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SOME VOLTERRA-FREDHOLM TYPE NONLINEAR INEQUALITIES
INVOLVING FOUR ITERATED INFINITE INTEGRAL AND APPLICATION

JITING HUANG AND WU-SHENG WANG

(Communicated by Q.-H. Ma)

Abstract. In this paper, we establish some four iterated infinite integral inequalities, which in-
cludes a nonconstant term outside the integrals. The upper bound of the embedded unknown
function is estimated explicitly by adopting novel analysis techniques, such as: change of vari-
able, amplification method, differential and integration. The derived result can be applied in the
study of qualitative properties of solutions of infinite integral equations.

1. Introduction

In the study of qualitative properties of solutions of differential equations, integral
equations and difference equations, one often deals with certain integral inequalities
and their discrete versions. The well-known Gronwall-Bellman inequality [1, 2] can be
equivalently regarded as the following

u(x) < c—i—/axf(s)u(s)ds, x € [a,a+X], (1)

where ¢ > 0,a are constants, the function f is given, nonnegative and continuous, and
u is the unknown. In 1956 Bihari [3] discussed the nonlinear integral inequality

ulx) <c+ /Oxf(s)w(u(s))ds. )

In 1990 Pinto [4] investigated the integral inequality with summing

u(x) < clx)+ i /Xgi(s)wi(u(s))ds. 3)
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Replacing the upper limit x of the integral with a function b(x) in (2), in 2000 Lipovan
[5] improved Bihari’s results by studying the following retarded integral inequalities

ulx) <c+ f(s)w(u(s))ds, 4)
and
ux) <c+ f ds+/ ))ds. (%)

In 2005 Agarwal, Deng and Zhang [6] generally discussed the retarded Gronwall-like
integral inequality

no rbi(x)
u(x) < clx)+ Z/ ! gi(t,s)wi(u(s))ds, xo<x<X. (6)
i=17PilX

In 2011, Abdeldaim et al. [7] studied the following iterated integral inequality

x) < uo+/0xg(s)u(s) {u(s)—l—/osh(r / dé dT]ds (7)

In order to investigate the boundary value problem of differential equation, Bainov
and Simeonov [&] studied a Volterra-Fredholm tpye integral inequality,

!
u(t) < c+/ F(s)u( ds+/ g(s)u(s)ds, t € 1, X]. (8)
fo
In 2002, Pachpatte [9] generalized the above inequality to the inequality

u(t) <c+ [f(t,s)u(s)ds—k Xg(t,s)u(s)ds, t € [to, X]. 9)

T

In 2004, Pachpatte [10] further studied the following Volterra-Fredholm type inequality

o(r)
ut)<c+/ a(t7s) ds+/ c(s,)u(t)dr|ds
o) o(ry)
a(X)
—|—/ b(t,s)u(s)ds, t € [to,X]. (10)
lo

In 2008 Ma and Pecari¢ [11] discussed more generally the Volterra-Fredholm type in-
equality

<t / a:) oi(s) [ )+ / » (u())d|ds

+/ " o1(s) +/ " ))df}ds 1€ lio, X]. (11)
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In 2012, Zheng and Fu [12] studied the discrete version of Volterra-Fredholm type
inequality involving infinite sums

I e o
o(u(m,m) <almm+Y, Y X [bils.t.mm)o(u(s.))

i=ls=m+1t=n+1

£33 alens oo )]

§=s+1n=t+1

lM~

2 2

+

+ 2
E=s+11M

Jdtsrx)ulsn)

M3+M8

ei(&,m.5.)9w(E,m)]. (12)

141

+

As required in estimation for solutions, invariant sets, and stability, many generalized
versions of the Gronwall-Bellman inequality were given with an invariant decompo-
sition ([13, 14, 15]), a singular kernel ([16, 17]), and maxima ([18, 19]). More re-
sults about integral inequalities of single variable and multivariables can be found from
for example ([20, 21, 22, 23, 24]). The results about the discrete version of Volterra-
Fredholm type inequality can be found from for example ([25, 26, 27, 28, 29]).

In this paper, based on the works of [6, 11, 12], we discuss some four iterated
infinite integral inequalities.

