike
functions, the function ϕ is given by

ϕ (z) =
(

1+ z
1− z

)γ
= 1+2γz+2γ2z2 + · · · (0 < γ � 1) , (5.16)

which gives
B1 = 2γ and B2 = 2γ2.

Hence Theorem 7 gives us the following corollary.

COROLLARY 27. Let the function f (z), given by (1.5), be in the class

BΣ,1

(
λ ,
( 1+z

1−z

)γ
)

. Then

|a2| � 2γ√
(λ +1)2 + |1+2λ −λ 2|γ

(5.17)

and

|a3| �

⎧⎪⎨
⎪⎩

2γ
1+2λ

(
0 < γ � (1+λ )2

2(1+2λ)

)
2γ2|1+2λ−λ 2|+4(1+2λ )γ2

(1+2λ )(|1+2λ−λ 2|γ+(λ+1)2)

(
(1+λ )2

2(1+2λ ) < γ � 1
)

.
(5.18)

REMARK 11. The estimates for |a2| and |a3| given by Corollary 27 are more
accurate than those given by Theorem 2.2 in Frasin and Aouf [6].
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For the case of one-fold symmetric functions and for the class of starlike functions
of order γ , the function ϕ is given by

ϕ (z) = 1+2(1− γ) z+2(1− γ)z2 + · · · ,
so that

B1 = B2 = 2(1− γ) .

Clearly, therefore, Theorem 7 yields the following corollary.

COROLLARY 28. Let the function f (z), given by (1.5), be in the class

BΣ,1

(
λ , 1+(1−2γ)z

1−z

)
. Then

|a2| � 2(1− γ)√
(λ +1)2 +

∣∣∣2(1+2λ)(1− γ)− (λ +1)2
∣∣∣ (5.19)

and

|a3| �

⎧⎪⎨
⎪⎩

2(1−γ)
1+2λ

(
1+2λ−λ 2

2(1+2λ ) � γ < 1
)

4(1+2λ )(1−γ)−(λ+1)2

(1+2λ)2

(
0 � γ < 1+2λ−λ 2

2(1+2λ)

)
.

(5.20)

REMARK 12. The estimates for |a2| and |a3| given by Corollary 28 are more
accurate than those given by Theorem 3.2 in Frasin and Aouf [6].

THEOREM 8. Let the function f (z), given by (1.5), be in the class BΣ,m (λ ,ϕ) .
Then

∣∣a2m+1− δa2
m+1

∣∣�
⎧⎨
⎩

B1
(2λm+1) for 0 � |h(δ )| < 1

2(2λm+1)

2B1 |h(δ )| for |h(δ )| � 1
2(2λm+1)

, (5.21)

where

h(δ ) =
B2

1 (m+1−2δ)

2
[
(m+1) (2λm+1)B2

1−2(λm+1)2B2

] .

Proof. Adding the equations (5.6) and (5.8) we get

a2
m+1 =

B3
1 (b2m + c2m)

(m+1)(2λm+1)B2
1 −2(λm+1)2B2

. (5.22)

Subract (5.8) from the (5.6), we get

a2m+1 =
(m+1)

2
a2

m+1 +
B1 (b2m− c2m)
2(2λm+1)

. (5.23)
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From the equations (5.22) and (5.23), it follows that

a2m+1− δa2
m+1 = B1

[(
h(δ )+

1
2(2λm+1)

)
b2m +

(
h(δ )− 1

2(2λm+1)

)
c2m

]
,

where

h(δ ) =
B2

1 (m+1−2δ)

2
[
(m+1) (2λm+1)B2

1−2(λm+1)2B2

] .
Since all Bi are real and B1 > 0, which implies the assertion (5.21). This completes
the proof of Theorem 8. �

For the case of one-fold symmetric functions, Theorem 8 reduces to the following
corollary.

COROLLARY 29. Let the function f (z), given by (1.5), be in the class BΣ,1 (λ ,ϕ) .
Then

∣∣a3− δa2
2

∣∣�
⎧⎨
⎩

B1
(2λ+1) for 0 � |h(δ )| < 1

2(2λ+1)

2B1 |h(δ )| for |h(δ )| � 1
2(2λ+1)

.

