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TOEPLITZ TYPE OPERATORS ASSOCIATED TO SINGULAR INTEGRAL
WITH VARIABLE KERNEL ON WEIGHTED MORREY SPACES

YUE HU, YUESHAN WANG AND YUEXIANG HE

(Communicated by M. Aslam Noor)

Abstract. Let T5! be singular integrals with variable Calderén-Zygmund kernels or +I (the
identity operator), let T%? and T** be the linear operators, and let T%3 = +7. Denote the
Toeplitz type operator by

(Tk’leIa Tk.2 + Tk‘3IaMka’4),

Mo

T =
k

I
-

where M?f = bf, and I, is the fractional integral operator. In this paper, we investigate the
boundedness of the operator T? on weighted Morrey space when b belongs to weighted BMO
space.

1. Introduction and results

Let K(x,&): R" xR"\ {0} — R be a variable Calderén-Zygmund kernel, which
depends on some parameter x and possesses good properties with respect to the second
variable &. The singular integral with variable Calder6n-Zygmund kernel is defined by

TSe) = po. [ Klax=y)f(0)dy (L.1)

which was firstly studied by Calder6n and Zygmund in [1].

Let b be alocally integrable function on R”. The Toeplitz type operator associated
to the singular integral with variable Calderén-Zygmund kernel and fractional integral
operator I, is defined by

(TR MP 1, T2 + T*3 1, MP T, (1.2)

Mo

Th =

k=1

where M?f = bf, and T*! are the singular integrals with variable Calderén-Zygmund
kernel or +/ (the identity operator), T%? and T** are the linear operators, T53 = 41,
k=1,---,0.

Note that the commutators [b,1,](f) = blo(f) — 1o (bf) are the particular cases
of the Toeplitz type operators T?. The Toeplitz type operators T? are the non-trivial
generalizations of these commutators.
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DEFINITION 1.1. ([2]) Let I < p <, 0< Kk <1 and o be a weight function.
Then the weighted Morrey space is defined by

LP¥() = {F € L) < | Flls) <=}

where

1/p
11l (@) sup( / F)Poo(x dx) 7

and the supremum is taken over all balls B C R".

In order to deal with the fractional order case, we need to consider the weighted
Morrey space with two weights.

DEFINITION 1.2. ([2]) Let 1 < p < oo and 0 < x < 1. Then for two weights u
and v, the weighted Morrey space is defined by

L (,v) = { £ € L) I f oy <

where

1/p
s =500 (e P ar)

and the supremum is taken over all balls B C R".

In [3-5], some Toeplitz type operators associated to the singular integral operators
are introduced, and the boundedness for the operators generated by BMO and Lipschitz
functions are obtained. Motivated by these, in this paper, we investigate the bounded-
ness of 7% on the weighted Morrey space when b belongs to weighted BMO space and
have the following result.

THEOREM 1.1. Suppose that T” is defined as (1.2), and b € BMO(w) (weighted
BMO).LetO< o <n, l<p<n/a, l/g=1/p—o/n, 0< K<p/q /P € Ay, and
the critical index of ® for the reverse Holder condition rg > /q K If TY(f) =0 for
any f € LPX(w), T*? and T** are the bounded operators on LP*(w), k= 1,---,0,
then there exists a constant C > 0 such that,

1T () aoxaro1--ainia, ) < CllBl mrtoen) |1l rx )

The following results are immediately obtained from Theorem 1.1.