2. Main result

Throughout this paper, let R denote the set of real numbers, R, :=[0,%), X,Y €
R+,Q = [X7°°) X [Y,‘X’)

LEMMA 1. Suppose that u,b € C(Q,R.), a € C(Q,R.) is a nonincreasing func-
tion in the first variable, and o € C'([X ), [X,0)) is nondecreasing such that o(x) =
x, o(X) =X, ofee) =oo. If u(x,y) satisfies

oo

u(x,y) < a(x,y)+ b(s,y)u(s,y)ds, x € [X,oo), (13)

o(x)

then

oo

u(x,y) < a(x,y) exp( b(s,y)ds)7 X € [X, ). (14)

o(x)

Proof. Fixed X; € [X,0). From (13), we have

u(x,y) < a(x,y)+ ( )b(s,y)u(s,y)ds
o(x

oo

a(Xy,y)+ ()b(s,y)u(s,y)ds, X € [X1,00). (15)
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Let
21(x9) = alxi)+ | Tx)b@,y)u(w)ds, x € [X1,09). (16)
Then
z1(e,y) = a(X1,y),u(x,y) < z1(x,y). 17)

Differentiating z; (x,y) with respect to x, using (17) we have

2(xy) = —a (x)b(a(x),y)u(e(x),y)

> —o/(x)b(a(x),y)z1 (oe(x),y)
> —o/ (x)b(a(x),y)z1(x,y), x € [X1,00). (18)
From (18), we have
Zz'l;g’yy)) > — o (b(a(®),y), x € [Xi,). (19)

Integrating both sides of the above inequality in the first variable from x to e, we have

oo

Inzy(eo,y) —Inzi (x,y) > — a(x)b(S,y)d& x € [X1,), (20)
that is
Inz;(x,y) < Inzj(eo,y) + ao;)b(s7y)ds, X € [X1,0). (21)
Using (17) and (21), we obtain
u(x,y) < zi(x,y) < a(Xy,y) exp( ao;)b(s,y)ds>, X € [X],0). (22)

since X is chosen arbitrarily, from (22) we get the desired estimation (14). [

LEMMA 2. Suppose that u € C(Q,R}), H € C(Q,R) is a nonincreasing func-
tion in the first variable, and b € C(Q*,R.) is nonincreasing in the third variable with
H(x,y) > 0. ¢,0 € C(Ry,Ry) are strictly increasing with ¢(r) >0, @(r) >0 for
r> 0. Suppose that o € C'([X,),[X,)) (B € C([V,o),[Y,))) is nondecreasing
such that o(x) > %, a(X) =X, a(e) == (B() >y, BY) =¥, Blew) = =). If
u(x,y) satisfies

u(x,y) < Hix,y)+ /T) /ﬁjy)b@,t,x,y)(p((p—l@@,;)))dms, (xy) €Q. (23)
Then

u(x,y) <o ((I)l(H(x,y)) + Jato) fl;y)b(s,ux,y)dtds), (xy)€eQ, (24

where

qal(z):/:# 2>c¢>0. (25)
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Proof. Fixed X; € [X,0). From (23), we have
uley) SHE+ [ [ bltxy)p(@” (u(s.r)))drds
o(x) JB(y)

HOG)+ [ [ b X)o7 (usn)dids,  26)

o(x) JB(y)

for all (x,y) € [X],o0) X [¥,00). Let

Z2(x7y) = H(Xlay)+/( )/ﬁ( )b(s7t7X17y)(p(¢_1(u(svt)))dtdsv (27)

o(x y

for all (x,y) € [X,) x [Y,o0). Then
u(x,y) <z2(x,y),2(e0,y) = H(X1,y),¥(x,y) € [X1,00) X [Y,0). (28)

Obviously, z;(x,y) is a nonincreasing function in every variable. Since o(x) > x and

B(y) =y, we have z(a(x), B(y)) < z(x,y).
Differentiating z(x,y) with respect to x, using (28) we have

& / bo(x).1.X1,3)9 (0 (u(0t(x),1)))dr
/’b ()1, X1.2)9(0 " (e2((x).1)))dr
>~ (96 (22 (a / bler(x).t.X1.y)dr
>~ (W0 (22(x,y)) / ba(x),1, X1, y)dr, (29)
for all (x,y) € [X1,0) x [Y,e0). From (29) we get
2D oy Siiyy blo(x), 1. X ). (30)

¢! (22(x,y)))

