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L” CONVERGENCE FOR WEIGHTED SUMS OF EXTENDED
NEGATIVELY DEPENDENT RANDOM VARIABLES

CHEN XU, MENGMEI XI, XUEJUN WANG AND HAO XIA

(Communicated by J. Pecari¢)

Abstract. In this paper, we establish some results on L" convergence for weighted sums of
extended negatively dependent random variables under r-th uniform integrability. The results
obtained in the paper generalize some corresponding ones for independent random variables and
some dependent random variables.

1. Introduction

In many statistical applications, we may assume that the variables are independent.
But in real studies, this assumption is not plausible. So, many statisticians extended
this condition to the dependent cases. One of these dependent structures is extended
negatively dependence. The definition of extended negatively dependence is as follows.

DEFINITION 1.1. We call random variables {X,,,n > 1} extended negatively de-
pendent (END, in short) if there exists a constant M > 0 such that both

n
P(Xy >x1,X2 > x2,..., X > X)) <M P(X; > xi)

i=1

and ;
P(X) <x1,X2 <x2,.., X <x0) SMJ[PXG < xi)

i=1

hold for each n > 1 and all real numbers xi,x,...,x,.

The concept of END sequence was introduced by Liu [1]. In the case M =1, the
notion of END reduces to negative dependence (ND, in short) which was introduced by
Lehmann [2] and carefully studied by Joag-Dev and Proschan [3]. As it is mentioned
in Liu [1], the END structure can reflect not only a negatively dependent structure
but also a positive one (inequalities from the definition of ND random variables hold
both in reverse direction), to some extend. The interested readers can refer to Example
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4.1 in Liu [1], where END random variables can be taken as negatively or positively
dependent. Also, Joag-Dev and Proschan [3] pointed out that negatively associated
(NA, in short) random variables are ND and thus NA random variables are END.

Some applications for END sequence have been found. For example, Liu [1] ob-
tained the precise large deviations for dependent random variables with heavy tails, Liu
[4] studied the sufficient and necessary conditions of moderate deviations for dependent
random variables with heavy tails, Chen et al. [5] established the strong law of large
numbers for END random variables and showed applications to risk theory and renewal
theory, Shen [6, 7] presented some probability inequalities for END random variables
and gave some applications; Wu and Guan [8] presented some convergence properties
for the partial sums of END random variables; Wang and Wang [9] investigated a more
general precise large deviation result for random sums of END real-valued random vari-
ables in the presence of consistent variation; Qiu et al. [10] and Wang et al. [11-13]
provided some results on complete convergence for END random variables, Wang et
al. [14] established the complete consistency for the estimator of nonparametric regres-
sion models based on END errors, and so forth. Since the assumption of END is much
weaker than independence, negative association and negative dependence, a study on a
limiting behavior of END sequences is of interest.

Ryke and Root [15] once proved the following result on L" convergence for in-
dependent and identically distributed random variables {X,X,,n > 1}: if 0 <r <2,

E|X|" < oo, then
nYr (ZXi—nb>
i=1

where b=0if 0 <r<1,and b=EX if 1 <r < 2. The result has been extended
to different cases. See for example, when 1 < r < 2, it has been generalized to in-
dependent but not identically distributed case and martingale difference case; when
0 < r < 1, it has been generalized to any cases of random variables, of course the
condition E|X|" < e is replaced by a more general one, i.e. r-th Cesaro uniform in-
tegrability (see Chen et al. [16]). Recently, Chen [17] not only extended (1.1) for
independent and identically distributed random variables to the case of pairwise NQD
sequence, but also to a more general case, that is not necessarily identical distribution
but r-th Cesaro uniform integrability.

r

lim E =0, (1.1)

n—oo

In this paper, we will study L" convergence for weighted sums S, =Y~ __ a,iXi,
where {X;,i > 1} is a sequence of r-th uniformly integrable END random variables,

{@pi,—oo < i < oo,n > 1} is an array of constants satisfying supn=' 32 |a,* < o
n>1
foreach s > 1.

Throughout this paper, let I(A) be the indicator function of the set A. Let M and
C be positive constants which may be different in various places.
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2. Main results and their proofs

First, let us present some important lemmas, which will be used to prove the main
results of the paper. The first one is the Rosenthal-type inequality for END random
variables, which was established by Shen [6].

LEMMA 2.1. Let p > 2, {X,,n > 1} be a sequence of END random variables
with EX; =0, and E|X;|P < oo for each i > 1. Then, there exists a positive constant C,
depending only on p such that

n p

>

i=1

E

n n p/2
<G | Y EXIP+ <2EX,-2>
i=1 i=1

The next one is a basic property for END random variables. We refer the readers
to Liu [4] for instance.