COROLLARY 1.1. ([6]) Let 0 < a<n, 1l <p<n/o, 1/g=1/p—a/n, 0<
K < p/q and ®9/? € Ay. Suppose that b € BUO(w) and the critical index of ® for
the reverse Holder condition ry > =K then [b,14] is bounded from LPX(®) to

p/q—K’
Lo¥a/p (' ==/ g),
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COROLLARY 1.2. Suppose that T” is defined as (1.2), and b € BMO. Let 0 <
a<n, l<p<n/a, 1/g=1/p—a/n, 0< k< p/q. If T'(f) =0 for any f €
LPR(R"), TR? and T** are the bounded operators on LPX(R"), k=1,---,Q, then
there exists a constant C > 0 such that,

1T ()l gsarogiry < Bl maollf o

2. Some preliminaries
First let us recall definitions and notation of weight classes.
A weight @ is a nonnegative, locally integrable function on R”". Let B = B,(xo)
denote the ball with the center xo and radius r, and AB = Bj,(x9) for any A > 0.
For a given weight function @ and a measurable set E, we also denote the Lebesgue

measure of E by |E| and set weighted measure @(E) = [; @(x)dx. For any given
weight function ® on R", 0 < p < oo, denote by LP(w) the space of all function f

satisfying
1/p
1fllzr (o) = (/R" |f(x)pa)(x)dx) < oo,

DEFINITION 2.1. ([7]) A weight o is said to belong to the Muckenhoupt class
A, for 1 < p <o, if there exists a constant C such that

(i )y o
— [ ox)dx | | — | o(x) P Tdx <
B /5 B /5
for every ball B. The class A; is defined by replacing the above inequality with
B / o(y)dy < C-ess %nfw( X). (2.1)
When p = oo, we defined A = Ui<pcodp.

DEFINITION 2.2. ([8]) A weight function @ belongsto A, , for 1 < p < g < e,
if for every ball B in R", there exists a positive constant C which is independent of B

such that
1 r v s . 1/q
— [ w(y) Pd —/a) d <C,
(B/B ) y) <|B| A ) y)

where p’ denotes the conjugate exponent of p > 1; thatis, 1/p+1/p' = 1.
From the definition of A, 4, we can get that

W EA,,, iff w? €A1+q/p/.
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DEFINITION 2.3. ([9]) A weight function @ belongs to the reverse Holder class
RH, if there exist two constants » > 1 and C > 0 such that the following reverse Holder

inequality
1 tr 1
J— r < -
(B /Ba)(x) dx) \C<|B|/Bw(x)dx>

holds for every ball B C R".

It is well known that if @ € A, with 1 < p <o, then w € A, for all r > p, and
oA, forsome 1 <g<p.If ® €A, with 1 < p <o, then there exists » > 1 such that
o € RH,. It follows directly from Holder’s inequality that @ € RH, implies ® € RH;
for all 1 <s < r. Moreover, if @ € RH,, r > 1, then we have @w € RH, . for some
€ >0. We write ro, =sup{r > 1: ® € RH,} to denote the critical index of w for the
reverse Holder condition.

LEMMA 2.1. ([9]) Suppose @ € Ay. Then there exist two constant C; and Cs,
such that

C10(B) < |Blinfo(x) < Co(B). 2.2)

xeB

LEMMA 2.2. ([9]) Let @ € A,,p > 1. Then, for any ball B and any A > 1, there
exists an absolute constant C > 0 such that

o(AB) < CA"w(B), (2.3)
where C does not depend on B nor on A.

Next we shall introduce the Hardy-Littlewood maximal operator and several vari-
ants, the fractional integral operator and some function spaces.

DEFINITION 2.4. The Hardy-Littlewood maximal operator M f is defined by

M(r)) = supee [ 110y

XeB

For 0 < 6 < 1, the sharp maximal operator Mg f is defined by

1/6

() = sopint (1o [ 17017 = el s )
xeB ¢ ‘B‘

For 0 < @ <n, r > 1, we define the fractional maximal operator M, ,f by

M )0) =5 (b [0 1ay) "

XEB
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and define the fractional weighted maximal operator My, .o f by
1 1/r
Masat @) =sip( = [ rroia) "
arof(X) x‘ég( o(B) - B\f(y)l ) y)

where the above supremum is taken over all balls B containing x. In order to simplify
the notation, we set M. = My .y and My = M .