Integrating both sides of the above inequality in the first variable from x to oo, we
obtain

q)l (Z2(°°7Y)) _q)l (ZZ(x7y)) 2 —f;(x) fﬁo?y)b(SJ,XI,y)dtdS, (31)
ie.
D (22(x,y)) < @i(22(2,)) + fo(w) Jp(y) (5,1, X1, y)drds
S OL(HX1Y) + Jor) Jp) b(s:t.X1,y). (32)
It implies that
22x3) <7 (@4 (H(X1,9)) + [570 [57y) blss 1. X0 ) deds ) (33)

for all (x,y) € [X],) X [Y,e). since X is chosen arbitrarily, from (33) we get the
desired estimation (24). [
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THEOREM 1. Suppose that u e C(Q,Ry), a € C(Q,R) is a nonincreasing func-
tion in every variable, and b;, ¢; € C(QZ,R+), i=12,---, 11, d;, e; € C(927R+),
i=1,2,---,1 are nonincreasing in the third and fourth variables, and there is at least

one function among d;, e;, i = 1,2,---,1, not equivalent to zero, ¢, @, o, B are
defined as in Lemma 2. If u(x,y) satisfies

O (u(x,y)) < a(x,y +2/ / bi(s,t,x,9)@(u(s,1))
+/ [ e p(u(E.m)ande] avas

/ / di(s,t,x,y)¢(u(s,1))
+/ / ei(§,m,s,0)0(u(&, n))dndé}dtds (y)eQ. (34

Then

u(x,y) < ¢*1{ / / bi(s,t,X.Y)
+/ / ci(é.n,s t)dnd’g' dtds / / bi(s,t,x,y)

+ [ [ e snanag]aas}}. () e (35)
N t
provided that W is increasing, where @y is defined as in Lemma 2, and
_ u—Hpry
i) = @y (<) - i), (36)
W= a(x Y), (37)

/ / di(s,1,X,Y) +/ / ei(E,n,5,0)dndE | dids.  (38)

Proof. Define a function z3(x,y) by the function on the right-hand side of (34).
Then z3(x,y) is nonincreasing in every variable,

u(x,y) < 97 (s(xy), V) € [X o) x [Ve0), (39)
and
Za(x7y)<a(x,y)+2 Lo g, i 05:300(07 as(5:0)
+[ /Iwci(&n,s,t)qo((b‘l(@(ém)))dndé]dtds
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/ / di(s,t,x,y)z3(s,1)

—|—/ / ei(§7Tl,s,t)@(é,n)dndg}d,ds
a(X,Y) +2/ / i(s,7,%,y)
+A /, C"(é’n’s’t)d”dé]‘l’((l’_ (z3(s,)))dtds

b oo oo
+ / / di s,t,x,y
; a(X) ﬁ(Y)[ ( )

[ Nei(an,s,t>dndé}za<s,t>dtds

H(X.,Y) —|—/ / bi(s,t,x,y)
(XX

+L /t Ci(§7n’s’t)dnd§}¢(¢71(Z3(S,t)))dtds, )

for all (x,y) € [X,0) X [Y,o0), where

H(X,Y) :a(X,Y)—i—Z/aX / di(s,,X,Y)

+/ / e,-(é,n,s,t)dndé}zg(s,t)dtds>O. (41)
s 13
By a suitable application of Lemma 2, from (40) we obtain
z3(x,y) < @) <1)1 (X,Y)) +/ / bi(s,t,x,y)
+/ / c,-(g,n,s,t)dndg}d@, (42)
s 13

and

HX,Y) :a(X,Y)—i—Z/aX / di(s,1,X,Y)
] Nl@i(@ﬂ»s»f)dﬂdé}za(s»l)dfds
(XY+Z3XY2/ / di(5,1,X,)
[ [ elensnandg] s

< a(X,Y)—l—(Dfl(CI)I(H(X7Y))+/O:X) /:mi [bi(s,t7X,Y)



1112 J. HUANG AND W.-S. WANG

+//cl§nstdnd§}dtds 2/ /

+/ / e,énstdndg}dzds

/|

:‘ul—|—d)f ( +/ 2 S,t,X Y
O‘ ﬁ 1:1
+f / ci(é,n,s,mdndé]drds)uz. 43)
N t
It implies that
¢1<w> < O (H(X.Y)) +/ / bils.1,X,Y)
20}
+ / / ci(é,m&f)dndé]dld& (44)
s 13
which is rewritten as
/ / bi(s,t,X,Y)
1 1
+ / / (&M, 5,1)dndE | drds, (45)
N t
where ¥ is defined in (36). Since ¥, is increasing, we obtain
H(X / / bi(s,t,X,Y)
+/ / ci(’g',n,s,t)dndé}dtds) (46)
s 13
Combining (39), (42) and (46), we get the desired estimation (35).
THEOREM 2. Suppose that w € C(Q,R.), u, a, b;, ¢;, i=1,2,---, 11, d;, e;,
i=1,2,---, b, o0, B, @, ¢ aredefined as in Theorem 1. Furthermore, assume @o ¢~