LEMMA 2.2. Let random variables X, X3, ---, X, be END. If fi, f>, -+, fu are
all nondecreasing (or nonincreasing) functions, then random variables f1(X1), f>(X2),
-+, fn(Xy,) are END.

Based on the two lemmas above, we can establish the following results.

THEOREM 2.1. Let 1 < r <2 and {Xj,—o < i < o} be a sequence of END
random variables with EX; =0, —oo < i < co. Let {ayj,—oo <i<oo,n > 1} be an
array of constants such that for any s > 1,

supn™ ' Y Janlt < oo 2.1
n=1 i=—oo

Denote S, = Y7 _ . anX;.
(1) If liT X" sup P(|X;| > x) =0, then for any € > 0,
X——+oo

—oo<j<oo

lim P (\S,,\ > Snl/’> —0. 2.2)
(2) If lim x" sup P(|Xi| >x) =0 and sup E|X;|" < e, then for any p €

FoFe eociceo —oo<i<oo

(0,r),
limE|n~1/7S,|P = 0. (2.3)
(3) If liIJIrl sup E|Xi|"I(]X;| > x) =0, that is {X;,—e0 < i < oo} is r-th uni-
AT TP _soj<oo

formly integrable, then

limE[n/"S,|" = 0. (2.4)

n—oo

Proof. For fixed n > 1, denote

X'=—nV1G < —n"T) + X (1| < 0Ty 01O > e,

ni
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X! = X XLy = (X + /(X < /") + (65— (% > ),
Xy = —s VI < =517y + Xl (1] < V) sV > 51,
X,ém X — X/// (X _|_s1/r) (Xi < —Sl/r)+(Xi—Sl/r)I(Xi > Sl/r).

( >£nl/’>
:P( 2 ani(X) + X" >8n1/r>

(1) Forany € >0,

=3

Y, aniX;

j=—o0

i=—oo
— !/ ! - " "
2 ani(Xni - EXni) + 2 a"i(Xni - EXni)

j=—oo0 j=—oo0

> snl/r>

=3

2 ani(Xy; — EXyp) | >

i=—oo

For I, it follows by Markov’s inequality, Lemma 2.1 and condition (2.1) that,

Sl’ll/r
o 2

<cen?r D arE|X)|*

i=—oo

2 ani(X); — EX))

[=—o0

=cn " Y ajE| —n' "I < =)+ X (1X:] < 0Ty 4+ 01X > 0t

j=—o0

<Y lanl? [EX,?I(|X,-\ <)+ n?"P(|Xi| > nV/7)

ji=—oo
=cn " 2 GLEXPI(X;| <n'M)y+C Y, adP(X;| > n'7)

=11 +1.

For I, we have

I <Cn sup P(|X,-\>n1/r> — 0, as n — oo,

—oolj<o0
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For I, we have by dominated convergence theorem that

=cn " 2 m/ PXi21(|1Xi| < n'/7) > x)dx

[=—o0

—Cnfz/’E / P (1X:1(1Xi| < n'/") > x)dx

[=—o0

< cn Z m/ P(|Xi| > x)dx (x=yn'/")

[=—o0

-c 2 2 [yl >yt

j=—o0

<C yn sup P(|X\>yn1/r)

—ooj< oo
— 0, as n — oo.

Thus, I} — 0 as n — . For I, it follows by Markov’s inequality and dominated
convergence theorem that

Z ani(Xr/l;' - EXr/z;)

j=—o0

L <cnV'E

CnV" Y Jawi|E1X)

j=—o0

N

= Cn " Y Janl E|(X;+n'MI(X: < —nT) 4+ (X — 071X > 07|

j=—o0

<o VY JawlEXil1(1Xi| > 0"

j=—o0

=cn '/ 2 \am|/ IXi|1(1X:| > n'/") >x> dx

[=—o0

[=—o0

<cn 2 |anil (/ P(|x;| > n'/") dx+/ P(|X;| > x)d ) (x=yn'/")

< Cn sup P<|X,-| >n1/r +C/ sup P(|X;| > yn'/")dy

—oolj< o0 —oolj< o0
— 0, as n — oo,

Hence, (2.2) is obtained.

(2) By (1), we can see that in order to prove (2.3), we only need to show that
{|n_1/’Sn’p,n > 1} is uniformly integrable. Noting that »/p > 1, to prove (2.3), it
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suffices to show supE (|n~1/7S,|P)"/P < eo. It is easily checked that
n>1

E(|n—l/rSn‘17)r/17 < 1—|—l’l71/ P(S,| >Sl/r)ds

<1+n*1/ P(
+n_1/ P(

Thus, to prove (2.3), we only need to show

Igzsupn_l/ P(
n>1 n

=

2 ani(X, — EX)Y)

i=—oo

1/r

> %) ds
1/r

> s2 )ds.