DEFINITION 2.5. For 0 < o < n, the fractional integral operator I, is defined by

LW = [,

R Jx =y

DEFINITION 2.6. ([10]) Let 1 < p < e and ® be a weighted function. A locally
integrble function b is said BMO,(w), if

1/p
sup | i [160) ~balP o) ] <<

L

where bp = 5]

Jzb(y)dy and the supremum is taken over all balls B C R".

LEMMA 2.3. ([10]) Let @ € A;. Then for ang 1 < p < oo, there exists an absolute
constant C > 0 such that ||b||gyo,(w) < Clblmo(o)-

The following estimates will play a key role in the proof of our main result.

LEMMA 2.4. ([6]) Let 0 <6 <1, 1<p<eo,and 0 <k <1.If U, v €A,
then we have

”Méf”U’*"(u,v) < CHMngLPK(u,v)

for all functions f such that the left hand side is finite. In particular, when U =V = ®
and O € A, then we have

HMéfHLPJC(w) < CHMngLpK(w)
for all functions f such that the left hand side is finite.

We list a series of lemmas which will be used in the proof of our theorem.

LEMMA 2.5. ([6]) LetO<a<n, 1<p<n/a,l/g=1/p—a/n, 0<x<p/q
and ® € Aw. Then for any 1 < r < p, we have

||M0£.,r.,w(f)HLq~’<q/p(w) < CHf”LI’J‘(w)'
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LEMMA26 ([6]) Let O< v <n, 1 < p<n/a, 1/g=1/p—a/n, oP/1cA,
and rg > Then for every 0 < Kk < p/q, and 1 < r < p we have

p/q K

”Mr,w(f)Hmm/p(wq/aw) < CHf||LqJ<q/p(wq/p7w)-

LEMMA 2.7. ([6]) Let 0 < a<n, l<p<n/a, 1/g=1/p—a/n, oP/1cA,.

Thenif 0 < Kk < p/q and rg > /q =, we have

HMoc,l(f)”mxri/l’(wq/ﬁ,w) < C||fHLI’>’<(a))

LEMMA 2.8. ([2]) Let O<a<n, 1<p<n/a, 1/qg=1/p—a/n, oP/1cA,.
Then if 0 < K < p/q, we have

HIOt(f)HLq~Kq/p(wq/p7w) < CHf”L[)A,K(a))

LEMMA 2.9. ([11]) Let Iy, be a fractional integral operator, and let E be a mea-
surable set in R". Then for any f € L'(R"), there exists a constant C such that

[ Vaf @l dx < i B

Finally, we recall the definition of variable Calderén-Zygmund kernel and its prop-
erties.

DEFINITION 2.7. ([1]) The function K(x,&): R"” x R"\ {0} — R is called a
variable Calderén-Zygmund kernel if:

(i) for every fixed x, the function K(x,-) is a constant kernel satisfying

(1) K(x,) € C*(R"\ {0});
(2) forany p >0, K(x,u8) = u "K(x,8);
(3) Jor1 K(x,E)dE =0 and fgu 1 |K(x, &)|dE < o;

(ii) for every multiindex 3,supgcgn-1 \Dg K(x,&)| < C(B) is independent of x.

We need the spherical harmonics and their properties (see more detail in [1, 12]).
Recall that any homogeneous polynomial P: R" — R of degree m that satisfies AP =0
is called an n-dimensional solid harmonic of degree m. Its restriction to the unit sphere
S"=! will be called an n-dimensional spherical harmonic of degree m Denote by H,,
the space of all n-dimensional spherical harmonics of degree m. In general it results in
a finite dimensional linear space with g,, = dimlH,,, such that go =1, g =n and

=crt o -0l <Cmm', m>2. (2.4)