is submultiplicative, that is, (¢ ' (xy)) < @(¢ ' (x)@(d'(»)), x,y € Ry. If u(x,y)

satisfies

oo

¢(u(x,y)) < alx,y)+ o w(s,y)0(u(s,y))ds

/ / bi(s,t,x,y)Q(u(s,1))

+/ / ci(&,n,s,1)pu(&,n))dnds | drds
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12// di(5,1,%,3)0
+// (E M5, 0)0u(En)) dndé]dtds (xy) €Q. (@7

Then

ulx,y) < ¢! / / Z i(s,2,X,Y)

-|-// énstdndédtds / / Z i(5,2,x,y)
+/ / &, n,s,t) dndé dtds}exp(/() w(s, y)ds)} (48)

Sorall (x,y) € Q, provided that Y5 is increasing, where @ is defined as in Lemma 2,
and

Palu) = @ (T ) @) (49)

w = a(X.Y), (50)

i — 122// stXY+// (&M 5,0)dndé]dids,  (51)

bits o) = bitsneng(o7! (exn ([ wizar) ). (52

e nsn) = a@ns0e(o” (ew( [ wEmar))). 6y

di(s,1,%,) = di(s,,%,y) exp (/{){Z)w(r,t)dr), (54)

aEnsn) = & nsnep( [ wznr). (59)
Proof. Let

a(x,y) 2/ / i(8,1,%,9)Q

+// J(EM.5.0)0u(E n)) dndé]dtds

1221/ [ [t

+/ / (&M, 5,0)0(u(E,n) dndg]dtds7 (56)
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for all (x,y) € [X,e0) X [Y,0). From (47), we have

O(u(x,y)) < zaloy)+ [ wis,y)o(uls,y))ds, (x,y) € [X,00) x[V,e0).  (57)

o(x)

Applying the result of Lemma 1 to (57), we have

oo

O(ue) < alor)ep( [ wisnds), ()€ pom) ), (58)
) <07 (zstov)ewp ([ wisnas)). ()€ o) <) (59)
From (56) and (59), we have

z4(x,)

a(x,y +121/ / bi(s,t,x,y)Q (m(s,t)exp(/O:v)w(gz)df)))
+/ / ci(§,m,s,1)@ ¢’_ (Z4(§»n)exp(/();)W(T,n)dr>)>dnd§]dtds

12 -
di(s,t,x,y)za(s,1) exp / w(t,t)dt
“ 1/ / ) ( as) (@.1) )

+/ / e; é,n,s,t)m(&,n)exp(/Té)w(r,n)dr)dnd&]dtds

a(x,y +121/ /ﬁy i(s,1,%,9)Q 1<Z4(s,t)>>

+/ / &(EM,5,0)0 qr <z4(§,n)d1>>dnd’g'}dtds
llzzi/ / di(s,t,%x,v)z4(s,1)

+ [ [ atE sz mande | dias (60)
for all (x,y) € [X,e0) x [Y,o0). Then similar to the process of (40)-(45), we obtain
u(x,y) < / / Z i(s,6,X,Y)
+//c,§nstdnd§ [ aras} / / Z i(5,1,x,)
)i=1
+/S /t &(&.n,s,0)dndg | drds 1)

Combining (58) and (61), we get the desired estimation (48). [
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3. Application

In this section, similar to the applications in [25, 26, 27, 28, 29], we apply our
result in Theorem 1 to investigate a class of Volterra-Fredholm integral equation with
infinity upper limit

u? (x,y) = a(x,y —|—/oc /oc Fi(s,t,x,y,u(s,t
() =)+ [ RGsnuds)

[ [ B s myanagaras

+/;(X) /ﬁ(Y) |:F3(S7t’x7y7u(s7t))
+/«KIM&HJ%W&W»mWﬂdMa(&wEQ, (62)

where u € C(Q,R), p > 1 is an odd number, |a| € C(Q,R}) is a nonincreasing func-
tion in every variable, o € C!([X,),[X,)) (B € C!([Y,),[¥,))) is nondecreasing
such that or(x) > x, o(X) =X, o) = (B(y) =y, B(Y) =Y, B(e0) = o0), and the
functions F; € C(Q> xR,R) (i=1,2,3,4).