< Sy n s'/r
Y ani(X) —EX))| > 5 | ds <o

D ani(X, — EX.')

[=—o0

j=—o0

and
o o0 1/r
Iy = supn’l/ P( Y, an(Xy — EX;i")| > SZ )ds < oo,
n>1 n j=—o0
Noting that
sup sup IP(|X;| > t)dt
n>1—so<i<oonl/"
1 00

= —sup sup , P(|X;| >t)dt"

T p>]—co<i<oonl

1 r|oe “ r
= —sup sup (P(|X,-| >0t |7, —/l/rt dP(|X;| > t))
n

T p>1—co<i<oo

1 00
= —sup sup (—P(|Xi > nl/’)n+/l/rt’dP(|X,-\ < t))

I n>1—eo<i<oo

1
= —sup sup (—P(|X,-\ > n'Mn+E X 1(X;] > nl/’)>
T n>1—eo<i<oo
< Csup sup EXi|'I(|Xi| >n'/")
n=1—eo<j<oo
<C sup Exi["
—ooLi<oo
we have by Markov’s inequality and Lemma 2.1 that

2

Y Xy —EX}))| ds

j=—o0

I < Csupnfl/ s YUE
n

n=1

< Csup sup s 2TE|X" ds

n=1 —co<li<ooJ

< Csup sup 52 {EXi21(|X,-\ < s+ 82P(|xi) > sl/’)} ds

n=1 —eo<li<oo/n

(2.5)
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=Csup sup |5 2 EXPI(Xi| <sY)ds+Csup sup [ P(Xi| > 5'/")ds
n>1 —co<i<ooJn n>1 —co<i<oo/n
o si/r
< Csup sup s‘z/’ds/ tP(1Xi)| > 1)dt+Csup sup E|Xi|"I(|X;]| >n'/")
n=1 —eoli<eo /1l 0 n>1 —co<li<oo

< Csup sup tP(|Xi| >t)dt/ s ds+C sup E|Xi|

n>=1 —oco<li<oo 0 max(n,t") oL <00

n
= Csup sup /
n>1 —oo<i<oo \ /0

+C sup E|X;|

—ooj<oo

1/r oo
n'=2P(|X;| > t)dt+/1/ " P(X;| > t)dt)
n r

1
< Csup sup ynP(|Xi| > yn'/Mdy+C sup E|Xi|” (1 =yn'/")

n>1 —oco<i<oo /0 —oolj<oo

<C sup E[Xi
—eo<i<oo
< oo,

For 1, we have by Markov’s inequality and (2.5) again that

I4 < Csupn™! / sTUTY |awlE|X))|ds
g .

nzl [=—o0

= Csupn_l/ sV Janl E|(X;+ VNI < =517 + (X — sV N(X; > sV |ds

n=1 n j=—o0

< Csupn™! [*57 S JanlEXIH(X] > 5'/)ds
s

n=1 j=—o0

< Csup sup s (sl/’P(|Xi| > sy 4 /1/ P(|Xi| >t)dt) ds

n>l—eo<i<oo/n

< Csup sup P(Xi| > s'Mds+ [ s™Vrds | P(Xi| > 1)dt
n n si/r

n=1—eo<i<oo

oo 1"

< Csup sup E|Xi|"I(|Xi] > n'/")+Csup sup P(|X;| > t)dt/ s Vrds
n>1—co<i<oo n3>1—oo<i<eo/nl/" n

< Csup sup E|Xi|"I(|Xi] > n'/")+Csup sup "IP(1X| > )de
n>1—co<i<oo n3>1—oo<i<eo/nl/"

< C sup E[Xi|"
—ool[< o0

< oo,

Thus, (2.3) is obtained.
(3) For any fixed € > 0, it can be checked that

Eln Vs, = nil/ P(IS,| > s/")ds
0

< £+n_1/ P(|Sy| > s/ ds

€



1164 C. XU, M. X1, X. WANG AND H. XIA

<s+n‘1/ P(
ne

—|—n71/ P(
ne

Hence, to prove (2.4), it suffices to show that as n — oo,

Is in_l/ P(
ne

S anlxy —EX)

[=—o0

1/r
> %) ds
1/r
> %) ds.

) Sl/r
Y, ani(X, —EX\)| > ds —0

[=—o0

oo

2, ani(X, — EX;}')

j=—o0

and

Iﬁin*/ P(
ne

For Is, it follows by Markov’s inequality, Lemma 2.1, (2.5) and dominated convergence
theorem that

oo sl/r
Y, ani(X) —EX)")| > 5 | ds—0.