Furthermore, let {Ym & be an orthonormal base of H,,, then {Y, }$"7 _, is a com-
plete orthonormal system in L2(S"1) and

sup |DPY,,(x)| < Cr)ymPH0=272 12 (2.5)

xeSn-1
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If, for instance, ¢ € C=(S"~"), then ¥, @gnYsm is the Fourier series expansion of ¢ (x)
with respect to {Y¥g, }m then

agn=| O0)Yu(y)do, |agu| <C(n,)m™* sup sup [DEo(y)].  (2.6)
st |Bl=21yesn-!
for any integer /. In particular, the expansion of ¢ into spherical harmonics converges
uniformly to ¢. For the proof of the above results see [13].
Let x,y € R", and = y/|y| € S"~!. In view of the properties of the kernel K with
respect to the second variable and the complete of {¥y,(x)} in L?(S"!), we get

Kx,x—y)=|x—y| "K(x,x—y)
> 8m

:|x_y|—nz Zasm Smx y)

m=1s=

Replacing the kernel with its series expansion, (1.1) can be written as

T()(x) = lim 72 (/) (2
> 8m

=lim ZZasm ) =y Yom(x =) f (v)dy.

e=0Jlx—y|>e =1 52
From the properties of (2.4)-(2.6), the series expansion
N 8gm oo
N e
m=1s= ‘x y‘ m=1

where the integer [ is preliminarily chosen greater than (3n—4)/4. Along with the
|x —y|™"f(y) € L'(R") for almost everywhere x € R", by the Fubini dominated con-
vergence theorem, we have

= 2 Y am(®)Tinf(x). 2.7)

where

Hyp(x—y) = |x = y| "Yom(x =),
and Hg, satisfies pointwise Hérmander condition as follows:

[xo — x|

|y (x — y) = Hon(x0 — )| < Cmn/27|x—y|"+1 2.8)
for each x € B and y ¢ 2B. (see Lemma 3.2 in [13]). Then
Tynf(x) = lim Hg(x—y) f(v)dy

£-0|x—y|>¢
:p.V./RnH\'m(x_y>f(y)dy

is a classical Calderén-Zygmund operator with a constant kernel.
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3. Proof of Theorem 1.1

Let

(T M1 T2 (£)(x) + T MO TH () ().

Mo

T°(f)(x) =

k=1

Without loss generality, we may assume 7! are singular integral operators with vari-
able Calderén-Zygmund kernel (k= 1,---,0). By (2.7),

-3

- OTE MP LT (f) (x)

T 1M T (f) (),

Z
1m=1
Y]

E
where,

TEN)0) = por. [ HE =3 f )y
Rn

are classical Calder6n-Zygmund operators with constant kernels. For arbitrary x € R",
set B for the ball centered at xy and of radius r, and B > x. Since T!(f) =0 for any
f € LP* (), then

POW =T
PPPRE

0
)T M2 P21 T2 () () + 3 T LM 8T (f) ().
k=1

I Mto
i M*

(3.1
Let us first prove the following inequality:
MG MY P81, T () (x)

< "] pyso(ey @) (Mo (1T £) () + Mo (L T*(M) (), 3.2)

where 1 < r < oo,
Write To MP~226 1, T*2(£)(x) as

TE M =021, TR (£) (y) =T M =202 [, TR2 () (v) +- TR MO ~P28 220 1, TR2 (£) ()
=U;(y) + Uz (y).

Taking ¢ = Uj(xp), then

{ ) 1/6
(151 mbinas-t 2 )00 ~ 1] )

< (@) |U1<y>|5dy)1/5 + (i1 10200 - et P

=M+ M,.

1/8
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Since Tk are bounded from L! to WL!, by Kolmogorov’s inequality, Holder’s
inequality and (2.1)-(2.3), we get

My < [ MO TR )y
1/ 1/r
(1 L0 —sz"w@)”dy) (ﬁ [T mresy)
1/r
< Cl1bllByo(w) \B| ( ) / |1, T* Y| @ ()dy)

< C|16]|Bro(w) @ (x) Mo, (LT (f)) ().