PROPOSITION 1. Suppose that u(x,y) is a solution of (62), and the functions

F; € C(Q* xR, R)(i = 1,2,3,4) satisfy the following conditions

< filsstox,y)u(s,0) P2, i=1,2, (63)

|Fi(s,2,x,y,u(s,1))
)| < fils,t,x,y)[uls,0)P, =34, (64)

|Fi(s,2,%,y,u(s,1))

where f1, f2, f3, fa are nonincreasing in the third and fourth variables, and there is at
least one function among f3, f4 not equivalent to zero, then we have

e < L [ L Beex s [ [ ns anag]as} }
+/O:x> /ﬁo(oy) [fl(s7t,x7y)—|—[x/[Nfz(&n,s,l)dndg}dtds}z/l’, (65)

12

provided that [L, < 1, where

Wi(o) = 2,/ -~ 2y, (66)
Uy

w =a(X,Y), (67)
o= [ [ [peexns [ AEnsodnag|aas. 68)
a(X)JB(Y) s
Proof. By the conditions (63) and (64), from (62) we have

. e ,
u(x,y)[" < \a(x,Y)|+/a(x>/ﬁ(y) {fl(s,t,x,y)|u(5’t)|1?
[T e sl i anag] s
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+/N /N S3(st,0,y)|u(s,1)[P
gy L5000

[ [ s solu@n)randg]ads, vy e ©9)

Define two functions by ¢ (i) = u”, @(u) = u?/?>. Then ¢ ' (u) = u'/?,

) (z)—/ZL—/Zﬁ—z\/E—zﬁ 2=c¢>0 (70)
R RTCRIOIEAFICEEA

-1 o Z+2\/E 2 S

@, (Z)—(iz ) 2>¢>0, (1)

Z— M z—

Wi(z) = @) (L) —@y(2) =2,/ 2L oz (72)

() = @1 (S22~ e
Differentiating W (u) with respect to u, we have

‘P’(u):;—i>
T V) Ve

therefore, V'3 is strictly increasing, and a suitable application of Theorem 1 to (69)
yields

eyl < {or{ofes { [ [ [ntexn)
+/ / HEm, st)dndg dtds /a/ Fi(s,1,%,y)
+/S /t fz(é,n,s,t)dndé}dtds}} v
1 2{\113—1{/0:)()/[;) {fl(s7t,X7Y)

+/sm/t(mf2((§’n,s’t)dndé}dtds}}1/2 —2\/E+/o;x) /ﬁ";) [fl (5,1,%,y)
+/w/mfz(é,n,s,t)dndg}dtds}+\/E}z/p

/ / Si(s,2,X,Y)

_|_/ / (& n,s t)dndf dtds +/ / fi(s,t,x,)

(73)

+/ [ fg(’g',n,s,t)dndé}dtds} wr 74)

That is the desired estimation (65). [

Acknowledgements. The authors are very grateful to the editor and the referees for
their careful comments and valuable suggestions on this paper!



[1]
[2]
[3]

[4]
[5]

[6]
[7]
[8]

[9]
[10]

[11]
[12]

[13]
[14]

[15]
[16]

[17]

[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]

[27]

VOLTERRA-FREDHOLM TYPE NONLINEAR INEQUALITIES 1117

REFERENCES

T. H. GRONWALL, Note on the derivatives with respect to a parameter of the solutions of a system of
differential equations, Ann Math, 20 (1919) 292-296.

R. BELLMAN, The stability of solutions of linear differential equations, Duke Math. J. 10 (1943)
643-647.

I. A. BIHARI, A generalization of a lemma of Bellman and its application to uniqueness problem of
differential equation, Acta Math. Acad. Sci. Hung. 7 (1956) 81-94.

M. PINTO, Integral inequalities of Bihari-type and applications, Funkcial Ekvac. 33 (1990) 387-430.
O. LIPOVAN, A retarded Gronwall-like inequality and its applications, J. Math. Anal. Appl. 252 (2000)
389-401.

R. AGARWAL, S. DENG, AND W. ZHANG, Generalization of a retarded Gronwall-like inequality and
its applications, Appl Math Comput. 165 (2005) 599-612.