[=—o0

Is < Cn—l/ sy & [EX?I(\XJ < sV 4+ 827P(|Xi| >s1/’)} ds
ne j=—o0

< C sup s HTEXI(1Xi| < s'/")ds+C sup P(|X;| > s'/")ds

—oolj<ooJ NE —oolj<ooJ NE
o ST

< C sup sfz/rds/ tP(|X;| > t)dt +C sup E|X;|'I(|X;|" > ne)
—ooLj<ooJ NE 0 —oolj<o0

< C sup tP(]Xi] >t)dt/ s ds+C sup EXi|'I(|X|" > ne)
oo j<oo 0 max(ne,t") ool [<Loo

(ne)/r oo

—C sup |(ne)2r / tP(Xi| > 1)di + / PO > 1)di

—co<j<oo 0 (ne)l/r

+C sup EIX|'I(|X;|" > ne)
—oolj<o0
1
< C sup (ne)yP(|Xi| > (ne)""y)dy+C sup E|Xi|"I(|X;|" > ne)
—co<Lj<oo 0 —coLj< o0
(= (ne)'/"y)

— 0, asn — oo,
For I, we have by Markov’s inequality and (2.5) again that

Is < Cnfl/ sTVE

ne

S (X~ EX) ds

[=—o0

< Cn_l/ s Y lanlE|X,'|ds < C sup sTVTEIX" |ds
ne ;

j=—o0 —oco<Ll[<LooJ NE
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=C sup sTUTE|(X; + sV (X < —s'7) + (X — s/ 1(X; > 57 |ds

—oco<L[<LooJ NE

< C sup s VTEIX|(1X) > s )ds
—oolj<oo J NE

< C sup P(IXi| > s'"ds+C sup 1/’ds/ P(|X;| > t)dt
—oco[<o0J NE —ooj< o0

oo t"

< C sup EIX|'I(|X:|" > ne)+C sup P(|X;] >t)dt/ s Vrds
—oo<i<oo —ooi<oo (ng)l/E ne

< C sup E[X|'I(|X;|” > ne) +C sup " LP(|Xi| > 1)de
—oo<<oo —co<i<ond (ng)1/E

< C sup EIX|I(|X:|" > ne)
—ooj< o0

— 0, asn — oo,

Thus, (2.4) is obtained. This completes the proof of the theorem. [J

By Theorem 2.1, we can have the following corollary immediately.

COROLLARY 2.1. Let 1 <r <2 and {X;,—oo < i< oo} be a sequence of END
random variables with EX; =0, —eo < i < oo, Let {a;,—o0 < i < oo} be a sequence of
absolutely summable constants. Denote

Yo=Y aiXip k=1,
j——oo
and S, =Y}, Y.
(1) 1If liI_P x" sup P(|X;| >x) =0, then for any € >0,
X770 —coi<oo

lim P (|S,,\ > Snl/’> ~0.

(2) If lim x" sup P(|Xi| >x) =0 and sup E|X;|" < o, then for any p €
Xohee aocices —oco<j<oo
(0,7),

limE[n~'"S,[P =0

n—oo

(3) If lil}rl sup E|Xi|"I(]X;| > x) =0, that is {X;,—e < i < oo} is r-th uni-
AT _coi<oo
formly integrable, then

imE|n~'"S,[" =0

n—o0

Proof. Note that

Mx

Sp=

1 k:

Mx

k li

=]i=—o0 I=—oc0

$ota-% S awi- 5 (San)n
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Denote an; = Y}_ aj— for —eo < i <o and n > 1. Itis obvious that {a;, —co <i <
oo,n > 1} satisfies the conditions of Theorem 2.1. Hence, by Theorem 2.1, we can get
the desired results. The proof is completed. [

REMARK 2.1. Obviously, the main results of the paper still hold for NA, ND and
independent random variables, which are special cases of END.

REMARK 2.2. The result of Corollary 2.1 generalizes the corresponding one of
Sung [18].

If we take a,; =1 for 1 <i<nand n > 1, and a,; = 0 otherwise in Theorem
2.1, then we can get the following result.

COROLLARY 2.2. Let 1 <r <2 and {X,,n > 1} be a sequence of END random
variables with EX; =0, i > 1. Denote S, =Y | X;.
(1) If liT x"supP(|X,| > x) =0, then for any € >0,
X— oo n>1

lim P (\S,,\ > Snl/’> ~0.

(2)If liT X"supP(|X,| > x) = 0 and supE|X,|" < oo, then for any p € (0,r),
AT p>1 n>1

limE[n'/"S,|P =0

n—oo
(3) If hm supE|X I"I(|1X,| > x) =0, that is {X,,n > 1} is r-th uniformly inte-

grable, then

limE[n'/"S,|" = 0. (2.6)
n—oo

Especially, if {X,,n > 1} is a sequence of END random variables with identical distri-
bution and E|X|" < oo, then (2.6) still holds.

REMARK 2.3. The result of Corollary 2.2 generalizes the corresponding one of
Pyke and Root [15].
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