For any y € B, and z € (2B)¢, we have |y —z| ~ |xo — z|. Then by Holder’s in-
equality and (2.8) we get,

|B| T e 1 T2 ) () — T e 1 TR ) )y

< g1 o 0~ sl =) 5 30 = )T (1) @)z
cam | /23 - 2B%|zarkv2<f><z>|dzdy
<Cmn/22/

<CmmzW/W»b@—bwﬂw’ﬂ<f><z>'dz

g
— bog| ——=——|I,T*? dz
]+IB\2]B 23‘ | |}’1+1 ‘ o ( )(Z)| 4

, 1
<O 2 by, — b —/ LT (£)(2)|dz
j—zl | 2j+1B 2B|\21+1B\ 21'“B| o (N@)]
1
+Cm"/222 J

=1

1271B] Jyit1p 1b(2) = bajg|llaT*?(f)(2)|dz

= My, +M22~

By the defination of BMO(w) and @ € Ay, we have

o1
|b2j+lB — sz‘ < Z W /ngB ‘b(Z) — b2k+13|dZ
k=1

J (D(ZkJrlB)
<ol X, —5rmm—
& |2kB]

< Cjo(x)|b] pyo(w)-
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Thus, by Lemma 2.1 we get

My, Cm"/222 /by — b23‘|2/+1B| 2/+1B 1T (f)(2)]dz

; 1
n/2 —Jj . _ - k2
<Cm gz o1 = bonl gy [, Ve (D@00

< Cm"1b]| sar0(0) @) Mo (1T (1) (%)
By Holder’s inequality and (2.2), we have

1

n/2 j__ -
Moy = Cm 212 215 2IHB\b(z)

— byl la T2 (£) (2)|dz

= 1 , o 1/
< Cmn/2 z 277 (m hitip ‘b(Z) - b2j+lB|r (D(Z)l 4 dZ)
j=1

! . 1/r
g (m 2j+1B|I“Tk’2(f)(Z)| w(z)dz)

< n/2 < 2J+IB) 1 k2 r
ont 2 olaworm) 27 ey ( oeig) L T2 (@ 0

1/r

-

7

< Cm"2||b]| a0y @ ()Mo (LT (f)) (x)

j=1

< Cm"||b| gy @ (¥) Moo, (I T2 () ().

Combining the estimates for M|, M, it finishes the proof of (3.2).

Since w?/? € Ay, by Lemma 2.4, Lemma 2.6, Lemma 2.8 and the boundedness of
T%2 T%* on LP*(w), we have

T MY 1T ()

La-x4/p(pl=(1=a/n)q g)

< C|[mmsimt g T )

La-xa/p (@l =(1-e/n)q )

<Cm /2HbHBM0 <HMrw (I T f)

+ HMa) (IaTk’zf)

L4%4/P(04/P o) L4%4/P(04/P o) )

< Cm"/2HbHBM0 () I,T f

La-%a/P (4P )

< Cn"2 bl ot HT“f

LP: K )

< "6l gaso(e) 11l o< (@) (3.3)
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Choosing [ > (3n—2)/4, then by (2.4), (2.6) and (3.3) we get
2 o k1,1 sb—b k2
2 Eame M1 TR (f)
k=1m=1s= La:Ka/p (! =(1-0/n)q g)
Q oo gm
< Z Z Z ”akl > Rﬁ%le_bZBIaTk’z(f)||Lq~,'<q/l’(wl*(1*a/n)q o)
k=1m=1s=1
Q oo gnm 2 )
< Clitllavorw) /s 2 X m
< Cl16lsmo(w) 1 f lrx(w Z —2tn/Tn=2
m=1
< C|bllamo(w) 1 f | Lrx(w) (3.4)
Next, we prove
MET*3 1M~ 028 T4 () (x)
CHbHBMO(w)w(x)lia/n (Ma.,r.,w(TkAf)(x) +Ma,1,w(Tk74(f))(x)>
+Cb]| ga0(0) © (¥)Mer1 (TH () (). (3.5)
Write T531,MP~b28T*4(f) as

TE3 [ MP P2 TR (f) (y)

= T3 I MEPBBTRA(£) (y) + TR LM O~ am TR () ()
=Vi(y)+Va(y).