A. ABDELDAIM AND M. YAKOUT, On some new integral inequalities of Gronwall-Bellman-
Pachpatte type, Appl. Math. Comput. 217 (2011) 7887-7899.

D. BAINOV AND P. SIMEONOV, Integral Inequalities and Applications, Kluwer Acad. Publishers,
Dordrecht, Boston, London, 1992.

B. G. PACHPATTE, A note on certain integral inequality, Tamkang J. Math. 33 (2002) 353-358.

B. G. PACHPATTE, Explicit bound on a retarded integral inequality, Math. Inequal. Appl. 7 (2004)
7-11.

Q. H. MA, AND J. PECARIC, Estimates on solutions of some new nonlinear retarded Volterra-
Fredholm type integral inequalities, Nonlinear Anal., 69 (2008) 393—407.

B. ZHENG AND B. Fu, Some Volterra-Fredholm type nonlinear discrete inequalities involving four
iterated infinite sums, Adv. Differ. Equ. 2012 (2012) Article ID 228.

W. ZHANG, Projected Gronwall’s inequality, in Chinese, J. Math. Res. Exp. 17 (1997) 257-260.

W. ZHANG AND S. DENG, Projected Gronwall-Bellman’s inequality for integrable functions, Math.
Comput. Modell. 34 (2001) 394-402.

L. ZHou, K. LU, AND W. ZHANG, Roughness of tempered exponential dichotomies for infinite-
dimensional random difference equations, J. Diff. Equ. 254 (9) (2013) 4024-4046.

Q. H. MA, E. AND H. YANG, Estimations on solutions of some weakly singular Volterra integral
inequalities, Acta Math. Appl. Sin. 25 (2002) 505-515.

Q. H. MA AND J. PECARIC, Some new explicit bounds for weakly singular integral inequalities with
applications to fractional differential and integral equations, J. Math. Anal. Appl. 341 (2) (2008)
894-905.

J. HENDERSON AND S. HRISTOVA, Nonlinear integral inequalities involving maxima of unknown
scalar functions, Math. Compu. Model. 53 (5-6) (2011) 871-882.

Y. YONG, Nonlinear Gronwall-Bellman type integral inequalities with maxima, Math. Inequ. Appl.
16 (3) (2013) 911-928.

D. BAINOV AND P. SIMEONOV, Integral Inequalities and Applications, Kluwer Academic, Dordrecht,
1992.

B. G. PACHPATTE, Inequalities for Differential and Integral Equations, Academic Press, London,
1998.

W. S. CHEUNG, Some new nonlinear inequalities and applications to boundary value problems, Non-
linear Anal. 64 (2006) 2112-2128.

R. P. AGARWAL, C. S. RY0O, AND Y. H. KIM, New integral inequalities for iterated integrals with
applications, J. Inequ. Appl. 2007 (2007) Article ID 24385.

W. S. WANG, A generalized retarded Gronwall-like inequality in two variables and applications to
BVPBVP, Appl. Math. Comput. 191 (2007) 144-154.

Q. H. MA, Some new nonlinear Volterra—Fredholm-type discrete inequalities and their applications,
J. Comput. Appl. Math. 216 (2008) 451-466.

W. S. CHEUNG Q. H. MA, AND J. PECARIC, Some discrete nonlinear inequalities and applications
to difference equations, Acta Math. Sci., Ser. B. 28 (2008) 417-430.

Q. H. MA, Estimates on some power nonlinear Volterra-Fredholm type discrete inequalities and their
applications, J. Comput. Appl. Math. 233 (2010) 2170-2180.



1118 J. HUANG AND W.-S. WANG

[28] B. ZHENG, Qualitative and quantitative analysis for solutions to a class of Volterra-Fredholm type
difference equation, Adv. Differ. Equ. 2011 (2011) Article ID 30.

[29] B.ZHENG AND Q. H. FENG, Some new Volterra-Fredholm-type discrete inequalities and their appli-
cations in the theory of difference equations, Abstr. Appl. Anal. 2011 (2011), Article ID 584951.

(Received August 6, 2015) Jiting Huang
School of Mathematics and Statistics, Hechi University

Guangxi, Yizhou 546300, P. R. China

e-mail: wang4896@126 . com

Wu-Sheng Wang
School of Mathematics and Statistics, Hechi University
Guangxi, Yizhou 546300, P. R. China

Journal of Mathematical Inequalities
www.ele-math.com
jmi@ele-math.com



