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A NOTE ON INTERPOLATION BETWEEN

THE ARITHMETIC–GEOMETRIC MEAN AND

CAUCHY–SCHWARZ MATRIX NORM INEQUALITIES

LIMIN ZOU AND YOUYI JIANG

(Communicated by J. I. Fujii)

Abstract. In this short note, we obtain an inequality for unitarily invariant norms which is a
generalization of one shown by Audenaert [Oper. Matrices. 9 (2015) 475–479]. An application
of our result is also given.

1. Introduction

Let Mn be the space of n×n complex matrices. Let ||| · ||| be any unitarily invari-

ant norm. Given a matrix K ∈ Mn , we denote by ReK the matrix
K +K∗

2
.

Recently, Audenaert [1] proved that if A,B ∈ Mn and q ∈ [0,1] , then

|||AB∗|||2 � |||qA∗A+(1−q)B∗B|||× |||(1−q)A∗A+qB∗B|||. (1.1)

For q = 0 or q = 1, by inequality (1.1), we obtain the Cauchy-Schwarz inequality for
unitarily invariant norms

|||AB∗|||2 � |||A∗A|||× |||B∗B|||,

which is due to Horn and Matthisa [7]. On the other hand, for q = 1/2, by inequality
(1.1), we get the arithmetic-geometric mean inequality for unitarily invariant norms

|||AB∗||| � 1
2
|||A∗A+B∗B|||,

which is due to Bhatia and Kittaneh [5]. Thus, inequality (1.1) interpolates between the
arithmetic-geometric mean and Cauchy-Schwarz matrix norm inequalities.

LetA,X ,B ∈ Mn , Bhatia and Davis [4] proved that

|||AXB∗|||2 � |||A∗AX |||× |||XB∗B|||. (1.2)
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These authors also proved in [3] that

|||AXB∗||| � 1
2
|||A∗AX +XB∗B|||. (1.3)

The insertion of X is no idle generalization, a judicious choice can lead to powerful
perturbation theorems [3-4]. Our aim here is to obtain a stronger version of inequality
(1.1) in the same spirit.

Let A,B ∈ Mn be positive semidefinite. Bhatia and Kittaneh [6] proved that

|||AB||| � 1
4
|||(A+B)2 |||. (1.4)

In this short note, we obtain a generalization of inequality (1.1). As an application
of our result, we present a generalization of inequality (1.4).

2. Main results

We begin this section with the following result, which is a generalization of in-
equality (1.1).

THEOREM 2.1. Let A,X ,B ∈ Mn and q ∈ [0,1] . Then

|||AXB∗|||2 � |||qA∗AX +(1−q)XB∗B|||× |||(1−q)A∗AX +qXB∗B|||. (2.1)

Proof. For A,X ,B ∈ Mn , if X is positive semidefinite, then by inequality (1.1) we
have

|||AXB∗|||2 = ‖||AX1/2X1/2B∗|||2

� |||qX1/2A∗AX1/2 +(1−q)X1/2B∗BX1/2|||
×|||(1−q)X1/2A∗AX1/2 +qX1/2B∗BX1/2|||

= |||X1/2 (qA∗A+(1−q)B∗B)X1/2|||
×|||X1/2 ((1−q)A∗A+qB∗B)X1/2|||.

(2.2)

By Proposition IX.1.2 in [2] if a product KH is Hermitian, then |||KH|||� |||ReHK|||�
|||HK||| . Using this we obtain

|||X1/2 (qA∗A+(1−q)B∗B)X1/2||| � 1
2
|||C (q)X +XC (q) |||

= |||Re(qA∗AX +(1−q)XB∗B) |||
� |||qA∗AX +(1−q)XB∗B|||,

(2.3)

where

C (q) = qA∗A+(1−q)B∗B.
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It follows from (2.2) and (2.3) that

|||AXB∗|||2 � 1
4
|||C (q)X +XC (q) ||| × |||C (1−q)X +XC (1−q) |||

= |||Re(qA∗AX +(1−q)XB∗B) |||× |||Re((1−q)A∗AX +qXB∗B) |||
� |||qA∗AX +(1−q)XB∗B|||× |||(1−q)A∗AX +qXB∗B|||.

(2.4)
Now we consider the general situation, when X is any matrix. Let X = UΣV ∗ be the
singular value decomposition of X , from inequality (2.4) above, we have

|||AXB∗|||2 = |||AUΣV ∗B∗|||2
� |||qU∗A∗AUΣ+(1−q)ΣV ∗B∗BV |||

×|||(1−q)U∗A∗AUΣ+qΣV∗B∗BV |||
= |||U∗ (qA∗AUΣV ∗ +(1−q)UΣV ∗B∗B)V |||

×|||U∗ ((1−q)A∗AUΣV ∗ +qUΣV∗B∗B)V |||
= |||qA∗AX +(1−q)XB∗B|||× |||(1−q)A∗AX +qXB∗B|||.

This completes the proof. �

REMARK 2.2. For q = 0 or q = 1, by inequality (2.1), we obtain inequality (1.2).
For q = 1/2, by inequality (2.1), we get inequality (1.3).

Next, as an application of inequality (2.1), we present a generalization of inequal-
ity (1.4).

THEOREM 2.3. Let A,B ∈ Mn be positive semidefinite and q ∈ (0,1) . Then

|||AB|||2 � 1
4q(1−q)

|||(qA+(1−q)B)2 |||× |||((1−q)A+qB)2 |||. (2.5)

Proof. Since A,B are positive semidefinite, by inequality (2.1), we have

|||A1/2XB1/2|||2 � |||qAX +(1−q)XB|||× |||(1−q)AX +qXB|||.
Taking X = A1/2B1/2 , we get

|||AB|||2 � |||qA3/2B1/2 +(1−q)A1/2B3/2|||× |||(1−q)A3/2B1/2 +qA1/2B3/2|||
= |||A1/2 (qA+(1−q)B)B1/2|||× |||A1/2 ((1−q)A+qB)B1/2|||.

(2.6)
Bhatia and Kittaneh [2] have proved that

|||A1/2 (A+B)B1/2||| � 1
2
|||(A+B)2 |||.

By this last inequality, we have

|||A1/2 (qA+(1−q)B)B1/2||| � 1

2
√

q(1−q)
|||(qA+(1−q)B)2 ||| (2.7)
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and

|||A1/2 ((1−q)A+qB)B1/2||| � 1

2
√

q(1−q)
|||((1−q)A+qB)2 |||. (2.8)

It follows from (2.6), (2.7), and (2.8) that

|||AB|||2 � 1
4q(1−q)

|||(qA+(1−q)B)2 |||× |||((1−q)A+qB)2 |||.

This completes the proof. �

REMARK 2.4. For q = 1/2, by inequality (2.5), we obtain inequality (1.4).
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