Taking δ = 1 and δ = 0 in Theorem 8, we have the following corollaries.

COROLLARY 30. Let the function f (z), given by (1.5), be in the class BΣ,m (λ ,ϕ) .
Then

∣∣a2m+1−a2
m+1

∣∣�
⎧⎨
⎩

B1
(2λm+1) for 0 � |h(δ )| < 1

2(2λm+1)

2B1 |h(δ )| for |h(δ )| � 1
2(2λm+1)

.

For the case of one-fold symmetric functions, Corollary 30 reduces to the follow-
ing corollary.

COROLLARY 31. Let the function f (z), given by (1.5), be in the class BΣ,1 (λ ,ϕ) .
Then ∣∣a3−a2

2

∣∣� B1

(2λ +1)
.

COROLLARY 32. Let the function f (z), given by (1.5), be in the class BΣ,m (λ ,ϕ) .
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Then

|a2m+1| �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

B1
(2λm+1)

for B2
B2

1
∈ (−∞,0)∪

(
(2λm+1)(m+1)

(λm+1)2
,∞
)

(m+1)B3
1

(m+1)(2λm+1)B2
1−2(λm+1)2B2

for B2
B2

1
∈
(

(2λm+1)(m+1)
2(λm+1)2

, (2λm+1)(m+1)
(λm+1)2

)
∪
(

(2λm+1)(m+1)
2(λm+1)2

,0
)

.

For the case of one-fold symmetric functions, Corollary 32 reduces to the follow-
ing corollary.

COROLLARY 33. Let the function f (z), given by (1.5), be in the class BΣ,1 (λ ,ϕ) .
Then

|a3| �

⎧⎪⎨
⎪⎩

B1
(2λ+1) for B2

B2
1
∈ (−∞,0)∪

(
2(2λ+1)
(1+λ)2

,∞
)

B3
1

(2λ+1)B2
1−(1+λ )2B2

for B2
B2

1
∈
(

(2λ+1)
(1+λ )2

, 2(2λ+1)
(1+λ )2

)
∪
(
0, (2λ+1)

(1+λ )2

) .

For the case of one-fold symmetric functions and λ = 0, Corollary 33 reduces to
the following corollary.

COROLLARY 34. Let the function f (z), given by (1.5), be in the class BΣ,1 (0,ϕ) .
Then

|a3| �
⎧⎨
⎩

B1 for B2
B2

1
∈ (−∞,0)∪ (2,∞)

B3
1

B2
1−B2

for B2
B2

1
∈ (0,1)∪ (1,2)

.

For the case of one-fold symmetric functions and λ = 1, Corollary 33 reduces to
the following corollary.

COROLLARY 35. Let the function f (z), given by (1.5), be in the class BΣ,1 (1,ϕ) .
Then

|a3| �

⎧⎪⎨
⎪⎩

B1
3 for B2

B2
1
∈ (−∞,0)∪ ( 3

2 ,∞
)

B3
1

3B2
1−4B2

for B2
B2

1
∈ (0, 3

4

)∪ ( 3
4 , 3

2

) .

6. Concluding remarks and observations

In our present investigation, we have introduced and studied the coefficient prob-
lems associated with each of the following four new subclasses:

HΣ,m (ϕ) , NΣ,m (λ ,ϕ) , MΣ,m (λ ,ϕ) and BΣ,m (λ ,ϕ)
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of the class of m-fold symmetric bi-univalent functions in the open unit disk U. These
m-fold symmetric bi-univalent function classes are given by Definitions 1 to 4, re-
spectively. For functions in each of these four m-fold symmetric bi-univalent function
classes, we have derived the estimates of the Taylor-Maclaurin coefficients |am+1| and
|a2m+1| and Fekete-Szegö functional problems for functions belonging to these new
subclasses. The results presented in this paper have been shown to considerably im-
prove the earlier results of Ali et al. [1], Frasin and Aouf [6], and Srivastava et al. [14]
in terms of the bounds as well as the ranges of the parameter under consideration. Our
results also further generalize the results of Peng et al. [19].
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