Taking ¢ = V,(xp), then
1/6
(131 [l tam® 21t )00 ~ o] )

c(;| / v1<y>|5dy)1/5+c(%| / |V2(>’)—V2(xo)|5d)’)l/8

=N +N,.

Since T3 = +I, by Lemma 2.9 and Holder’s inequality, we deduce that

151 T ) )
—C [ \m-pmles R (p)(y)ay
= |B|1—a/n R

Ny =

< e ([ —mattot=rar) " ([ i noroma)”
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o(B 1—a/n
< Cll v o741 (457 )

< ClIBl syo() @)~ " Mo ro(TH ) (x).

For any y € B and z € (2B), we have |y —z| ~ |xp —z|. Thus, by Holder’s in-
equality,

N < %/ | T*3 1M ~020Xme TR () () — TH3 1, MO =P2) X8 TR () (x0) |dy
B

C
<= b(z) —b
5 / /(WI (2) — ba|

C |xo — ¥ k2
< — b(z) — bpp——————|T"™ dzd
‘B‘/B/@B)CI (2) 2B‘xO_Z|n_OH_1‘ (f)(2)|dzdy
> r

1 1
ly—z|"*  |xo—z|r®

T%2(f)(2)|dzdy

<CY it [ 6@~ bl T ()l

= (2jrB)n—oc+1

> 1
< c 212 j|b2j+lB - sz‘ |2j+lB‘17a/" /2j+lB ‘Tkz(f)(zﬂdz
j=
o 1
+C2‘12 jm /zf“B b(z) _bz.HlBHTk’Z(f)(Z)‘dZ
j=
= Na1 + Noo.
Note
b1 — bap| < Cjl|D| Bpo(w) @ (%),
then
o ' 1
o —j » _ - k.4
Ny = sz |b2/+13 b2B‘ |2~f+lB|1’O‘/” /2f+lB ‘T (f)(Z)|dZ

Jj=1

o ‘ .
e k4
,.:21]2 |27+ 1B[1-a/n /2!’+IB [T (f)(2)|dz

< C16[| gyro(ew) @ (x)Me 1 (T (£)) (x).

By Holder’s inequality,

< C|1bll Byo(wy@(x)

o !
_ - __
Ny —CZIZ V=T

[ 16 =bayeigl T2z
2/+1B

°° v
—J 1 v - 1/
< C.le J‘2j+lB‘l—a/n (/Z,HBI’(Z)—Z’NHM o(z) dZ)
o

([, reree:)
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& w(2F1B)\ T
< Cllblmoto) (—
grl ‘2”'13‘

1 2 1/r
(o foy TN 0l )
< ClBllpuo@ @)~ Mo (TH(1)) ().

Combining the estimates for N; and N, the proof of (3.5) is completed.
Since 0¥/? € Ay, by Lemma 2.7 we get

(M1 (754(1))

La-x4/p(pl=(1=a/n)q g)

= [ Mo (T4(1))

L4:Ka/P (/P
< T ()er(w)
< Cfllzrx(w)

By Lemma 2.5, we get

| 0()" /" (Mg, (T54 £) + M 01 (TH(£)

La:%4/p (! =(1=a/n)q o)

= HMa,r,w(TkAf) +Ma,1,a)(Tk74(f))

L4Ka/P (4/P @)
ClIT* £l e (o)

<
<O fllzrx(w)

Hence,

0
2 Tk,3IaMh7b23 Tk74 (f)
k=1

La-xa/p (! =(1=0/n)q g)

0
<C|[ X METS3 1,MP P2 TR (1)
k=1

L3549/ (!~ (1=a/m)q )

<C i Hw(')lia/n (Ma,r,w(TkAf) "’Ma,l,a)(TkA(f))

L%/ (!~ (1=a/n)q )

+csz W(TH(F))

< Cl fllzrx(w)- (3.6)
Combined with (3.1), (3.4) and (3.6), it finishes the proof of Theorem 1.1. [J

La:%4/P(l=(1=a/n)q g)
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